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ABSTRACT

The application of Large Language Models (LLMs) in software engi-
neering, particularly in static analysis tasks, represents a paradigm
shift in the field. In this paper, we investigate the role that current
LLMs can play in improving callgraph analysis and type inference
for Python programs. Using the PyCG, HeaderGen, and TypeEvalPy
micro-benchmarks, we evaluate 26 LLMs, including OpenAI’s GPT
series and open-source models such as LLaMA. Our study reveals
that LLMs show promising results in type inference, demonstrating
higher accuracy than traditional methods, yet they exhibit limita-
tions in callgraph analysis. This contrast emphasizes the need for
specialized fine-tuning of LLMs to better suit specific static anal-
ysis tasks. Our findings provide a foundation for further research
towards integrating LLMs for static analysis tasks.
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1 INTRODUCTION

In the dynamic field of Software Engineering (SE), the incorporation
of advanced computational models, especially Large LanguageMod-
els (LLMs), marks a significant shift in the software development
processes [8, 9, 22, 23]. Static analysis (SA), an integral component
of SE, involves examining source code without executing it, to
identify potential errors, code quality issues, and security vulner-
abilities. The emergence of LLMs, such as BERT [6], T5 [16], and
GPT [15], has transformed several diverse SE tasks, including the
SA tasks [22]. Recent works have shown how different SA tasks can
benefit from LLMs, such as false-positives pruning [10], improved
program behavior summarization [11], type annotation [18], and
general enhancements in precision and scalability of SA tasks [11],
both fundamental issues of SA.

This study here situates itself at the intersection of SA and LLMs,
focusing on the effectiveness of LLMs in SA within SE. It aims to
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evaluate the accuracy of LLMs in performing specific SA tasks: call-
graph analysis and type inference, specifically in Python programs.
Callgraph analysis helps in understanding the relationships and
interactions between different components of a program, while type
inference aids in identifying potential type errors and improving
code reliability. To assess the performance of LLMs in these areas,
we use the PyCG [17] and HeaderGen [21] micro-benchmarks for
callgraph analysis, and TypeEvalPy [20] for type inference.

The use of micro-benchmarks in evaluating the performance of
LLMs in our study is grounded in several key considerations. Firstly,
micro-benchmarks are designed to target specific aspects of the
features under test and various characteristics of the programming
language involved. This helps in highlighting the models’ strengths
and weaknesses, allowing for a more nuanced understanding of
their capabilities in SA tasks. Additionally, their development in-
volves rigorous manual inspection and adherence to scientific meth-
ods, ensuring reliability and accuracy in evaluation. Conversely,
obtaining large-scale, real-world data that can serve as ground truth
is often a challenging endeavor. Where such data is available, it is
susceptible to human errors, which can skew the results [7].

By testing a range of 26 different LLMs, our study provides a
comprehensive analysis of their capabilities in the context of SA.
Furthermore, the evaluation enables one to make direct compar-
isons with the existing capabilities of traditional approaches in SA.
The insights from this study are intended to offer a preliminary
understanding of the role of LLMs in SA, AI4SE, and SE4AI fields.

The structure of the paper is as follows: in Section 2 we discuss
the related work. The research questions are outlined in Section 3,
while Section 4 describes our methodology. Results are presented
in Section 5 and subsequently discussed in Section 6. Section 7
addresses the threats to validity. Finally, the paper is concluded by
outlining future research directions in section 8.

Availability.TypeEvalPy is published onGitHub as open-source
software: https://github.com/secure-software-engineering/TypeEvalPy

2 RELATED WORK

Ma et al. [12] and Sun et al. [19] explore the capabilities of LLMs
when performing different program analysis tasks such as control-
flow graph construction, callgraph analysis, and code summariza-
tion. They conclude that while LLMs can comprehend basic code
syntax, they are somewhat limited in performingmore sophisticated
analyses, such as pointer analysis and code behavior summariza-
tion. In contrast, LLift, an LLM-based approach, showed successful
results for different programming analysis tasks, including program
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behavior summarization [11] and how LLMs can be successfully
integrated into an SA pipeline. Researchers conjecture that the
reasons behind the difference in the results were benchmark selec-
tion, prompt designs, and model versions. Li et al. [10] present a
solution to prune SA false positives by asking carefully constructed
questions about function-level behaviors or function summaries.
Seidel et al. [18] propose CodeTIDAL5, a Transformer-based model
trained to predict type annotations in TypeScript. In this study, we
explore how different LLMs perform on callgraph analysis and type
inference for Python programs.

3 RESEARCH QUESTIONS

We focus on the following research questions to evaluate the effec-
tiveness of LLMs using micro-benchmarks in static analysis tasks:

RQ1: What is the accuracy of LLMs in performing callgraph analysis
against micro-benchmarks?

RQ2: What is the accuracy of LLMs in performing type inference
against micro-benchmarks?

4 METHODOLOGY

We next describe the experimental setup, the model selection crite-
ria, prompt design, and metrics used to investigate these RQs.

Micro-benchmarks. To answer RQ1, we choose two bench-
marks designed to evaluate callgraph analysis performance, PyCG [17]
and HeaderGen [21]. PyCG is the first callgraph construction algo-
rithm that uses a context-insensitive and flow-insensitive SA as its
backend. PyCG includes a micro-benchmark containing 112 unique
python programs targeting various Python features organized into
16 categories. HeaderGen is a tool that uses SA to enhance com-
prehension in computational notebooks. HeaderGen improves
PyCG’s static analyzer with flow-sensitivity and type inference.
HeaderGen includes a micro-benchmark with 121 code snippets
with flow-sensitive call sites as ground truth. Note that for this study
we have extended PyCG’s micro-benchmark with nine additional
snippets from the HeaderGen micro-benchmark.

To answer RQ2, we choose the micro-benchmark from Type-
EvalPy [20], a general framework for evaluating type inference
tools in Python. TypeEvalPy contains a micro-benchmark with 154
code snippets and 845 type annotations as ground truth.

Model Selection. In this study, we evaluate several state-of-the-
art LLMs. First, we include two closed-source LLMs, GPT 3.5 Turbo
and GPT 4 from OpenAI as it is the leading general-purpose LLM.
Furthermore, we include ten popular open-source models based on
the download count on the Huggingface [1] platform. This includes
llama2, mistral, dolphin-mistral, codellama, codebooga, tinyllama,
vicuna, wizardcoder, and orca. We include several variations of
these models such as the number of parameters (7b, 13b, etc.,).
Overall, we evaluate 24 open-source models and two closed-source
models, totaling 26 LLMs.

Furthermore, we create a fine-tuned version of GPT-3.5 Turbo,
refined with a training dataset. The dataset created for fine-tuning
GPT-3.5 Turbo comprises 15 program categories. It serves as the rep-
resentative collection of the PyCG, HeaderGen, and TypeEvalPy
micro-benchmarks, emphasizing key Python features such as func-
tions, classes, decorators, and exceptions. This approach seeks to

enhance the model’s adaptability, equipping it to effectively handle
a diverse range of challenges.

Prompt Design. To optimize prompt design, we adopted an
iterative and experimental approach [5]. Initial efforts focused on
enhancing the prompt by including detailed task descriptions and
specifying the expected response format. Notably, we used a one-
shot prompting technique, embedding an example question and
answer within the prompt. Despite these refinements, we encoun-
tered challenges with the LLM’s ability to produce structured out-
puts. Our experiments revealed that even with explicit instructions
to generate outputs in JSON format, models struggled to deliver
results that could be reliably parsed. To address this, we explored
a question-answer based method, querying the model and then
translating its natural-language responses back into a structured
JSON format. Note that the same prompt is used for all models and
set up with a temperature of zero to ensure deterministic outputs.

Evaluation Metrics. To assess both flow-insensitive callgraph
construction and flow-sensitive call-site extraction, in this study, we
measured completeness, soundness, and exact matches. Complete-
ness is the absence of false positives in the callgraph, ensuring that
no call edges were included if they did not exist. Soundness, con-
versely, focuses on the inclusion of every call edge, thereby avoiding
any false negatives. Exact matches is measured as the number of
function calls that exactly match the ground truth. This evalua-
tion approach mirrors the methodologies used in previous studies,
specifically in PyCG [17] and HeaderGen [21]. Furthermore, align-
ing with the literature [4, 13, 14, 20], for type-inference evaluation
we use exact matches as the metric. Additionally, the total runtime
of these tools for analyzing the respective micro-benchmark is also
included by computing the mean over three runs.

Implementation Details. In the implementation of our ex-
periments with LLMs, we employed Ollama [3], an open-source
platform that simplifies running LLMs by providing an efficient
HTTP server for lifecycle management. This served as our back-
end infrastructure. In addition, to create a pipeline for efficient
prompting and response handling, we used LangChain [2], a frame-
work designed for building applications that interact with LLMs.
Additionally, to implement the type-inference experiments, we ex-
tended the TypeEvalPy framework [20], due to its flexibility in
adding support for new tools.

5 RESULTS

We next address the research questions and highlight key results.

5.1 RQ1: Accuracy of Callgraph Analysis

Table 1 presents the outcomes of our experiments using LLMs on the
flow-insensitive callgraph analysis evaluation micro-benchmark of
PyCG, and the flow-sensitive callgraph analysis evaluation micro-
benchmark of HeaderGen.

Flow-insensitive Callgraph analysis. The static analysis al-
gorithm PyCG demonstrated superior performance over LLMs in
terms of completeness, soundness, exact matches, and processing
time. In a benchmark of 121 test cases, PyCG achieved 93.3% com-
pleteness and 86.7% soundness, meaning it had no false positives
or false negatives, respectively. This significantly surpasses that of
the nearest competitor, ft:gpt-3.5-turbo, which achieved 57.8% in

36



The Emergence of Large Language Models in Static Analysis: A First Look through Micro-benchmarks FORGE ’24, April 14, 2024, Lisbon, Portugal

Table 1: Comparative analysis across LLMs for callgraph analysis on PyCG and HeaderGen micro-benchmarks

PyCG Benchmark — Flow-insensitive Callgraphs HeaderGen Benchmark — Flow-sensitive Callgraphs

Model Complete Sound E.M Time Model Complete Sound E.M Time

PyCG 113 105 250 0.41 HeaderGen 111 113 327 5.26

ft:gpt-3.5-turbo 70 75 207 77.96 ft:gpt-3.5-turbo 47 48 149 79.98
gpt-4 59 54 180 264.96 gpt-4 27 17 70 248.37
codebooga 22 44 140 462.00 gpt-3.5-turbo 17 16 53 160.14
phind-codellama:34b-v2 77 21 70 696.01 phind-codellama:34b-v2 13 12 42 475.08
wizardcoder:7b-python 21 18 60 157.11 vicuna:13b 14 12 27 184.76
wizardcoder:34b-python 76 13 45 847.04 wizardcoder:34b-python 8 8 17 360.71
codellama:34b-instruct 2 7 40 1644.51 wizardcoder:13b-python 12 9 15 195.17
gpt-3.5-turbo 14 20 40 124.58 vicuna:33b 8 7 14 365.01
orca2:13b 14 20 39 386.47 vicuna:7b 7 6 13 130.42
codellama:13b-instruct 1 11 35 280.62 llama2:7b 10 8 12 128.40
wizardcoder:13b-python 6 9 29 232.74 codebooga 6 8 11 357.18
mistral:instruct 12 7 28 188.85 mistral:instruct 7 7 10 191.66
mistral:v0.2 12 6 28 185.95 tinyllama 10 6 10 355.92
dolphin-mistral 15 9 21 158.11 codellama:34b-python 15 10 9 270.90
codellama:7b-instruct 1 6 16 276.94 dolphin-mistral 11 11 9 129.36
tinyllama 28 8 13 889.33 mistral:v0.2 7 7 7 196.42
orca2:7b 106 7 10 336.35 phind-codellama:34b-python 11 8 7 319.54
vicuna:13b 3 9 9 2383.42 wizardcoder:7b-python 8 8 7 135.16
vicuna:7b 1 8 8 147.05 codellama:13b-python 12 9 6 181.04
vicuna:33b 0 6 6 478.70 codellama:7b-python 11 9 5 300.54
llama2:70b 0 6 1 1398.26 orca2:13b 6 6 3 369.16
codellama:13b-python 121 0 0 142.09 codellama:7b-instruct 7 6 2 148.13
codellama:34b-python 121 0 0 269.77 llama2:70b 6 6 1 944.54

codellama:7b-python 121 0 0 92.92 codellama:13b-instruct 6 6 0 188.70
llama2:13b 14 6 0 587.44 codellama:34b-instruct 121 6 0 347.79
llama2:7b 93 0 0 1825.59 llama2:13b 6 6 0 426.48
phind-codellama:34b-python 121 0 0 267.63 orca2:7b 6 6 0 224.57

completeness and 61.9% in soundness. Furthermore, PyCG obtained
250 exact matches (out of 284), which is 43 more exact matches
than ft:gpt-3.5-turbo. This performance difference is further em-
phasized in running times, where PyCG processed flow-insensitive
callgraphs 190 times faster than ft:gpt-3.5-turbo. Among the LLMs,
the best-performing one without fine-tuning is gpt-4; however, the
fine-tuned gpt-3.5-turbo model surpasses the vanilla gpt-4, indicat-
ing the potential benefits of fine-tuning LLMs for specific applica-
tions. Yet, other open-source models lagged significantly in perfor-
mance. Notably, due to their failure to produce structured outputs
in line with our prompts, some LLMs like codellama:34b-instruct,
vicuna:13b, llama2:70b, and llama2:7b experienced lengthy run-
ning times. Despite clear instructions regarding the output format
and the instruction to avoid explanatory content, they sometimes
continued to generate irrelevant content and timed out.

Flow-sensitive Callgraph analysis.Here,HeaderGen demon-
strated superior performance over LLMs across all evaluated met-
rics. In particular, HeaderGen achieved 91.7% completeness and
93.3% soundness, which is more than double the performance of
its closest LLM competitor, ft:gpt-3.5-turbo, which managed only
38.8% completeness and 39.6% soundness. In terms of exact matches,

HeaderGen identified 327 out of 355 call sites, surpassing the best-
performing LLM by 178 matches. Moreover, HeaderGen’s runtime
is 15 times shorter than the fastest LLM in analyzing the entire
benchmark. Note that LLMs fared considerably poorer in flow-
sensitive analysis compared to flow-insensitive analysis, likely due
to the increased complexity and the requirement for precise flow-
sensitive pointer information, which may pose challenges to LLMs.
And this although in the prompt we did provide specific instructions
to ensure the LLMs’ awareness of the flow-sensitive aspects.

5.2 RQ2: Accuracy of Type Inference

Table 2 shows the performance of LLMs, HeaderGen, and HiTyper
considering the exact-match performance. Note that HiTyper is
configured with Type4Py [13]. In general, LLMs significantly here
outperform the current state-of-the-art approaches for type infer-
ence, namely, HeaderGen and HiTyper models. Specifically, Ope-
nAI’s GPT-4 is the best-performing model, correctly inferring 775
of 845 type annotations in the micro-benchmark. This is expected,
as GPT-4 is one of the most powerful LLMs in the wild, though
it can be slow and expensive to run. It is also interesting to see

37



FORGE ’24, April 14, 2024, Lisbon, Portugal Venkatesh et al.

Table 2: Exact match comparison of LLMs in type inference

FRT: Function return type, FPT: Function parameter type, LVT: Local variable type

Model FRT FPT LVT Total Time (s)

gpt-4 225 85 465 775 454.54
ft:gpt-3.5-turbo 209 85 436 730 110.45
codellama:13b-instruct 199 75 425 699 221.77
gpt-3.5-turbo 188 73 429 690 167.77
codellama:34b-instruct 190 52 425 667 402.89
phind-codellama:34b-v2 182 60 399 641 488.27
codellama:7b-instruct 171 72 384 627 147.78
dolphin-mistral 184 76 356 616 162.38
codebooga 186 56 354 596 473.76
llama2:70b 168 55 342 565 790.84
HeaderGen 186 56 321 563 18.25

wizardcoder:13b-python 170 74 317 561 234.14
llama2:13b 153 40 283 476 266.59
mistral:instruct 155 45 250 450 203.78
mistral:v0.2 155 45 248 448 204.60
vicuna:13b 153 35 260 448 252.45
vicuna:33b 133 29 267 429 434.82
wizardcoder:7b-python 103 48 254 405 156.62
llama2:7b 140 34 216 390 146.14
HiTyper 163 27 179 369 268.40

wizardcoder:34b-python 140 43 178 361 463.05
orca2:7b 117 27 184 328 215.53
vicuna:7b 131 17 172 320 154.28
orca2:13b 113 19 166 298 397.66
tinyllama 3 0 23 26 232.67
phind-codellama:34b-python 5 0 15 20 407.20
codellama:13b-python 0 0 0 0 147.21
codellama:34b-python 0 0 0 0 305.74
codellama:7b-python 0 0 0 0 243.01

that the fine-tuned version of GPT 3.5 Turbo is the second best-
performing model with 730 correctly inferred type annotations
and an inference speed 4 times faster than that of GPT 4. Consid-
ering open-source LLMs, with 699 correctly inferred annotations
CodeLlama (13B-instruct) has comparable performance to GPT-4
and the fine-tuned GPT 3.5. LLMs specialized in code-related tasks
like CodeLLaMA outperform general-purpose LLMs such as vanilla
LLaMA. Another observation is that TinyLlama, a 1.1B parame-
ter model, performs poorly: it only infers 26 annotations correctly.
It seems that models smaller than seven billion parameters, like
TinyLlama, are insufficiently capable of the type inference task.

6 DISCUSSION

Similar to findings in previous work [12, 19], we observe that the
construction of callgraphs does not yet significantly benefit from
the use of LLMs. In comparison to LLMs, for this task traditional
SA methods remain more efficient. However, fine-tuning GPT mod-
els showed promising improvements in callgraph analysis results,
paving the way for future research in this direction.

In the type-inference tasks, LLMs such as gpt-4 and gpt-3.5,
have demonstrated promising results, as evidenced in our study
involving the TypeEvalPy framework. Nonetheless, in extensive
Python projects using LLMs for type inference can be resource-
intensive. Moreover, employing OpenAI’s services incurs monetary
costs and lacks privacy for proprietary projects. Open-source LLMs
like CodeLLaMA avoid these problems as they are free and also
offer the advantage of local deployment.

The LLMs tested in this study are predominantly large, having
over seven billion parameters. This renders them unsuitable for
deployment on standard machines equipped with a single GPU. In
contrast, PyCG and HeaderGen, both traditional SA methods, are
capable of operating well within such hardware constraints. Con-
sequently, for SA tasks, traditional SA methods still yield the best
trade-off between accuracy and speed. Nonetheless, as indicated by
our findings related to type inference, where accuracy is paramount,
LLMs can be effectively used, especially with fine-tuning.

7 THREATS TO VALIDITY

We list limitations and threats to the validity of our study as follows:
(1) We only analyzed the source code of the main program, exclud-
ing the code of the imported modules in the prompt. This decision
was due to the complexities of constructing a prompt that accounts
for the diverse import statement variations. This particularly affects
programs in the “imports” category of the TypeEvalPy, Header-
Gen, and PyCG benchmarks. Despite this, the affected portion is
relatively small (5.6% of the total facts), so the overall results are
only insignificantly altered. For a more comprehensive analysis,
future work should include imported files. (2) We used the same
prompt for all models, which may not have extracted the best pos-
sible performance from each. (3) Open-source models often deviate
from the required output formats. We addressed this by manually
identifying response patterns and adding a preprocessing step for
format standardization. However, this does not cover all possibil-
ities. This issue further highlights the LLMs’ inability to produce
structured data consistently. (4) If the micro-benchmarks were in-
cluded in the training set of the LLMs, data leakage could have
skewed the results.

8 CONCLUSION

In this paper, we used micro-benchmarks to evaluate the applica-
tion of LLMs in SA tasks on Python programs. Our findings reveal
that LLMs demonstrate promising capabilities in type inference,
often surpassing traditional techniques. GPT-4 stood out as the
most effective model without fine-tuning, while fine-tuning GPT-
3.5 Turbo yielded significant improvements. However, in the area
of callgraph analysis, traditional methods still outperform LLMs,
indicating a need for more focused fine-tuning and task-specific
model adaptation. Notably, these advancements come with sub-
stantial computational and monetary requirements. To reduce LLM
size and enhance inference speeds, future research should explore
model compression techniques, such as quantization [24]. Further
avenues of research include applying explainability methods to
understand the challenges faced by LLMs in SA, expanding the
scope to cover various SA tasks and programming languages, and
evaluating the performance of fine-tuned open-source models.
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