
An In-depth Study of Java Deserialization Remote-Code Execution

Exploits and Vulnerabilities

IMEN SAYAR∗, University of Toulouse, France

ALEXANDRE BARTEL2, Umeå University, Sweden

ERIC BODDEN, Paderborn University, Germany

YVES LE TRAON, University of Luxembourg, Luxembourg

Nowadays, an increasing number of applications uses deserialization. This technique, based on rebuilding the instance of

objects from serialized byte streams, can be dangerous since it can open the application to attacks such as remote code

execution (RCE) if the data to deserialize is originating from an untrusted source. Deserialization vulnerabilities are so critical

that they are in OWASP’s list of top 10 security risks for web applications. This is mainly caused by faults in the development

process of applications and by laws in their dependencies, i.e., laws in the libraries used by these applications. No previous

work has studied deserialization attacks in-depth: How are they performed? How are weaknesses introduced and patched?

And for how long are vulnerabilities present in the codebase? To yield a deeper understanding of this important kind of

vulnerability, we perform two main analyses: one on attack gadgets, i.e., exploitable pieces of code, present in Java libraries,

and one on vulnerabilities present in Java applications. For the irst analysis, we conduct an exploratory large-scale study

by running 256 515 experiments in which we vary the versions of libraries for each of the 19 publicly available exploits.

Such attacks rely on a combination of gadgets present in one or multiple Java libraries. A gadget is a method which is using

objects or ields that can be attacker-controlled. Our goal is to precisely identify library versions containing gadgets and to

understand how gadgets have been introduced and how they have been patched. We observe that the modiication of one

innocent-looking detail in a class ś such as making it public ś can already introduce a gadget. Furthermore, we noticed that

among the studied libraries, 37.5% are not patched, leaving gadgets available for future attacks.

For the second analysis, we manually analyze 104 deserialization vulnerabilities CVEs to understand how vulnerabilities

are introduced and patched in real-life Java applications. Results indicate that the vulnerabilities are not always completely

patched or that a workaround solution is proposed. With a workaround solution, applications are still vulnerable since the

code itself is unchanged.

Additional Key Words and Phrases: serialization, deserialization, vulnerabilities, gadget, remote code execution RCE

1 Introduction

Over the past 10 years, theMITRE Corporation [12] registered 364 CVEs linked to deserialization vulnerabilities1

in several mainstream programming languages such as Java, PHP, and .NET. These critical vulnerabilities,
frequently allowing Remote Code Execution (RCE), are a highly relevant topic in the research community. For

∗Part of this research was conducted when Imen Sayar was at the University of Luxembourg.
2Part of this research was conducted when Alexandre Bartel was at the University of Luxembourg and the University of Copenhagen.
1All the queries have been done in June 2021

Authors’ addresses: Imen Sayar, imen.sayar@irit.fr, University of Toulouse, Blagnac, France, 31070; Alexandre Bartel,

alexandre.bartel@cs.umu.se, Umeå University, MIT-Huset, Umeå, Sweden; Eric Bodden, eric.bodden@uni-paderborn.de, Pader-

born University, Paderborn, Germany; Yves Le Traon, Yves.LeTraon@uni.lu, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi,

Kirchberg Campus, Luxembourg, L-1359.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or ailiate of a national government.

As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for

Government purposes only.

© 2022 Association for Computing Machinery.

1049-331X/2022/8-ART $15.00

https://doi.org/10.1145/3554732

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3554732

2 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

instance, Shcherbakov et al. [62] recently developed an open-source tool named SerialDetector allowing the
detection of deserialization vulnerabilities in .NET applications. In this paper, we focus on the characterization
of Java deserialization vulnerabilities. These vulnerabilities result because of laws existing in the applications’
development process or in the libraries used by these applications.

Java serialization allows transforming class instances into a stream of bytes. Java objects can therefore be
transferred through a network. Deserialization consists of reading the serialized byte stream in order to rebuild
the original instances by loading their ields. While serialization is convenient to transfer objects between hosts,
it presents a danger when the source of the data to deserialize is untrusted. Indeed, an attacker could craft a byte
stream that, when deserialized on the remote host, could control the execution low of the Java code by chaining
sequences of Java code called gadgets. A deserialization attack can be performed by leveraging either gadgets
present in the Java Class Library (JCL) or in an external library or by combining many libraries containing
gadgets, that we will refer to as gadget libraries in the remainder of this paper.

Figure 1 shows a simple example of a Java serializable class A characterized by a String ield called command.
When calling the writeObject method, suppose that the attacker changes this ield with the Linux command
line top (line number 6). The execution of readObject leads to the call of the gadget Runtime.exec (line 9)
which is using the attacker-controlled object command.

1 import java.io.Serializable;

2 import java.lang.Runtime;

3 public class A implements Serializable {

4 String command;

5 private void writeObject() {

6 command = "top"; //the attacker can change this field

7 }

8 private void readObject() {

9 Runtime.exec(command); //the attacker can execute the command

10 }

11 }

Fig. 1. A simple example of a serializable class. In this class, the atacker can modify the command field. Thus, during
deserialization, when the JVM calls A.readObject() method, the atacker command will be executed instead of łtopž.

In 2015, Frohof and Lawrence demonstrated how to exploit unsafe Java deserialization vulnerabilities [36].
The same year, Litchield [54] and Stepankin [65] identiied an RCE Java deserialization vulnerability in one of
PayPal’s critical applications, the manager portal2 which could allow attackers to reach production databases.
In 2016, an attacker took control of 2 000 computers of the Metropolitan Transport Agency of San Francisco
through a Java deserialization vulnerability in the Web server [25]. Equifax3 had one of its worst bugs in 2017
when attackers iniltrated its network and stole the personal information of 147.7 million Americans from its
servers. The entry point of this attack was CVE-2017-9805, a Java deserialization vulnerability in Apache Struts’
web application [41]. All these concrete real-world examples support the conclusion of multiple studies [4, 66]
ranking insecure deserialization in the top 10 of the most dangerous web application security vulnerabilities.
More precisely, in 2021, OWASP classiies this kind of vulnerability in the 8th position after other dangerous
vulnerabilities like Cross-Site Scripting (XSS) [52] -classiied as the third most dangerous vulnerability- or bufer
overlow [51]. We study this problem of deserialization attacks because - compared to other vulnerabilities- a
deserialization attack is able to completely control the victim systems or to give place to ransomware attacks. For
instance, on one hand, a bufer overlow on modern operating systems will not give the attacker anything on its
own because it needs to be chained with at least an information leak and other vulnerabilities to bypass other
mitigation techniques. On the other hand, a deserialization vulnerability is at a higher level and might allow

2manager.paypal.com
3https://www.equifax.com/

ACM Trans. Softw. Eng. Methodol.

manager.paypal.com
https://www.equifax.com/

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 3

the attacker a complete control over the target system. Another important aspect is that "dormant" serialization
vulnerabilities can be super easily enabled, once new gadgets are accidentally introduced. To our point of view, it
is much more subtle than other kinds of vulnerabilities such as injections.

In this paper, we study Java gadgets and Java deserialization vulnerabilities found in real-world applications
leveraging the standard Java deserialization mechanism [56]. The irst study is based on the analysis of gadgets
from 19 publicly available remote code execution (RCE) attacks from the ysoserial Github repository [22].
Ysoserial is a project that gives a proof of concept tool and provides 34 Java payloads exploited in publicly known
deserialization attacks. These latter are carried out by chaining gadgets. In this paper, we focus on 19 RCE attacks
representing the majority of the ysoserial attacks. Our study is limited to this kind of attacks because we have
developed a framework detecting RCE attacks only. The second study is based on the manual analysis of 77 Java
applications impacted by a Java deserialization vulnerability described in a CVE 4. We found that for all attacks
relying on a single gadget library, this library has been patched. The patching action can impact one or many
gadget libraries involved in an attack, i.e., when the attack relies on multiple gadget libraries, patching a single
library may be suicient to avoid this attack. Yet, the non-patched gadget libraries can often still be leveraged later
if they can be combined with other gadgets. Thus, even though they might not lead to an exploitable software at
the time, they do increase the attackers’ capabilities, thus weakening the software system. One aspect of our
analysis is the detection of recent gadget library versions. This is relevant since it points to recent library versions
non-cited in ysoserial repository, like the commons-beanutils, that still contain gadgets. This may alert developers
to be aware of these gadgets’ library versions if used in the classpath of their applications and to check if the
concerned library versions are mentioned as gadgets ones in CVEs database.

Furthermore, this paper analyzes how gadgets are introduced into librariesÐan important point that previous
pieces of research did not explicitly address. When analyzing the 19 RCE exploits, we have identiied several
ways to introduce a gadget in a library: adding classes, methods, and interfaces, or changing the signature of
methods. Our main conclusion is that the modiication of one innocent-looking detail in a class ś such as making
it public ś can already introduce a gadget. When studying patches of such libraries, we observed that the time
used to remove gadgets varies between several months and almost 12 years, with an average of almost six years.
It thus appears that deserialization vulnerabilities do not yet get the attention of practitioners that they should
actually deserve.

The study on Java applications clearly shows that developers should never write code that deserializes data
from an untrusted source because it becomes an obvious entry point for attackers. Solutions exist to prevent
knows attacks, e.g. allow/deny lists, but they are not fool-proof, as the complete list of gadgets present in Java
libraries is unknown. Interestingly enough, for 24.1% of the studied CVEs, the solution that has been selected to
prevent the exploitation of the vulnerability is not a code change but a workaround. Workarounds work well
on an already deployed system, however, they might not be applied in new deployments or in a new software
environment, which makes the vulnerability accessible to the attacker again.

This paper is concerned with how deserialization vulnerabilities in Java manifest in practice. We present the
following contributions:

• We conduct a large-scale study on more than 256 515 combinations of 14 libraries, representing 19 publicly
known Java deserialization RCE exploits, and 147 Java runtimes to understand which precise library
versions introduce gadgets, how they are patched, and the structure of attacks in terms of gadgets. A
thorough description of the experimental procedure used to obtain the experimentation data, including
how test subjects were collected, is also described.

4CVE refers to Commons Vulnerabilities Exposures. According to the Mitre terminology, a CVE is identiied using an ID which is "a unique,

alphanumeric identiier assigned by the CVE Program. Each identiier references a speciic vulnerability." [42, 43]

ACM Trans. Softw. Eng. Methodol.

4 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

• We detail how deserialization gadgets are introduced in the libraries. To our knowledge, this is the irst
work to consider how deserialization vulnerabilities manifest in real code bases and libraries. This provides
some insight into how these vulnerabilities are commonly treated outside of academia.

• Based on the results of our analysis on how gadgets are introduced, we propose recommendations for
library developers to prevent the introduction of gadgets.

• We perform a study of the patching time of some libraries and show that it can sometimes take over 10
years.

• We perform an analysis of 104 Mitre CVEs that concern deserialization vulnerabilities in Java applications
and conclude that not all the patches prevent the attacks and protect the applications.

The remainder of this paper is organized as follows. Section 2 presents background about essential concepts
related to Java deserialization vulnerabilities and uses an example to explain how a deserialization attack can be
performed. Section 3 explains our methodology and details our two analyses: the large-scale study about attack
gadgets present in Java libraries and the analysis of vulnerabilities present in Java applications with regard to the
libraries and JVM versions. Take-away messages and lessons learned from our analyses are described in Section 4.
Section 5 points on the limitations of our approach. The state of the art is discussed in Section 6. Finally, Section 7
concludes this work.

2 Background

2.1 Terminology

Before starting the study of Java deserialization attacks, we deine the terminology used all along this paper.

Vulnerability. We use Mitre’s deinition [13]: "[A vulnerability is] a law in a software, irmware, hardware, or
service component resulting from a weakness that can be exploited, causing a negative impact to the conidentiality,
integrity, or availability of an impacted component or components.".

Gadget and gadget chain. In the context of this paper, a gadget is a Java method using objects or ields that
can be attacker-controlled. A gadget chain is a malicious sequence of method (gadget) calls created by an attacker.
The presence of a set of gadgets in the classpath of a vulnerable application is one of the conditions required to
carry out deserialization attacks.

Deserialization vulnerability in Java. A Java deserialization vulnerability is a weakness in the code that
can be exploited when the Java code deserializes an attacker-controlled byte stream. Facilitated attacks, such
as arbitrary code execution, have an impact on the conidentiality, integrity, or availability of the system. For
instance, a readObject method present in a Java program is a weakness that is considered to be a vulnerability
when: (1) the program containing this method accepts and deserializes data from a source that an attacker can
control, and (2) the attacker can exploit this weakness. In practice (2) requires one to build a gadget chain and
thus requires all necessary gadgets to be in classes that are on the classpath of the vulnerable application. Note
that classes containing gadgets do not need to be used by the vulnerable program, just must be loadable.

Gadget library. By a gadget library, we denote a Java library containing one or more gadgets. A gadget can
be used during a deserialization attack when the corresponding gadget library is included in the classpath of the
vulnerable application.

Exploit. An exploit is a piece of software or a sequence of commands that takes advantage of a bug or
vulnerability causing a negative impact on the conidentiality, integrity, or availability of an impacted component
or components.

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 5

Patch. The National Institute of Standards and Technology (NIST) [67] deines a patch as ła "repair job" for
a piece of programming; also known as a "ix". A patch is the immediate solution to an identiied problem that
is provided to usersž. The patch of a library łis not necessarily the best solution for the problem, and the product
developers often ind a better solution to provide when they package the product for its next release.ž

In the context of Java deserialization vulnerabilities, there are two kinds of patches: patches for vulnerabilities
and patches for gadgets. Patching a gadget library requires one to remove gadgets, thereby disabling attacks
relying on this gadget library. While authors of libraries sometimes decide to make exploitation harder by
patching gadget libraries involved in attacks, gadgets are ultimately not laws on their own. Most importantly,
the gadgets are not themselves the deserialization vulnerabilities, they are rather pieces of code that facilitate the
successful exploitation of a deserialization vulnerability that itself frequently resides in application code, not
library code. One can draw a parallel with memory-corruption vulnerabilities. Shacham [60] mentioned that
libraries leveraged to exploit a memory corruption vulnerability are the łinnocent lesh on the bonež. Thus, it is
not surprising that they are rarely patched to address the issue. Patches for gadget libraries are similar to the
heap-hardening [27, 34, 70] introduced in memory allocators in response to heap-based bufer overlow exploit
techniques: they do not patch heap-based bufer overlows, yet they hinder exploitation techniques that have
become publicly known.

Deserialization atacks. They are performed using two main steps: (1) an ahead-of-time serialization step
during which the attacker builds a customized byte stream specially crafted to execute a chain of gadgets during
deserialization and (2) an online deserialization step executed on the victim’s vulnerable machine, and during
which this victim’s machine will deserialize objects from the attacker-controlled byte stream and thus execute
the gadget chain.

Illustration. Let us use the example of Figure 2 to clarify the terminology. Assume that there is a library called
libA.jar containing class A of Figure 2a. As explained previously in the example of section 1, the command ield
of type String of class A can be attacker-controlled. This class contains a gadget: Runtime.exec (line 19) called
through another gadget readObject of the same class A. The chain A.readObject → Runtime.exec is a gadget
chain. The libA.jar library contains these two gadgets and is then considered as a gadget library. Now suppose
that there is a program VictimClass using libA.jar in its classpath as shown in Figure 2b. The vulnerability in
this context is that the code uses the readObject to deserialize objects from an untrusted source and that the
gadget library libA.jar is in the classpath of VictimClass. An exploit may consist in generating a ile f by an
attacker in which he/she controls the ield command and through which (i.e., when it is given as args[0] in line 6
of VictimClass.main()) he/she can execute a command "calc.exe" for instance. The most secure patch for this
vulnerability is to not deserialize the untrusted ile f. But, another possible patch consisting in removing the class
A from the classpath of the program VictimClass is suicient to prevent this particular deserialization attack.

2.2 Overview of Typical Deserialization Atacks

The requirement for this attack is that the victim machine runs software that deserializes objects from an
untrusted byte stream controlled by the attacker. In a irst step, the attacker crafts a speciic serialized ile s
representing a class instance i . Then the attacker sends s to the victim either directly or through the network.
Once received, the ile is deserialized with a readObjectmethod to try to reconstruct instance i . The attack takes
place during this deserialization process, when the Java code, relying on the attacker-controlled data in the byte
stream, executes the attacker’s payload. This payload then, for instance, may execute arbitrary code with the
process’ privileges through a call to Runtime.exec(). An attack only works if the victim’s Java process has all
the required vulnerable classes on its classpath.

Transforming a class instance i into a byte stream is called serialization. The basic principle of deserialization is
to rebuild the same class instance i from the byte sequence. Figure 2b shows a short code snippet to illustrate the

ACM Trans. Softw. Eng. Methodol.

6 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

1 /* Class A is in libA.jar */

2 public class A implements Serializable {

3 // the attacker can change the value of

4 // the 'command' field during serialization

5 String command;

6

7 // in class 'A', the 'command' field

8 // could be restricted to, e.g., a few values.

9 // This does not prevent the attacker from

10 // changing the field to a value of the attacker

11 // choice during serialization

12 [...]

13

14 private void readObject() {

15 // this code is executed during deserialization

16 // if the attacker controls 'command', he/she

17 // can execute arbitrary code on the machine

18 // deserializing an instance of type 'A'

19 Runtime.exec(command);

20 }

21 }

(a) A vulnerable class. (This sub-figure is a modified ver-
sion of Figure 1.)

1 /* libA.jar is in the classpath of the

2 JVM running VictimClass.main() */

3 public class VictimClass implements Serializable {

4 public static void main (String[] args)

5 FileInputStream fis =

6 new FileInputStream(args[0]);

7 ObjectInputStream ois =

8 new ObjectInputStream (fis);

9 // if the attacker gives an object of type 'A'

10 // to deserialize, A.readObject is executed

11 // before the cast to (String)

12 String s = (String) ois.readObject();

13 ois.close();

14 }

15 }

(b) A class deserializing an input file.

Fig. 2. Explanatory example for the terminology.

15 Runtime.exec() // (7)

14 NativeMethodAccessorImpl.invoke0()

13 NativeMethodAccessorImpl.invoke()

12 DelegatingMethodAccessorImpl.invoke()

11 Method.invoke() // (6)

10 InvokerTransformer.transform() // (5)

9 ChainedTransformer.transform() // (4) (d)

8 LazyMap.get() // (3) (c)

7 AnnotationInvocationHandler.invoke() // (2)

6 $Proxy0.entrySet() // (2) (b)

5 AnnotationInvocationHandler.readObject() // (1) (a)

4 [...] // internal JVM code

3 ObjectInputStream.readObject0()

2 ObjectInputStream.readObject()

1 VictimClass.main(String[])

Fig. 3. Abstraction of call stack of the CommonsCollections1 atack.

deserialization process in Java. This generic Java code represents the software running on the victim machine. To
simplify the code, the byte stream is read from a ile and not from the network as in Figure 2b. The irst and only
argument passed to this program is a path to a ile that represents the serialized data to deserialize. The Java code
opens this ile and calls the method readObject() to deserialize its content (line 12 in Figure 2b). Observe that
while there is a cast to String, the attacker could put a diferent object type to deserialize. Indeed, deserialization
attacks are triggered during deserialization. The cast to the proper type (here String) is only executed after the
byte stream has been deserialized. Thus, the cast operation is executed too late and does not prevent an attack.
Observe also that there is no change of the methods readObject() and writeObject() signatures or code. The
only changes concern the ields accessible to the attacker.

2.3 A Concrete Real-World Example
In this section, we describe the CommonsCollections1 deserialization attack (from the ysoserial repository [22]).

More precisely, we analyze what happens when the attack of CommonsCollections1 is exploited. The gadgets
are present in the 3.1, 3.2 and, 3.2.1 versions of apache commons-collections library.

As shown in Figure 4, the serialized byte stream s generated for this attack features four main objects: (a) an An-
notationInvocationHandler, (b) a Proxy, (c) a LazyMap, and (d) an array of Transformers (a ChainedTransformer

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 7

Fig. 4. Components of the serialized byte stream generated by the ysoserial tool and which will be deserialized by the victim
class in Figure 2b.

object). The ields of each concrete object in the byte stream are controlled by the attacker. During deserial-
ization, the Java code might choose to execute a branch based on the value of the ields controlled by the
attacker. Furthermore, the Java code might call methods using ields controlled by the attacker. The latter can
thus control part of the execution low. In the CommonsCollections1 attack, objects (a-d) - of both Figures 3
and 4 - are chained to trigger the execution of the Runtime.exec() method with an attacker-controlled value
to achieve arbitrary code execution. The call stack of this attack - when its payload is executed - is repre-
sented in Figure 3. This call stack is composed of a chain of gadgets. A gadget is a method using objects or
ields that can be attacker-controlled. To simplify Figure 3, we do not consider the native calls related to Java
relection or the internal workings of the JVM. In the attack in this igure, we consider that there are 7 gad-
gets: (1) AnnotationInvocationHandler.readObject() which is the head, or the entry gadget, of the chain,
(2) $Proxy0.entrySet(), (3) LazyMap.get(), (4) ChainedTransformer.transform(), (5) InvokerTransfor-
mer.transform(), (6) Method.invoke() which we consider as an attack gadget and (7) Runtime.exec() repre-
senting the last gadget, the performed attack action. An attack gadget is a method call that triggers the payload.
In this running example, Method.invoke() calls Runtime.exec() via relection.

In this paragraph, we explain step-by-step the diferent calls in the gadgets chain. When the victim application,
represented by the code in Figure 2b, deserializes the s byte stream by calling readObject (stack frame 1 in
Figure 3), the internal JVM code handling the deserialization is executed (stack frames 2, 3 and 4). Range 4
represents 7 hidden method calls. We do not show them since they represent the internal JVM code related to
Java relection. This leads to a call of the readObject() method of the irst object to deserialize, which is an
AnnotationInvocationHandler (stack frame 5). In the code of this method, there is a ield this.memberValues
initialized by a $Proxy0. This is the reason for calling $Proxy0.entrySet() (frame 6).

A Proxy in Java is a class generated during runtime to implement interfaces. It is associated with an invocation
manager represented by the InvocationHandler class. The JVM uses relection to redirect any method calling a
Proxy to the invoke() method of the interface implemented by this Proxy. This explains the jump from $Pro-

xy0.entrySet() to AnnotationInvocationHandler.invoke() (stack frame 7). This method invoke() will
look for which method to call. This information is extracted from the serialized s byte stream in which there is a
ield initialized by the value LazyMap, a class of the commons-collections library. This value is assigned to a ield
called this.memberValues in the invoke method. This leads to the call of LazyMap.get() (stack frame 8). Until
now, the LazyMap is empty. For this reason, the get() method uses a call to a factory.transform() method in
order to decorate the LazyMap. Again here, the factory ield is extracted from the serialized s byte stream and is
assigned to a ChainedTransformer leading to the call of ChainedTransformer.transform() (stack frame 9).

ACM Trans. Softw. Eng. Methodol.

8 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

A ChainedTransformer implements the Transformer interface and contains four transformers: its irst element
is a ConstantTransformer which is equal to any constant chosen by the attacker, its three subsequent elements
are InvokerTransformers and each one of them will take the output of the previous one and transform it. The
last InvokerTransformer will transform the attacker command (stack frame 10) into an invoke - by relection -
of Runtime.exec() (stack frames 11 to 15). This attack is using the Transformers objects. A Transformer is an
interface in Java implemented by one or more other classes that transforms an input object into an output object.
Among these classes are ConstantTransformer and InvokerTransformer. Both of them are implementations
of the Transformer interface. The former allows to always return the same constant without checking the input
object. The latter allows the creation of a new object by relection and the invocation of a method deined in the
class of this object.

The commons-collections library has been patched in version 3.2.2. by adding a check on the InvokerTrans-
former object when calling its transform() method (line 10 of the call stack). A checkUnsafeSerialization

method checks whether serialization is enabled for unsafe classes like the Transformer. Otherwise, an exception
is thrown. Observe that the library has been patched by changing the code of a single gadget (out of the four
gadgets required for the attack). While this prevents this attack, it does not prevent the reuse of the three
untouched gadgets in future attacks.

3 Experimentation and Evaluation

3.1 Methodology

In this part, we explain how we proceed to perform the two types of analysis: on gadgets and on real-world
Java applications.

3.1.1 Gadgets analysis

Collecting the dataset. Our experiments involve several elements: the ysoserial tool, libraries, and JVM versions.

First, since we are referring to attacks that are using malicious iles generated by the ysoserial tool, we download
this tool [22]. Second, we list all the libraries involved in the 19 studied ysoserial attacks. For these attacks, there
are 14 libraries involved. We download all the available versions of each library. In total, we have a set of 1,410 jars
for all 14 libraries. Note that each library can have hundreds of versions. For example, there is an attack called
Groovy1 which is using the Apache Groovy library. We have downloaded 192 versions of this library. We have
downloaded all the libraries’ jars in September 2020. The third element of our study is the JVM. They can be
downloaded from the Oracle [46], IBM [11], and the AdoptOpenJDK [44] websites. We obtained a dataset of
147 JVM versions containing 137 Oracle and 10 IBM and OpenJdk versions.

Our work aims at: (1) understanding how deserialization gadgets are introduced and patched in libraries and
(2) collecting the list of gadget library versions. The second goal is primordial in our work. Indeed, the studied
ysoserial attacks are described for only some speciic libraries and JVM versions, yet, we have discovered that
most gadgets are still present in non-mentioned libraries/JVM versions.

Experimental Setup. In practice, we simulate a Java deserialization attack A by following three steps: (1)
generate a malicious serialized ileMS corresponding to the speciic attackA using the ysoserial tool; (2) create an
application including a victim class V that deserializes the malicious input ileMS generated in step (1) using the
ObjectInputStream.readObject() method; (3) add the gadget library(ies) i.e., libraries containing the required
gadgets for the attack in the classpath and run the victim class V .

Note that even if the program deserializing data from an untrusted source does not directly use classes contain-
ing gadgets, it is nonetheless vulnerable if these classes are on its classpath. This is because these classes can be
referenced during deserialization. For instance, the code of Figure 2b does not directly use the LazyMap class.
However, we observe a call to the method get() on an instance of this class in the call stack of Figure 3 (call

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 9

frame number 8) since the commons-collections library (containing this class) is deined in the classpath of this
victim code.

We combine the JVM version (an attack gadget might be present in a JVM) with the libraries of the attack and
run 256 515 programs. Consider an attack A using a library l. Suppose that l has n versions. For A, we run 147 × n

executions. This means that we run each library version on all the 147 JVMs that we have collected. In another
case, an attack B can use nblibs > 1 libraries. Suppose that each library li of them has nbVers[li] versions. The
total number of executions is the sum of all the executions per library involved in the attack i.e.,

147 × nbVers[l1] + . . . + 147 × nbVers[li] + . . . + 147 × nbVers[lnblibs]

In other terms, for each attack relying on n library (n > 1), we variate one library at once i.e., we ix (n − 1) library
versions that are vulnerable in the studied attack and we variate the versions of the remaining library.

Table 1 explains where this 256 515 number is coming from: it results from the addition of all the numbers of
executions per attack. For instance, the CommonsBeanUtils1 attack relies on three libraries: commons-beanutils
having 33 versions, commons-collections having 13 versions and commons-logging having 10 versions. For each
one of these libraries, we did 147 × n executions, where n deines the number of versions. At the end, we perform
147 × 33 + 147 × 13 + 147 × 10 = 8232 executions for this attack. Our goal is to check if these attacks still are
possible with these variants and understand what has changed to allow or block the attacks.

We developed a framework to automatically run our experiments and collect the results in log iles correlated
to each attack. For a single attack, there are thousands of log iles. Our scripts consist of testing if the concerned
combination (of the JVM and the library(ies) versions) allows two actions to be performed: the serialization and
the deserialization. If the serialization fails, the deserialization step cannot take place.

We run all experiments on a machine with 12 x Intel(R) Xeon(R) Bronze 3104 CPU 1.70GHz, 256G of RAM, and
the Debian 10.4 OS.

Analyzing the results. The results obtained from our experiments are analyzed by:

• generating a table for each attack. In each table, we have the versions of the JVM and of the implicated
library(ies). Such table is composed of colored squares with symbols: if the attack is successful the square is
colored with red and contains the 0 number, otherwise, it is a fail. The failure of an attack might be caused
by one of the three reasons: (1) the serialization is performed but the deserialization fails (orange color and
the 1 number) or (2) the serialization fails because of "Unsupported major.minor version" (yellow color
and V symbol) or (3) the serialization fails because of an "Error while generating or serializing payload"
generated by ysoserial (green color and - symbol);

• then, iltering the results for the failed attacks. Here distinguish between two reasons: either the serialization
fails and there is no serialized ile to read or the serialization succeeded but the deserialization fails.

The list of URLs used to download libraries used in the experiments as well as the tables generated by our
experiments are all available at https://github.com/software-engineering-and-security/java-deserialization-rce.

3.1.2 Vulnerable-applications analysis Our second study consists in analyzing real-life Java applications contain-
ing deserialization vulnerabilities. Our goal is to study how vulnerabilities in these applications are patched.

Collecting the CVEs. To collect a suitable set of subject vulnerabilities, we searched speciically for Java
deserialization vulnerabilities in the Mitre CVE database 5, using two queries: {Java, deserialization}, {Java,
deserialisation}. We found that there are 104 CVEs.

5https://cve.mitre.org/

ACM Trans. Softw. Eng. Methodol.

https://github.com/software-engineering-and-security/java-deserialization-rce
https://cve.mitre.org/

10 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Table 1. Studied atacks and the number of experiments per atack

Attack name Lib name # lib versions # experiments per lib # experiments per attack Total

BeanShell1 beanshell 16 147 x 16 = 2352 2352

256515

Clojure clojure 145 147 x 145 = 21315 21315

CommonsBeanUtils1
commons-beanutils 33 147 x 33 = 4851

4851 + 1911 + 1470 = 8232commons-collections 13 147 x 13 = 1911
commons-logging 10 147 x 10 = 1470

CommonsCollections1 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections2 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections3 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections4 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections5 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections6 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections7 commons-collections 13 147 x 13 = 1911 1911
Groovy1 groovy 192 147 x 192 = 28224 28224
ROME rome 12 147 x 12 = 1764 1764
MozillaRhino1 js-rhino 26 147 x 26 = 3822 3822
MozillaRhino2 js-rhino 26 147 x 26 = 3822 3822

Spring1
spring-beans 180 147 x 180 = 26460

26460 + 27342 = 53802
spring-core 186 147 x 186 = 27342

Spring2

spring-core 186 147 x 186 = 27342

27342 + 294 + 1470 + 27930 = 57036
aopalliance 2 147 x 2 = 294
commons-logging 10 147 x 10 = 1470
spring-aop 190 147 x 190 = 27930

Click1
click-nodeps 8 147 x 8 = 1176

1176 + 2940 = 4116
javax-servlet 20 147 x 20 = 2940

Vaadin1
vaadin-server 199 147 x 199 = 29253

29253 + 29253 = 58506
vaadin-shared 199 147 x 199 = 29253

JDK7U21 147 147 x 1 = 147 147

Analyzing the CVEs. Unfortunately, we observe that not all the CVEs resulting from our search are related to
deserialization vulnerabilities. Thus, we manually analyze the description of each CVE to classify them into one
of the following three categories:

(1) Deserialization Vulnerability (DV): The kind of CVE we target in this paper, which describes an application
in which there is a Java deserialization vulnerability (e.g., an attacker uses an entry point such as the
readObjectmethod in the application’s code to deserialize his/her untrusted data and carry out the attack).

(2) GAdget (GA): A CVE that describes a gadget, but not a vulnerability, i.e., there is no entry point for the
attacker to carry out the attack.

(3) Untrusted Code (UC). A CVE that describes a vulnerability in the deserialization mechanism that can be
exploited only if the attacker can execute arbitrary Java code.

As represented in Figure 5, we manually classiied 95 (91.3%) of these CVEs as DV, 8 (7.7%) as UC and 1 (∼ 1%)
as GA. This means that the results of our search on Mitre with simple keywords contain noise (about 8%) that we
need to remove.

Table 5 in Appendix A shows a partial analysis of 29 CVEs for vulnerable Java applications. The complete table
with the 104 CVEs is available at https://github.com/software-engineering-and-security/java-deserialization-rce.

3.2 Experimental Evaluation

In this section, we address the following research questions:

• RQ1: How Frequent are Deserialization Vulnerabilities?
• RQ2: How are Gadgets Introduced?

ACM Trans. Softw. Eng. Methodol.

https://github.com/software-engineering-and-security/java-deserialization-rce

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 11

UC (7.7%)

DV (91.3%)

GA (1%)

Fig. 5. More than 91% of CVEs found via a search with keywords ’Java’ and ’deseriali[sz]ation’ represent real Java deserial-
ization vulnerabilities.

• RQ3: How are Gadget Libraries Patched?
• RQ4: What is the Life-cycle of Gadgets?
• RQ5: How are Vulnerabilities Patched in Real-life Applications?
• RQ6: How easy is the automation of ilters against deserialization attacks?

3.2.1 RQ1: How Frequent are Deserialization Vulnerabilities? To understand the evolution of reported deserializa-
tion vulnerabilities, i.e., vulnerabilities in any programming language for which there is a CVE, as well as the
deserialization vulnerabilities speciic to Java, we conducted an empirical study based on the Mitre CVE database.

Deserialization vulnerabilities are widely spread in many languages. To understand the extent of such vul-
nerabilities in general, we irstly look for CVEs describing them. A query with the "deserialization" keyword in
the Mitre’s interface returns 361 CVEs. We checked the alternative "deserialisation" (s instead of z) and found
four matching CVEs all related to Java vulnerabilities. Out of these four CVEs, one is already present in the
irst search. In total, we have identiied 361 + 4 - 1 = 364 deserialization vulnerabilities. The documented de-
serialization vulnerabilities were reported between 2004 and 2021. Among these, 15 are linked to the Apache
commons-collections library (query deserialization, apache, commons, collections).

201
0

201
1

201
2

201
3

201
4

201
5

201
6

201
7

201
8

201
9

202
0

202
1

2

5

10

15

20

25

Year

#
o
f
C
V
E
s

Java deserializ(s)ation

PHP deserialization

.NET deserialization

XML deserialization

Fig. 6. Frequency of deserialization reported CVEs between 2010 and June 2021 according the MITRE database.

ACM Trans. Softw. Eng. Methodol.

12 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Note that for searching CVEs in diferent languages, we need to use very speciic keywords separated by space.
However, checking the results of our request is relevant to ensure that these results correspond exactly to what
we look for. This is because the "results will include CVE Records that match all speciied keywords" as mentioned
in the search tips of the Mitre website6. This means that the results of a request composed of two words "term1
term2" may contain CVEs concerning the vulnerabilities related to term1, those which concern term2, and those
for both term1 and term2.

The frequency of deserialization vulnerabilities encompassing Java programming language has a notable
increase from 2015 until now. Indeed, we found that there are 104 CVEs among which 79 (76%) were reported
between 2015 and 2020, see Figure 6.

We looked for further languages such as PHP, XML, and .NET and found that Java is the riskiest language for
deserialization attacks among them. Java is one of the most popular and used languages (millions of developers run
Java). Thismay explainwhy the percentage of (reported) vulnerabilities is higher than the other languages [31] [32].
Another point is the spike of vulnerabilities for Java in 2016. This might be related to Frohof’s research and
his tool ysoserial. The number of detected vulnerabilities by this tool helps other researchers to use them for
detecting new attacks. For example, CVE-2016-2510 describes a gadget in the BeanShell library for which the
ysoserial tool presented an exploit called BeanShell1 at the beginning of 2016.

About 40 CVEs related to Java deserialization vulnerabilities have been reported between 2018 and 2020. Most of
Java deserialization vulnerabilities are critical because they allow arbitrary code execution on the victim machine.
This is probably one of the reasons Java programs and libraries are under scrutiny and so many vulnerabilities
have been reported during the last ive years. Note that a single gadget may have several reported CVEs. This is
caused by the fact that a gadget can be present in many applications and products. Then, a diferent CVE can be
attributed to each application for the same gadget. Unfortunately, this kind of information is often not present in
the description of CVEs which prevents us from automatically counting unique deserialization vulnerabilities.

The overall trend shows that the number of CVEs related to deserialization is slightly increasing in the
last 10 years. This means that in the real world, serialization is often used in applications to process
untrusted data.

3.2.2 RQ2: How are Gadgets Introduced? To answer this research question, we analyze the results of the
experimental protocol described in Section 3.1.1. We consider that a gadget can be introduced in the library(ies)
present in the classpath of a victim program and/or in the Java Class Library (JCL), the set of classes shipped
with any JVM.

Introducing a gadget in an external library. Our objective is to analyze diferent attacks in order to show how
libraries involved in these attacks include gadgets. Table 2 shows our discoveries about gadget library versions
that were not mentioned in the ysoserial repository. The column Discovered version describes all the gadget library
versions detected through our experiments. The last column (# of new detected versions) refers to the number of
new gadget library versions not including the mentioned ones in ysoserial. For instance, it is mentioned, in this
repository, that version 7.7.14 of vaadin-server library contains gadgets. Our experiments have found that 135
more versions contain gadgets.

For each library, we identify its irst version containing gadgets and the version just before, i.e., the version
before introducing gadgets. We then look at the log of the execution of the victim program using these two
libraries, one per execution. The log for the non-gadget library version contains a Java exception which explains
the reason for the attack failure. Using this technique, we have identiied four surprisingly innocent-looking

6https://cve.mitre.org/ind/searchtips.html

ACM Trans. Softw. Eng. Methodol.

https://cve.mitre.org/find/search_tips.html

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 13

Add a class (57%)

Make a class serializable (21.4%) Change private class to public (7.1%)

Add methods (14.3%)

Fig. 7. In more than 57% of the 14 studied libraries, gadgets are introduced by adding a class.

ways in which gadgets have been introduced: (1) adding a class, (2) adding java.io.Serializable to the list of
implemented interfaces, (3) adding a method, and (4) making a class public.

Table 3 shows the studied attacks, the gadget library versions involved in these attacks, their versions with-
out gadgets, and the actions performed to transform a non-gadget library into a gadget one. Among the 19
studied ysoserial exploits, there are ive (26%) that are relying on more than one library. These exploits are:
CommonsBeanUtils1, Spring1, Spring2, Click1 and Vaadin1.

As shown in Figure 7, there are eight versions (57%) that integrate gadgets by adding a class (keyword AddClass
in the igure), three (21.4%) are afected by introducing the interface java.io.Serializable in the list of their
implemented interfaces (keyword MakeSerializable in the igure). In the remaining cases, the irst one introduces
gadgets by changing the status of a class from private to public (7.1%) (keyword ChangeToPublic in the igure)
and two library versions introduce gadgets by adding new methods (14.3%) (keyword AddMethods in the igure).
These methods are used for the construction of malicious payloads.

In the following, we present two concrete exploits, BeanShell1 and CommonsCollections1, and explain how
gadgets have been introduced.

BeanShell1.

Table 2. Discovered versions of gadget libraries using our experiments

Library name Version mentioned in

ysoserial

Discovered versions # of new detected ver-

sions

beanshell 2.0b5 2.0b4 and 2.0b5 1

clojure 1.8.0 1.6.0-beta1 until 1.9.0-alpha15 46

commons-beanutils 1.9.2 1.5 until 1.9.4 14

commons-collections 3.1 and 4.4.0 2.1.1, 3.0, 3.1, 3.2, 3.2.1, 3.2.2, 4.4.0-alpha1 and 4.4.0 6

groovy 2.3.9 2.3.0-beta-2 until 2.4.3 25

rome 1.0 0.5 until 1.0 7

js-rhino 1.7R2 1.6R6, 1.6R7, 1.7R2 until 1.7.7 9

spring-beans 4.1.4.RELEASE 3.0.0.RELEASE until 5.2.9.RELEASE 140

spring-core 4.1.4.RELEASE 4.0.0.RELEASE until 4.2.2.RELEASE 21

spring-aop 4.1.4.RELEASE 1.1-rc1, 1.1-rc2, 1.1, 3.0.0 until 4.2.9 64

click-nodeps 2.3.0 2.1.0-RC1-incubating until 2.3.0 6

javax.servlet 3.1.0 3.0.1 until 4.0.1 19

vaadin-server 7.7.14 7.0.0.beta1 until 7.7.17 135

vaadin-shared 7.7.14 7.4.0.beta1 until 8.11.3 122

ACM Trans. Softw. Eng. Methodol.

14 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Table 3. Actions performed to introduce a gadget in a library

Attack name Gadget-free version First gadgets version Introducing gadgets action

BeanShell1 beanshell-2.0b2 beanshell-2.0b4 Change private class bsh.XThis to public

Clojure clojure-1.6.0-alpha3 clojure-1.6.0-beta1 Add a class AbstractTableModel$ff19274a

CommonsBeanUtils1
commons-beanutils-1.4.1 commons-beanutils-1.5 Add a class BeanComparator that implements Serializable
commons-collections (2001) commons-collections2.1.1 Add a class ComparableComparator

CommonsCollections1, 3 and
7

commons-collections3.0 commons-collections3.1 Add implements Serializable to the class LazyMap

CommonsCollections2 and 4 commons-collections3.2.2 commons-collections4-4.0-
alpha1

Add a class TransformingComparator to the library

CommonsCollections5 and 6 commons-collections3.0 commons-collections3.1 Add implements Serializable to the class TiedMapEntry

Groovy1 groovy-2.3.0-beta1 groovy-2.3.0-beta2 Add a class Opcodes

ROME rome-0.4 rome-0.5 Add a class ObjectBean

MozillaRhino1 and 2 js-rhino-1.6R5 js-rhino-1.6R6 Add a private method accessSlot() in the class
ScriptableObject

Spring1 and 2
spring-beans-2.5.6.SEC01 spring-beans-

3.0.0.RELEASE
Add a class ObjectFactoryDelegatingInvocationHandle which
implements Serializable

spring-core-3.2.5.RELEASE spring-core-4.0.0.RELEASE Add a class SerializableTypeWrapper$MethodInvoke-

TypeProvider

spring-aop-1.0-rc1 spring-aop-1.1-rc1 Add implements Serializable to the class JdkDynamicAopProxy

Click1
click-nodeps2.0.1-incubating click-nodeps2.1.0 Add implements Serializable to the class ColumnComparator
javax-servlet vulnerable from its irst re-

lease
-

Vaadin1
vaadin-server vulnerable from its irst re-

lease
-

vaadin-shared-7.4.0-alpha14 vaadin-shared-7.4.0-beta1 Add a method Capitalize(String) in the class SharedUtil

JDK7U21 jdk1.7.0.25 jdk1.6.0.04 ś

The two gadget library versions are beanshell-2.0b4 and beanshell-2.0b5. The version just before 2.0b4 is 2.0b2
and does not contain gadgets. When looking at the content of the log ile associated with the execution of the
victim program using version 2.0b2, we observe that there is an error when serializing the payload BeanShell1. This
error is caused by an illegal access to a class bsh.XThis. We look for this class in the jar ile beanshell-2.0b2.jar.
We found that this class is deined as private. Now, looking at this class in the gadget version beanshell-2.0b4,
we found that its deinition has changed to public class bsh.XThis. This makes possible the access to this
class, allowing the serialization and thereby the attack.

CommonsCollections1. There are three gadget versions of the library commons-collections: 3.1, 3.2, and 3.2.1
for this attack. For version 3.0, which does not contain gadgets, there is an error while serializing. After analyzing
the diference between the versions commons-collections3.0, which does not contain gadgets, and commons-
collections3.1, which does contain gadgets, we found that the problem is originating from the class LazyMap. In
version 3.0, this class implements only java.util.Map and does not allow the serialization to be performed. In
version 3.1, it implements java.util.Map and java.io.Serializable allowing the serialization to succeed.

Detecting a law in the JCL. Deserialization vulnerabilities are not only found in Java code from third-party
Java libraries but also in Java code from the JCL (Java Class Library) shipped with every JVM. Since this code is
always present in all JVMs, we discuss it in more detail here. In our experiments, and for a studied attack, we
vary the JVM versions in order to check if the attack succeeds or not for a gadget library version. Our goal is to
identify the law in the Java Runtime Library (JRL) that allows the execution of such an attack. We then ilter
the results and distinguish three types of laws allowing the insecure deserialization: (1) adding a readObject()
method to a class of the JCL. This class can be used in the code to generate a malicious byte stream (example: the
BadAttributeValueExpException class); (2) change the type of some ields to make them accessible and easily
controlled by the attacker; (3) change the bytecode within a catch block.

Illustration

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 15

1 private void readObject(...) throws

2 IOException, ClassNotFoundException {

3 objectInputStream.defaultReadObject();

4 AnnotationType instance;

5 try {

6 instance = AnnotationType.

7 getInstance(this.type);

8 }

9 catch (IllegalArgumentException ex) {

10 return;

11 }

12 [...]

13 }

(a) readObject() in jdk1.7.0.21.

1 private void readObject(...) throws

2 IOException, ClassNotFoundException {

3 objectInputStream.defaultReadObject();

4 AnnotationType instance;

5 try {

6 instance = AnnotationType.

7 getInstance(this.type);

8 }

9 catch (IllegalArgumentException ex) {

10 throw new InvalidObjectException

11 ("Non-annotation type in annotation

12 serial stream");

13 }

14 [...]

15 }

(b) readObject() in jdk1.7.0.25.

Fig. 8. Two versions of AnnotationInvocationHandler.readObject().

Consider the method readObject() of the class AnnotationInvocationHandler in the two JDK-versions
jdk1.7.0.21 and jdk1.7.0.25, shown in Figure 8. When analyzing the two code snippets, it is important to note that
the ield this.type (used in line 7) might be attacker-controlled. The irst readObject in jdk1.7.0.21 allows the
deserialization attack because the catch block fails silently: it uses the instruction return; (line 10 of Figure 8a)
which will exit the readObject and let the attack continue. The readObject in jdk1.7.0.25 prevents the attack
because the catch throws an InvalidObjectException displaying a message "Non-annotation type in annotation
serial stream". Even though the second version of readObject does not allow the attack, an analysis of the try
block content i.e., the calls inside the getInstance() method, would be necessary to check for the presence of
method calls that may invoke gadgets.

Java deserialization gadgets are not only introduced by adding new classes (8 out of 14 libraries (57%)
added classes). As code evolves, methods are updated or added, class signatures can change (43% of the
14 libraries comprise such changes). Thus, small code changes which look innocuous can frequently
introduce gadgets.

3.2.3 RQ3: How are Gadget Libraries Patched? Table 4 shows the actions performed to ix laws in the studied
gadget libraries. Note that the diferent patches present in this table can be either with the purpose of mitigating
a gadget or a coincidental ix due to some changes for other purposes. In order to classify commits mitigating
gadgets, we manually analyzed their messages. The result is represented in the last column of this table: when
the action aims at ixing the gadget against deserialization, we mention it by "Y"; when it is a coincidental ix we
put "N"; when the library is not patched, we use "-"; and when we do not ind information about if the patch
is intentional or coincidental we put the "Unknown" keyword. In this table, the second column represents the
number of gadgets that we extract from each attack. This number ranges from a minimum of 7 gadgets for the
CommonsCollections1 attack to a maximum of 19 gadgets for the BeanShell1 attack. To ind the corresponding
patch in a library, we study the last version containing gadgets and the version just after, which is gadget-free. In
this table, and as presented in Figure 9, a gadget patch may consist in:

RemoveSerializable removing the java.io.Serializable from the list of interfaces implemented by the
vulnerable class. This action represents 12.5% of cases,

RemoveClass removing the vulnerable class in 18.75% of cases,
IntroduceCheck introducing a safety check to disable insecure serialization. This safety check can be an

instruction in the code of a method or a whole added check method in 18.75% of cases,
ChangeSignature changing the signature of a method in 6.25% of cases, or

ACM Trans. Softw. Eng. Methodol.

16 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

RemovePackage removing a package from the gadget library (case of clojure) representing 6.25% of cases.

RemoveSerializable (12.5%)

RemoveClass (18.75%)

IntroduceCheck (18.75%)

ChangeSignature (6.25%)

RemovePackage (6.25%)

NotPatched (37.5%)

Fig. 9. Actions performed to remove gadgets from libraries.

We have noticed that, in the 14 studied libraries, only 8 of them are patched. We have identiied 11 patching
actions in this table. The remaining 6 libraries over 14 (37.5%) are not patched (NotPatched keyword in the igure).

ACM Trans. Softw. Eng. Methodol.

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

17

Attack

T
o
ta
l
#

g
a
d
g
e
ts

Last gadget ver-

sion #
g
a
d
g
e
ts

in
li
b

Gadget-free version Applied patch

In
te
n
ti
o
n
a
l

p
a
tc
h
(Y
/N

)

BeanShell1 19 beanshell-2.0b5 15 beanshell-2.0b6 Remove the java.io.Serializable

from the list of interfaces implemented

by the class XThis$Handler

Y (see link beanshellcommit)

Clojure 10 clojure1.9.0-alpha15 5 clojure1.9.0-alpha16 Remove the package "spec"

used to load clojure/spec/al-

pha__init.class or clojure/spec/al-

pha.clj from classpath

N (see part 1.9.0-alpha16 of

the link clojurechangelog)

CommonsBeanUtils1 17
commons-

beanutils1.9.4

6 not patched not patched -

commons-

collections3.2.2

0 commons-

collections4.4.0-alpha1

Remove class ComparableCom-

parator

N

CommonsCollections1 7 commons-

collections3.2.1

2 commons-

collections3.2.2

Introduce additional constraint to dis-

able insecure serialization

Y (see link collections3.2.2-

release)

CommonsCollections2 13 commons-

collections4-4.0

2 commons-

collections4.4.1

Remove the interface

java.io.Serializable from

the list of implemented interfaces of

the class InvokerTransformer

Y (see link COLLECTIONS-

580)

CommonsCollections3 13 commons-

collections3.2.1

4 commons-

collections3.2.2

Introduce additional constraint to dis-

able insecure serialization

Y (same as CommonsCollec-

tions1)

CommonsCollections4 15 commons-

collections4-4.0

4 commons-

collections4.4.1

Remove the interface

java.io.Serializable from

the list of implemented interfaces of

the class InstantiateTransformer

Y (see link collections580)

CommonsCollections5 8 commons-

collections3.2.1

5 commons-

collections3.2.2

Introduce additional constraint to dis-

able insecure serialization

Y (same as CommonsCollec-

tions1)

CommonsCollections6 10 commons-

collections3.2.1

5 commons-

collections3.2.2

Introduce additional constraint to dis-

able insecure serialization

Y (same as CommonsCollec-

tions1)

CommonsCollections7 9 commons-

collections3.2.1

4 commons-

collections3.2.2

Introduce additional constraint to dis-

able insecure serialization

Y (same as CommonsCollec-

tions1)

Groovy1 10 groovy2.4.3 6 groovy2.4.4 Add a check method called

readResolve() in the class

MethodClosure

Y (see link groovy)

ROME 15 rome1.0 5 not patched not patched -

MozillaRhino1 16 js-rhino1.7.7.1 9 js-rhino1.7.7.2 Change the signature of the method

getSlot(String, int,int) to

getSlot(Object, int, int) (conse-

quence: not allowing the serialization

of the malicious byte stream)

Unknown

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/beanshell/beanshell/commit/1ccc66bb693d4e46a34a904db8eeff07808d2ced#diff-c3ddac5f59b0552b0cb83fca42e0f972dd20b01fefc0ecb6a999042cb43c44e0
https://clojure.org/releases/devchangelog
https://commons.apache.org/proper/commons-collections/release_3_2_2.html
https://commons.apache.org/proper/commons-collections/release_3_2_2.html
https://issues.apache.org/jira/browse/COLLECTIONS-580
https://issues.apache.org/jira/browse/COLLECTIONS-580
https://issues.apache.org/jira/browse/COLLECTIONS-580
http://groovy-lang.org/security.html

18
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

MozillaRhino2 17 js-rhino1.7.7.1 9 js-rhino1.7.7.2 Change the signature of the method

getSlot(String, int,int) to

getSlot(Object, int, int) (conse-

quence: not allowing the serialization

of the malicious byte stream)

Unknown

Spring1 11

spring-beans-

3.0.0.RELEASE

1 not patched not patched -

spring-coreś

4.2.2.RELEASE

3 spring-core-

4.2.3.RELEASE

readObject() is instrumented with

an Assert.state() checking instruc-

tion

Y (see bug SPR-13656 in the

link spring-io)

spring-aop-1.1-rc1 0 spring-aop-

4.3.0.RELEASE

Remove the class DecoratingProxy Unknown

Spring2 12

spring-coreś

4.2.2.RELEASE

3 spring-core-

4.2.3.RELEASE

readObject() is instrumented with

an Assert.state() checking instruc-

tion

Y (see bug SPR-13656 in the

link spring-io)

spring-aop-1.1-rc1 2 spring-aop-

4.3.0.RELEASE

Remove the class DecoratingProxy Unknown

Click1 17
click-nodeps-2.3.0-

RC1

5 not patched not patched -

javax-servlet-api-

4.0.1

0 not patched not patched -

Vaadin1 10
vaadin-server-7.7.17 2 vaadin-server-8.0.0 Remove the class PropertysetItem

from the package

com.vaadin.data.util

N

vaadin-shared-

7.4.0.beta1

0 not patched not patched -

JDK7U21 11 jdk-1.7.0.21 11 jdk-1.7.0.25 Add check (try/catch bloc) in the

readObject method

Unknown

Table 4. Diferent actions to fix a flaw in libraries

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://jira.spring.io/secure/ReleaseNote.jspa?projectId=10000&version=15296
https://jira.spring.io/secure/ReleaseNote.jspa?projectId=10000&version=15296

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 19

Let us now analyze two diferent actions performed to ix the attacks BeanShell1 - described in Section 3.2.2 -
and CommonsBeanUtils1. The patch of the libraries involved in these two attacks is described in Table 4.

BeanShell1. This gadget library is patched in the version beanshell-2.0b6 by removing java.io.Serializable
from the list of interfaces implemented by the class XThis$Handler. As a result, this class can no longer be
serialized.

CommonsBeanUtils. First, note that this attack uses gadgets in two libraries: commons-beanutils and commons-
collections. We found that the gadget library commons-beanutils was never patched. For the commons-collections
library, the gadget is patched by removing the ComparableComparator class.

Once a class is in a library, removing it might break backward compatibility, thus this removal is
not often an option. Among the studied patches, 18.75% remove a class and 18.75% add a check.
Other solutions include adding a safety check to disable the insecure deserialization, removing the
java.io.Serializable interface from the list of implemented interfaces or even removing a whole
library package. A signiicant number of cases (37.5%) are not patched at all.

3.2.4 RQ4: What is the Life-cycle of Gadgets? To deine the life-cycle of a gadget library or a gadget library
version, we extract the following dates:

• when the irst library version has appeared, i.e., the jar ile appearance date,
• when the gadget was introduced, and
• when the library was patched. We look either at the appearance date of the released version free from
gadgets or at the date of the patch in CVE if it exists.

Figure 10 shows the answers to this RQ according to the diferent studied attacks. In this igure, each line
represents the life-cycle of a library for which we distinguish between: (1) the versions before the known gadgets
were introduced (uncolored rectangle); (2) the versions that contain gadgets (dashed rectangle); and (3) the patched
versions of the gadget library (black rectangle). First of all, note that the libraries spring-beans, spring-core,
spring-aop, and vaadin-server have several versions developed in parallel. Each one of these versions is described
by a line in the igure.

According to Figure 10, we observe that most of the studied attacks are detected late. In fact, for some libraries
like groovy and js-rhino, the detection of the gadgets takes 7 years. This can be explained by the fact that the
ysoserial tool has been developed in 2016 and the introduced vulnerabilities use versions of libraries that were
developed from the beginning of the 2000s. We also observe that most of the libraries take between two months
and several years to be patched. The longest time is for the commons-collections and bsh libraries and is equal to
eleven years. The shortest time is two months for the library spring-aop-1. Furthermore, we have classiied the
studied (versions of) libraries into three categories:

Cat1 (versions of) libraries for which gadgets were introduced and then patched. This category contains the
groovy, js-rhino, commons-collections, bsh, clojure, and spring-aop-1 libraries.

Cat2 libraries which are never patched, like the commons-beanutils, rome, spring-beans, vaadin-server-7, vaadin-
shared, click-nodeps, and javax-servlet libraries.

Cat3 library versions that contain gadgets from their appearance date. We cite as examples the vaadin-server-7,
spring-aop-3, spring-aop-4, spring-beans-3, spring-beans-4, and spring-beans-5.

Observe that the presentation of the spring-core-4 library is simpliied in the Figure 10. Indeed, this version
contains four branches: 4.0.* . . . 4.1.* . . . 4.2.* and 4.3.* which are developed in parallel. The gadgets were initially
patched in one branch and, a few months later, ported to other branches. Merging all these branches in spring-
core-4 would have resulted in a “contains gadget” “patched” “contains gadget” “patched” pattern which is wrong

ACM Trans. Softw. Eng. Methodol.

20 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Fig. 10. Life-cycle of some library versions.

since it suggest the gadgets are reintroduced. To simplify the igure, we represent spring-core-4 as being patched
when the irst branch is patched and ignore the fact that there is a delay to propagate this patch to other branches.

Note that our study about the patching time of gadgets does not aim to advocate ixing patches so quickly.
Rather than that, our goal is to give an observation about the time that is taken to patch existing gadgets.

When introducing gadgets in a library, the latter can be patched in few months. However, for some
libraries, the patch is applied after several years going until more than 10 years.

3.2.5 RQ5: How are Vulnerabilities Patched in Real-life Applications? For this study, we use the 95 CVEs describing
Java deserialization vulnerabilities we have identiied in Section 3.2.1 (see Figure 5). We manually analyzed their
corresponding 77 applications containing the vulnerabilities to understand what has been changed in these
applications to prevent the exploitation of these vulnerabilities.
We observe that 69 applications (89.6%) have a single CVE, yet that eight applications (10.4%) have multiple

reported CVEs. For example, the Atlassian Bamboo before 5.9.9 and 5.10.x before 5.10.0 application had two
CVEs in two years: First CVE-2014-9757, for which the ix consists in upgrading the Smack library used by the
Bamboo application. Unfortunately, this ix does not prevent the next vulnerability, CVE-2015-8360. The ix for
this second CVE is a patch that introduces both allow and deny lists. Thus, even though a ix exists, it may be not
suicient to protect the application from future attacks.

Among all the 95 CVEs associated with the 77 studied applications, we successfully analyzed 58 CVEs based on:
the CVE description (41 CVEs), the code of the impacted application (6 CVEs), or the workaround description (11
CVEs). We were unable to analyze 37 CVEs either because the code of the applications is not publicly available
(neither source nor bytecode, for 36 CVEs) or because our manual analysis exceeded a time limit (1 CVE). A
description of 29 CVEs among the 95 CVEs is available in Table 5 of Appendix A.

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 21

In total, we were able to analyze 58 CVEs from 52 applications. Figure 11 presents the diferent categories
of patches and mitigation techniques software vendors have devised. Among the 58 solutions, eleven (19%)
disable (de)serialization functionalities (e.g., CVE-2020-11973); eleven (19%) add an allow list containing the list of
allowed classes or packages to use deserialization (e.g., CVE-2013-2165); ten (17.2%) add a deny list in which the
classes are not allowed to be deserialized (example of CVE-2018-20732); eight (13.8%) add checks in serializable
classes (keyword AddChecks in the igure) which may go from adding some instructions (e.g., CVE-2016-6793) to
activating the sandbox (e.g., CVE-2018-1000058); seven (12%) upgrade library versions (e.g., CVE-2014-9757); four
(6.9%) protect or restrict access to ports (e.g., CVE-2017-10934); three (5.2%) disable protocols (e.g., CVE-2015-4852);
three (5.2%) do nothing because the application software reaches the end of life (e.g., CVE-2016-7065); one (1.7%)
changes the software coniguration (CVE-2020-9493).

Note that for 13 CVEs there is no patch (i.e., the code is unmodiied) but only a workaround solution. Such
methods consist mainly in blocking access to the vulnerable code in order to reduce the severity of the impact of
the attack or to prevent it. They do not modify the vulnerable code itself but work around this code to prohibit
the access for performing the attack. For instance, the solution to mitigate CVE-2018-15381 consists in blocking
or protecting the access to a port. Obviously, this does not remove the vulnerability in the application in question.
In other words, the application is still exposed to the risk of attacks if, for some reason, the access to the port
becomes allowed again (e.g., new software coniguration, software deployed in a new environment).

EndOfLife (5.2%)
ChangeConig (1.7%)

AllowList (19%)DisableJavaDeser (19%)

DenyList (17.2%)

AddChecks (13.8%) ProtectPorts (6.9%)

UpgradeLibVersion (12%)

DisableProtocol (5.2%)

Fig. 11. Patching/Mitigation actions for the 58 CVEs.

We complete our analysis by the study the nature of commits patching deserialization vulnerabilities: are
these patches manual code modiications or are they automatically generated by a tool? To have access to
commits/patches, the applications must be open-source. Thus, we selected 25 open-source vulnerable applications
which use deserialization. Among these 25 applications, listed in Table 8, we found 17 applications having code
patches that were manually generated and described in commits. The remaining seven applications either update
an external dependency (4), are end-of-life (1) or we were unable to ind the patch (2). We observe that no commit
is classiied as being generated by a tool. The results of our analysis are described in Table 8 of Appendix C.

ACM Trans. Softw. Eng. Methodol.

22 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Deserialization vulnerabilities may be present on several occasions for the same application. Disabling
the deserialization in Java applications and building an allow-list are the most popular kinds of
patches for this kind of attacks (19% of cases for each one of these actions). Such patches may prevent
deserialization attacks once and for all. However, for some applications, the patching/mitigation action
consists in upgrading library versions (12% of cases), which is not safe since the attacker could ind
another way to carry out the attack. All patches in the open-source applications we have analyzed
were manually written which may suggest that tools are rarely used to automatically ix this kind of
vulnerability.

3.2.6 RQ6: How easy is the automation of filters against deserialization atacks? Since 2016, Java supports a
iltering mechanism to prevent the exploitation of deserialization vulnerabilities. This ilter, described in JEP
290 [8, 45], can restrict classes to be deserialized to a speciic set (allow list) or prevent a speciic set of classes
from being deserialized (deny list).

To use these ilters, we have to extract classes used by Java applications to either: (1) create a deny list containing
at least one class from each deserialization attack (in order to prevent each attack) and make sure that the deny
list will not break any Java application or (2) create an allow list containing all classes used by the Java application
during deserialization and make sure that it prevents all the attacks. To be able to create these allow and deny
lists, we irst extract the set of classes required by the 19 ysoserial deserialization attacks. These classes are listed
in Table 6. We then manually extract the set of classes used during deserialization from 10 real-world vulnerable
applications which use deserialization. This set is listed in Table 7.

Unfortunately, we observe that all the Java applications make use of generic types such as ArrayList<Object>
or Serializable. This is problematic since the allow list should then contain all possible serializable classes
and the deny list should then be empty which makes the ilters useless. This shows that an analysis of the code
deserializing data is not precise enough to generate a useful set of classes that can be used in ilters. There are two
solutions that can be explored as future work. The irst is to rely on the in-depth knowledge of the applications
by the developers themselves. However, in practice, it might be diicult for the following reasons: contacting
the developer responsible for the code might not be possible because the person might have left the project;
the developer might not remember precisely how the code works, etc. The second is to automate the analysis
of the applications to automatically extract the set of classes used by the application. While at a irst sight this
approach seems to work, it will face the challenges of static analysis such as relection, code loading, and other
language-speciic features diicult to analyse automatically.

Furthermore, as the code of applications evolves, the allow/deny lists must be kept synchronized with the new
versions. This would require that developers spend time debugging and updating these lists instead of working
on the application’s code directly.

In the lab, deserialization attacks can be trivially blocked when activating the ilter. However, in
practice setting up and maintaining these ilters suppose that developers know in advance the types
to deserialize in the application which, often, is not trivial because of technical limitations, time
constraints, or project management challenges.

4 Synthesis and Take-away Messages

Our work has yielded the following important conclusions: (1) the persistent deserialization of untrusted
data; (2) what is the efect of disabling the java.io.Serializable in the patches; (3) what are the factors
impacting the duration of inding a patch; (4) how precise is the deinition of deserialization vulnerabilities in
CVEs description; and (5) what are the take-away messages from our analysis results.

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 23

4.1 Persistent deserialization of untrusted data

The deserialization of untrusted data is not recommended by the OWASP: "the only safe architectural pattern is
not to accept serialized objects from untrusted sources or to use serialization mediums that only permit primitive
data types." [50] [59]. The same advice is provided by the Secure Coding Guidelines for Java SE which states,
at the beginning of its 8th section, that "Deserialization of untrusted data is inherently dangerous and should
be avoided" [47]. However, our analysis of Java applications shows that, until now, developers are still using
deserialization of data from untrusted sources. This could be explained by developers not being aware of the
recommendations, a lack of proper security vetting mechanisms during software development, or constraints
imposing the use of insecure legacy code.

4.2 Disable Serializable

When analyzing the gadget patches (see Table 4), we ind that disabling the deserialization, by removing
the java.io.Serializable interface from the list of implemented interfaces in the application’s class(es),
prevents exploitation in every single case. Removing this interface is very efective to protect against the known
deserialization attacks since it breaks the chain of gadgets in the victim application at hand. The other solutions,
such as changing the library versions in dependencies, or blocking the access to some ports, can signiicantly
reduce the risk of exploitation but do not remove the weakness.

4.3 Library use frequency vs. duration of finding patches

A large fraction of libraries,like the click-nodeps and the javax-servlet, or applications is never patched. Some
libraries, like the commons-collections3, have been deprecated and replaced by other releases (collections4 in the
case of commons-collections). In the other cases, the patch takes many years to be carried out. This points to
an important question: Is there a link between the frequency of using a library in real-world applications and
the duration to ix its gadgets? In other words, if a library containing gadgets is used in many applications, do
developers ind the gadgets and ix them more quickly than for other unsafe libraries that are only infrequently
used? We have found a irst element to answer this question: the frequency of using a library in applications is
not the main factor impacting the duration of inding a patch. For example, commons-collections is used in many
real-world applications, yet it was unsafe between 2004 and 2015 and only then, after 11 years, the patch was
introduced to ix its gadgets in both deprecated version 3.2.2 and its release 4.4.1.

4.4 Definition of deserialization vulnerabilities in CVEs

The deinition of deserialization vulnerabilities in CVEs is not precise. In fact, we have found that some declared
deserialization vulnerabilities CVEs are in reality not vulnerabilities but rather descriptions of gadgets (there is
no entry point for the attacker to carry out the attack) or descriptions of untrusted code (vulnerability in the
deserialization mechanism which can be exploited only if the attacker can execute arbitrary Java code).

4.5 Gadgets inspection

A usable take-away from our analysis results is the list of recommendations library developers should follow
to prevent the introduction of gadgets. These recommendations are inferred from Table 3. When a developer
introduces a new class that can be serialized or modiies an existing one (see Table 3 for real-world examples), we
suggest the following recommendations:

• List all the new ield types and sub-types which are introduced or modiied.
• For each type, check that there is no code reachable from the readObject method which enables either to
(1) jump to a known gadget or (2) execute code based on the untrusted data (e.g., a relective method call
with the method description extracted from the untrusted input).

ACM Trans. Softw. Eng. Methodol.

24 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

5 Limitations

5.1 Scope of our study

Our work is based on vulnerabilities described by the ysoserial tool. In fact, the generation of the serialized
iles was conducted by the commands described in its repository. This tool is developed and widely adopted
by security researchers due to its ease of use for creating proof of concept payloads. It gathers a wide range of
exploits that concern many well-known libraries such as the commons-collections library. We are not aware
of any other tools with features comparable to ysoserial. Yet, the scope of our study is limited to the gadgets
described in ysoserial, and as result, we cannot airm the complete list of gadget libraries. Furthermore, the list
of actions performed to introduce gadgets in the libraries in Table 3 is not exhaustive. These actions are extracted
from the 19 exploits described in ysoserial.

5.2 Source code accessibility

When performing our analysis of the vulnerabilities in Java applications, we encountered some diiculties in
inding and obtaining access to the source code of some applications. Once found, the code is sometimes hard to
analyze, and inding the patch takes a lot of time. Another limitation regards the inaccessibility of some existing
patches for 4 CVEs among our studied 95 ones (4.1%). Indeed, some applications such as IBM Maximo Asset
Management (CVE-2020-4521) present links to patches that are not accessible: an error message is displayed
when trying to obtain access to the patch. It is not trivial to extract this patch information in these cases and a
reverse engineering step is needed to get such information. For time-related reasons, we could not do this step.
Obviously, this harms our study since we cannot identify supplementary patching actions that may be unknown
beforehand.

5.3 CVEs keyword-based search precision

The study on the frequency of deserialization vulnerabilities yields an under-approximation of the real-world
situation. Indeed, some CVE might not have the keyword deseriali[sz]ation we use for the search and thus might
not be present in the list of CVEs returned from the search. This is the case for instance for CVE-2021-26858 7 a
.NET deserialization vulnerability used by the HAFNIUM group to run code as SYSTEM on Microsoft Exchange
servers [39]: the description of this vulnerability on Mitre’s website does not mention that it is a deserialization
vulnerability. Such CVE descriptions were incomplete at the time of writing but might be updated to be more
precise.

6 Related work

6.1 Deserialization vulnerabilities

Preventing deserialization attacks starts right at the serialization step. As explained in [35], at this stage
it is important to follow recommendations and best practices for the secure use and implementation of Java
serialization. Some tips are given to make the code more secure such as (1) guard sensitive data ields; (2) check all
security permissions for serialization and deserialization carefully and (3) use serialization iltering for untrusted
data. The detection of this kind of vulnerability may be attempted early in the software development process. In
this context, Koutroumpouchos et al. [33] have developed a dynamic tool called ObjectMap allowing the detection
of deserialization and object injection vulnerabilities in Java and PHP-based web servers. Their tool accepts as
inputs a URL of such a web server and generates HTTP requests containing payloads of known attacks. Executing
these requests enables to detect if the web server is vulnerable to known attacks. If one of the payloads is executed
it means that a vulnerability has been executed and that the web server needs to be patched.

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26857

ACM Trans. Softw. Eng. Methodol.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26857

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 25

Frohof et al. [22] have implemented the ysoserial tool which provides 34 publicly available Java deserialization
payloads. These payloads represent gadget chains discovered in common Java libraries that can, under the right
conditions, exploit Java applications performing unsafe deserialization of objects. When used, these payloads
lead to attacks that are critical since they allow, in most cases, the execution of arbitrary code. And even when
attacks are unable to execute arbitrary code, they may still be able to upload and delete iles on the target host or
send network traic such as DNS requests. Arbitrary-code execution is the most common and most severe form
of an attack since it is the irst step allowing the attacker to compromise the whole machine.

In the same context, Haken has presented his tool Gadget Inspector [26] to inspect Java libraries and classpaths
for gadget chains. This tool allows to automatically detect possible gadgets chains in an application’s classpath.
Given war or jar ile(s) of a library as input, this tool will go through several stages of classpath inspection to
build up a list of blocks of gadget chains. These blocks may exist in the full gadget chains discovered by ysoserial.
Exploring the serialized byte streams to deserialize is relevant and may help to detect and locate some gadgets’
information. In this context, Bloor has developed a tool named SerializationDumper [6] which aims at automating
the task of decoding raw serialization streams and allows, then, to rebuild Java serialization streams and Java RMI
packet contents in a more human-readable format. Unfortunately, this tool has some limitations like its inability
to deserialize all Java serialized data streams and its "rebuild" mode which only operates on the Hex-Ascii encoded
bytes from the dumped data. The same developer has provided another tool called DeserLab [5], a Java client and
server application that implements a custom network protocol using the Java serialization format to demonstrate
Java deserialization vulnerabilities.

Rasheed et al. [55] propose a hybrid approach that extends a static analysis with fuzzing to detect serialization
vulnerabilities. They use a heap abstraction to direct fuzzing for vulnerabilities in Java libraries. Fingann [21]
presents an overview of Java deserialization vulnerabilities, diferent techniques an attacker can use to exploit
these vulnerabilities as well as which mitigation strategies can be employed to minimize the attack surface. This
thesis encompasses the description of the most known works in the state of the art around deserializations
vulnerabilities in Java: the Waratek description of deserialization problem [69], the tools like ysoserial [22] and
Gadget Inspector [26], the deserialization gadgets and chains of gadgets [15], and the code practices to prevent
deserialization attacks [20, 57].
Combating the deserialization attacks is one of the ideas explored by Seacord who examines in [58] Java

deserialization vulnerabilities and evaluates various look-ahead object input streams solutions. Cristalli et al. [14]
propose a sandboxing approach for protecting Java applications based on a trusted execution path used for dein-
ing the deserialization behavior. They test their defensive mechanism on two Java frameworks, JBoss and Jenkins.
They design a sandbox system that is able to intercept native methods by modifying the JVM internals. Their
sandboxing system performs two high-level phases: (1) dynamically analyzing Java applications and extracting
the precise execution path in terms of stack traces, and (2) use of a sandbox policy for monitoring applications at
runtime and blocking incoming attacks: "when a native method is invoked by the application, the system intercepts
it and checks whether the entire stack trace executed has been already observed in the learning phase. For this check,
the system maintains a memory structure in the form of a hash table" [14].

Deserialization vulnerabilities are not limited to the Java language. Shahriar et al. [61] propose an approach
to discover Object Injection Vulnerability (OIV) in PHP web applications. This kind of vulnerabilities involves
accepting external inputs during deserialization operation. They use the concept of Latent Semantic Indexing
(LSI [37]) to identify OIVs. Their approach was evaluated using three open-source PHP applications and was able
to ind the known OIV and to discover new vulnerabilities.

Dietrich et al. [19] study serialization-related vulnerabilities for Java that exploit the topology of object graphs
constructed from classes of the standard library. The deserialization, in this case, leads to resource exhaustion and
denial of service attacks. They analyze three vulnerabilities that can be exploited to exhaust stack memory, heap

ACM Trans. Softw. Eng. Methodol.

26 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

memory, and CPU time. They identify the language and library design features that enable these vulnerabilities.
They demonstrate that these Java vulnerabilities may concern also C#, JavaScript, and Ruby.

Peles et al. [53] present high severity vulnerabilities in Android. One of these vulnerabilities concerns the
Android Platform and Google Play Services and allows arbitrary code execution. They perform a large-scale
experiment over 32 701 Android applications and ind new deserialization vulnerabilities unknown before. They
demonstrate the impact of the detected vulnerabilities by developing a proof of concept exploit running under
Google Nexus 5 Hammerhead running Android 5.1.1.

Alexopoulos et al. [1] presented a detailed analysis of the large body of open-source software packaged in the
popular Debian GNU/Linux distribution. Vasquez et al. [68] provided a study of Android-related vulnerabilities
focusing on the ones afecting the Android OS. They have studied and classiied 660 vulnerabilities. They have
classiied the deserialization of untrusted data in a category called "Indicator of poor quality code". The same goal
was tackled by Mazuera et al. [38] who presented a large study aiming at analyzing software vulnerabilities in
the Android OS. They analyzed 1235 vulnerabilities from diferent perspectives: vulnerability types and their
evolution, CVSS vectors that describe the vulnerabilities, impacted Android OS layers, and their survivability
across the Android OS history.

Other approaches against deserialization attacks suggest to use alternative data formats like textual ones (XML
and JSON for example). The deserialization process using these formats does not invoke calls to gadgets, but,
Fingann and Muñoz et al.[21, 40] show that attackers may be able to perform their attacks regardless of the
malicious data format. XMLEncoder/XMLDecoder [49] is one of the existing mechanisms for using alternative data
formats like textual ones. While the XMLEncoder class is assigned to write output iles for textual representation of
Serializable objects, the XMLDecoder class reads an XML document that was created with XMLEncoder [28]. The
use of these alternative serialization mechanisms is not necessarily an efective solution to prevent deserialization
attacks. In fact, Fingann [21] states that if an application uses XMLDecoder to deserialize a user byte stream,
then the user may ind another way to inject arbitrary code into the methods to call when deserializing the byte
stream. This means that any application that uses user input data to deserialize by XMLDecoder can be a victim
of deserialization attacks.

Kyro [64] is an alternative Java implementation for serialization. Similarly to the native Java implementa-
tion [56], it can lead to arbitrary code execution [16]. ProtocolBufers [24] is a generic approach to serialize
any structured data. It is available in many programming languages such as Java, Python, or C++. Applica-
tions leveraging this serialization protocol might become vulnerable if they manipulate sensitive types such as
java.lang.reflect.Method. On top of that, the ProtocolBufers’ Java implementation itself was vulnerable to a
denial of service attack [17].

Java deserialization iltering is the technique supported by Oracle [48]. Filters can validate incoming classes
before they are deserialized by screening the incoming streams of serialized objects. For each new object in
the stream that will be deserialized, the ilters are invoked. Support for serialization ilters is included in Java 6
update 141, Java 7 update 131, Java 8 update 121, and all versions after Java 9. Again, this technique requires the
developer to manually extract serializable classes and add patterns to conigure and activate the ilter.

6.2 Java Security

Balzarotti et al. [2] present an approach that combines static and dynamic analysis techniques to identify
faulty sanitization procedures that can be bypassed by an attacker through sensitive sinks in applications. The
authors validate their approach by implementing the Saner tool aiming at analyzing the use of custom sanitization
routines to identify possible XSS and SQL injection vulnerabilities in web applications. They applied it to ive
real-world applications in which they identify 13 vulnerabilities: for each sink, there exists at least one program
path such that the output of a sanitization routine lows into this sink. A systematic in-depth study of 87 publicly

ACM Trans. Softw. Eng. Methodol.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 27

available Java exploits was performed in [30]. These attacks lead to security vulnerabilities that involve issues
such as type confusion, deserialization issues, trusted method chaining, or confused deputies. Holzinger et al. [30]
show that all attack vectors implemented by the exploits belong to one of three categories: single-step attacks,
restricted-class attacks, and information hiding attacks. They studied in detail the structures ofered by the Java
language such as the Security Manager feature and show how the analysis of the exploits samples helps for the
detection of vulnerabilities.

Safe development of applications in Java relies a lot on the robustness of the JVM on which the code will be
compiled and executed. Yuting et al. [9] dealt with the problem of validating the production of JVMs. The classfuzz
fuzzer allows the generation of illegal bytecode iles that aim to test a JVM and detect bugs in its bytecode veriiers.
They developed their approach named classming in the same context of validating JVMs. Their method is based
on a technique called live bytecode mutation able to generate mutant bytecode iles from a seed bytecode ile to
test JVMs. They tested their approach on several JVM implementations and reported the detected JVM crashes.
One of their discoveries touches on a highly critical security vulnerability in Java 9 that allowed untrusted code
to disable the Security Manager and elevate its privileges. Confuzzion [7] is another JVM fuzzer which is more
generic in the sense that it allows the generation of programs that are not possible to generate with Classming or
Classfuzz. Dean et al. [18] demonstrated that there is a signiicant number of laws in the Java language and in
these two browsers supporting it. They evoked the compromise that exists between the openness desired by Web
application writers and the security needs of their users. Their study aimed at inding the source of the identiied
laws. They showed that the diference between the Java language and the bytecode semantics is one of the main
reasons for weaknesses afecting the applications. A deeper study of the bytecode and bugs concluded that the
Java system needs to be reviewed: the bytecode format and the runtime system should be redesigned in order to
build a more secure system.

Holzinger et al. [29] conducted a tool-assisted adaptation of the Java Class Library (JCL) able to signiicantly
harden the JCL against attacks. They study the problem of using shortcuts, originally introduced for ease of use
and to improve performance, that cause Java to elevate the privileges of code implicitly. These shortcuts are
responsible for a group of vulnerabilities known to have been exploited for the Java runtime: they directly enable
attack vectors and complicate the security-preserving maintenance and evolution of the codebase by elevating
privileges to certain callers implicitly. Their approach consists of three steps: (1) locate all shortcuts; (2) remove
the shortcuts found and (3) wrap the calls in the JCL to those methods that formerly implemented shortcuts
into privileged actions. Bartel et al. [3] presented an approach based on a runtime solution called MUSTI. This
tool detects and prevents invalid object initialization attacks. To achieve this goal, the authors patch the JVM by
instrumenting the generated bytecode with an added code. This code checks if the objects have been correctly
initialized. Their approach is generic and can be implemented in many languages supporting a similar sandbox
system as the JVM. Any native code in Java programs may bypass the memory protection and the higher-level
policies. To deal with these problems, Chisnall et al. [10] developed a hardware-assisted implementation of the
Java Native Interface (JNI), called CHERI JNI. This tool extends the guarantees required for Java’s security model
to native code. Their approach ensures safe direct access to bufers owned by the JVM.

7 Conclusion

The Java language is one of the most used languages to develop applications. Thanks to its ease of use and its
portability, millions of applications run using this language. However, every year, many vulnerabilities in the Java
runtime and its runtime libraries are discovered, reported, and patched. Our work highlights that vulnerabilities
such as Java deserialization vulnerabilities can be critical since they impact the security of the applications, and in
most cases allow the execution of arbitrary code. In this paper, we have performed 256 515 experiments on 19 RCE
deserialization attacks. We have identiied that not only the mentioned library versions in ysoserial attacks
contain gadgets, but that there are previous and later versions that contain these gadgets as well. As an example,

ACM Trans. Softw. Eng. Methodol.

28 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

it is mentioned in this repository that the version 1.9.2 of the commons-beanutils library includes gadgets. After
running our experiments, we found that 14 more versions contain also the same gadgets. These versions belong
to the range between 1.5 and 1.9.4. We have studied how gadgets are introduced in libraries and observe that the
modiication of one innocent-looking detail in a class - such as making it public - can already introduce a gadget.
Defense mechanisms such as iltering and allow/deny listing might be efective in preventing such attacks but
might be hard to set up and maintain. We have performed an analysis of 104 CVEs - associated with vulnerable
Java applications - from the Mitre database. We discovered that the results of our search on Mitre contain noise
that we need to remove: among these 104 CVEs, only 95 CVEs represent "real" deserialization vulnerabilities
description. The remaining 9 CVEs represent other types that we classiied into GA (gadgets description) and
UC (untrusted code description). We ind that some patches of these application-level vulnerabilities consist in
upgrading library dependencies although these are frequently insuicient to prevent the deserialization attacks.
Among the 95 studied CVEs, we were able to analyze 58 CVEs in which 19% are correctly ixed by disabling the
deserialization of untrusted data.

A perspective for future work is the development of an algorithm for automatically detecting deserialization
gadgets chains in applications, evaluate this implementation on a set of applications and compare it with other
existing tools such as Gadget Inspector [26]. Our goal is to prevent deserialization attacks early. Identifying the
parameters involved to deine the duration of patching libraries is another perspective of this work. In this paper,
we have focused only on RCE attacks since we have designed a framework to test only this kind of attacks. Now,
we are planning an extension of this framework to cover the remaning 15 non-RCE ysoserial attacks containing
DOS ones which aim at making services unavailable to their legitimate users.

Acknowledgments

This work was supported by the Luxembourg National Research Fund (FNR) ONNIVA Project, ref. 12696663.
This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

References

[1] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Stefen Schulz, and Max Mühlhäuser. 2020. The Tip of the Iceberg: On the Merits of

Finding Security Bugs. ACM Trans. Priv. Secur. 24, 1 (2020), 3:1ś3:33.

[2] Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2008.

Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applications. In 2008 IEEE Symposium on Security and

Privacy (S&P). IEEE Computer Society, 387ś401.

[3] Alexandre Bartel, Jacques Klein, and Yves Le Traon. 2019. Musti: Dynamic Prevention of Invalid Object Initialization Attacks. IEEE

Trans. Inf. Forensics Secur. 14, 8 (2019), 2167ś2178.

[4] Daniel Blazquez. 2020. Insecure Deserialization: Attack examples, Mitigation and Prevention. Retrieved 2022 from https:

//hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/.

[5] Nicky Bloor. [n. d.]. DeserLab. Retrieved 2022 from https://github.com/NickstaDB/DeserLab.

[6] Nicky Bloor. [n. d.]. SerializationDumper. Retrieved 2022 from https://github.com/NickstaDB/SerializationDumper#%

23serializationdumper.

[7] William Bonnaventure, Ahmed Khanir, Alexandre Bartel, Mike Papadakis, and Yves Le Traon. 2021. CONFUZZION : A Java Virtual

Machine Fuzzer for Type Confusion Vulnerabilities. In 2021 IEEE international conference on software quality, reliability and security

companion (QRS). IEEE.

[8] Hooman Broujerdi. 2018. JDK approach to address deserialization vulnerability. Retrieved 2022 from https://www.redhat.com/en/blog/

jdk-approach-address-deserialization.

[9] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep diferential testing of JVM implementations. In Proceedings of the 41st International

Conference on Software Engineering, ICSE, Joanne M. Atlee, Tevik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 1257ś1268.

[10] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Woodruf, A Theodore Markettos, J Edward

Maste, Robert Norton, Stacey Son, et al. 2017. CHERI JNI: Sinking the Java security model into the C. ACM SIGARCH Computer

Architecture News 45, 1 (2017), 569ś583.

[11] IBM Company. [n. d.]. IBM download. Retrieved 2022 from https://www.ibm.com/support/pages/java-sdk-downloads.

ACM Trans. Softw. Eng. Methodol.

https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://github.com/NickstaDB/DeserLab
https://github.com/NickstaDB/SerializationDumper#%23serializationdumper
https://github.com/NickstaDB/SerializationDumper#%23serializationdumper
https://www.redhat.com/en/blog/jdk-approach-address-deserialization
https://www.redhat.com/en/blog/jdk-approach-address-deserialization
https://www.ibm.com/support/pages/java-sdk-downloads

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 29

[12] The MITRE Corporation. 2020. Retrieved 2022 from https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deserialization.

[13] The MITRE Corporation. 2020. Terminology - A glossary of terms used by the CVE Program. Retrieved 2022 from https://cve.mitre.org/

about/terminology.html#vulnerability.

[14] Stefano Cristalli, Edoardo Vignati, Danilo Bruschi, and Andrea Lanzi. 2018. Trusted Execution Path for Protecting Java Applications

Against Deserialization of Untrusted Data. In Research in Attacks, Intrusions, and Defenses - 21st International Symposium, RAID (Lecture

Notes in Computer Science, Vol. 11050). Springer, 445ś464.

[15] Michael C. Daconta. [n. d.]. When Runtime.exec() won’t. Retrieved 2022 from https://www.infoworld.com/article/2071275/when-

runtime-exec---won-t.html.

[16] NIST National Vulnerability Database. [n. d.]. Vulnerability Summary for CVE-2020-5413. Retrieved 2022 from https://nvd.nist.gov/vuln/

detail/CVE-2020-5413.

[17] NIST National Vulnerability Database. [n. d.]. Vulnerability Summary for CVE-2021-22569. Retrieved 2022 from https://nvd.nist.gov/

vuln/detail/CVE-2021-22569.

[18] Drew Dean, Edward W. Felten, and Dan S. Wallach. 1996. Java Security: From HotJava to Netscape and Beyond. In 1996 IEEE Symposium

on Security and Privacy. IEEE Computer Society, 190ś200.

[19] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin. 2017. Evil Pickles: DoS Attacks Based on Object-Graph

Engineering. In 31st European Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 74). 10:1ś10:32.

[20] Software engineering Institute. [n. d.]. Prevent deserialization of untrusted data. Retrieved 2022 from https://wiki.sei.cmu.edu/

conluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data.

[21] Sondre Fingann. [n. d.]. Java Deserialization Vulnerabilities Exploitation Techniques and Mitigations. Retrieved 2022 from https:

//www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---Sondre-Fingann.pdf.

[22] Chris Frohof and Matthias Kaiser. [n. d.]. ysoserial. Retrieved 2022 from https://github.com/frohof/ysoserial.

[23] GitBook. 2022. Introducing Snyk. Retrieved 2022 from https://docs.snyk.io/introducing-snyk.

[24] Google. [n. d.]. Protocol Bufers. Retrieved 2022 from https://developers.google.com/protocol-bufers.

[25] The Guardian. 2016. San Francisco Municipal Transport Agency attacked by hackers who locked up computers and data with 100

bitcoin demand. Retrieved 2022 from https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-

muni-ransomeware.

[26] Ian Haken. [n. d.]. Gadget Inspector. Retrieved 2022 from https://github.com/JackOfMostTrades/gadgetinspector.

[27] István Haller, Erik van der Kouwe, Cristiano Giufrida, and Herbert Bos. 2016. METAlloc: eicient and comprehensive metadata

management for software security hardening. In Proceedings of the 9th European Workshop on System Security, EUROSEC, Michalis

Polychronakis and Cristiano Giufrida (Eds.). ACM, 5:1ś5:6.

[28] Red Hat. 2014. Java deserialization laws: Part 2, XML deserialization. Retrieved 2022 from https://www.redhat.com/en/blog/java-

deserialization-laws-part-2-xml-deserialization.

[29] Philipp Holzinger, Ben Hermann, Johannes Lerch, Eric Bodden, and Mira Mezini. 2017. Hardening java’s access control by abolishing

implicit privilege elevation. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 1027ś1040.

[30] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. 2016. An In-Depth Study of More Than Ten Years of Java Exploitation.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 779ś790.

[31] Java. [n. d.]. S’informer sur la technologie Java. Retrieved 2022 from https://www.java.com/fr/about/.

[32] Go Java. [n. d.]. Retrieved 2022 from https://go.java/.

[33] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntantogian, and Christos Xenakis. 2019. ObjectMap: detecting

insecure object deserialization. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics, PCI. ACM, 67ś72.

[34] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In 11th

USENIX Symposium on Operating Systems Design and Implementation, OSDI ’14, Jason Flinn and Hank Levy (Eds.). USENIX Association,

147ś163.

[35] Anton Lawrence. [n. d.]. Best Practices for Java Security. Retrieved 2022 from https://bitbucket.org/blog/best-practices-for-java-security.

[36] Gabriel Lawrence and Chris Frohof. 2015. OWASP AppSecCali 2015 - Marshalling Pickles. Retrieved 2022 from https:

//www.slideshare.net/frohof1/appseccali-2015-marshalling-pickles.

[37] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to information retrieval. Cambridge University

Press. https://doi.org/10.1017/CBO9780511809071 Retrieved 2022 from https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.

[38] Alejandro Mazuera-Rozo, Jairo Bautista-Mora, Mario Linares-Vásquez, Sandra Rueda, and Gabriele Bavota. 2019. The Android OS stack

and its vulnerabilities: an empirical study. Empir. Softw. Eng. 24, 4 (2019), 2056ś2101.

[39] Microsoft Threat Intelligence Center (MSTIC), Microsoft 365 Defender Threat Intelligence Team, and Microsoft 365 Security. 2021.

HAFNIUM targeting Exchange Servers with 0-day exploits. Retrieved 2022 from https://www.microsoft.com/security/blog/2021/03/02/

hafnium-targeting-exchange-servers/.

ACM Trans. Softw. Eng. Methodol.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deserialization
https://cve.mitre.org/about/terminology.html#vulnerability
https://cve.mitre.org/about/terminology.html#vulnerability
https://www.infoworld.com/article/2071275/when-runtime-exec---won-t.html
https://www.infoworld.com/article/2071275/when-runtime-exec---won-t.html
https://nvd.nist.gov/vuln/detail/CVE-2020-5413
https://nvd.nist.gov/vuln/detail/CVE-2020-5413
https://nvd.nist.gov/vuln/detail/CVE-2021-22569
https://nvd.nist.gov/vuln/detail/CVE-2021-22569
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---Sondre-Fingann.pdf
https://www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---Sondre-Fingann.pdf
https://github.com/frohoff/ysoserial
https://docs.snyk.io/introducing-snyk
https://developers.google.com/protocol-buffers
https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-muni-ransomeware
https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-muni-ransomeware
https://github.com/JackOfMostTrades/gadgetinspector
https://www.redhat.com/en/blog/java-deserialization-flaws-part-2-xml-deserialization
https://www.redhat.com/en/blog/java-deserialization-flaws-part-2-xml-deserialization
https://www.java.com/fr/about/
https://go.java/
https://bitbucket.org/blog/best-practices-for-java-security
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://doi.org/10.1017/CBO9780511809071
https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/

30 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

[40] Alvaro Muñoz and Oleksandr Mirosh. 2017. Friday the 13th JSON Attacks. Retrieved 2022 from https://www.blackhat.com/docs/us-

17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf.

[41] Alfred Ng. 2018. How the Equifax hack happened, and what still needs to be done - A year after the revelation of the massive breach,

there’s uninished business. Retrieved 2022 from https://www.cnet.com/news/privacy/equifaxs-hack-one-year-later-a-look-back-at-

how-it-happened-and-whats-changed/.

[42] U.S. Department of Homeland Security (DHS), Cybersecurity, Infrastructure Security Agency (CISA), and The MITRE Corporation.

[n. d.]. Glossary. Retrieved 2022 from https://www.cve.org/ResourcesSupport/Glossary#.

[43] U.S. Department of Homeland Security (DHS), Cybersecurity, Infrastructure Security Agency (CISA), and The MITRE Corporation.

[n. d.]. Terminology. Retrieved 2022 from https://cve.mitre.org/about/terminology.html#cveid.

[44] OpenJ9. [n. d.]. OpenJ9 download. Retrieved 2022 from https://adoptopenjdk.net/releases.html?variant=openjdk8&jvmVariant=openj9.

[45] OpenJDK. [n. d.]. JEP 290: Filter Incoming Serialization Data. Retrieved 2022 from https://openjdk.java.net/jeps/290.

[46] Oracle. [n. d.]. Oracle SE downloads. Retrieved 2022 from https://www.oracle.com/java/technologies/javase-downloads.html.

[47] Oracle. [n. d.]. Secure Coding Guidelines for Java SE. Retrieved 2022 from https://www.oracle.com/java/technologies/javase/

seccodeguide.html.

[48] Oracle. 2018. Core Libraries - Serialization Filtering. Retrieved 2022 from https://docs.oracle.com/en/java/javase/11/core/serialization-

iltering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66.

[49] Oracle. 2021. Long Term Persistence. Retrieved 2022 from https://docs.oracle.com/javase/tutorial/javabeans/advanced/

longpersistence.html.

[50] OWASP. [n. d.]. A8:2017-Insecure Deserialization. Retrieved 2022 from https://owasp.org/www-project-top-ten/2017/A82017-

InsecureDeserialization.

[51] OWASP. 2021. Bufer Overlow. Retrieved 2022 from https://owasp.org/www-community/vulnerabilities/BuferOverlow.

[52] OWASP. 2021. OWASP top 10:2021. Retrieved 2022 from https://owasp.org/Top10/.

[53] Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day Deserialization Vulnerabilities in Android. In 9th USENIX Workshop on

Ofensive Technologies (WOOT 15).

[54] Laksh Raghavan. Jan 2016. Lessons Learned from the Java Deserialization Bug. Retrieved 2022 from https://medium.com/paypal-

engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24.

[55] Shawn Rasheed and Jens Dietrich. 2020. A Hybrid Analysis to Detect Java Serialisation Vulnerabilities. In 35th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2020. IEEE, 1209ś1213.

[56] Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat. 1996. Pickling state in the Java system. Computing Systems 9, 4 (1996),

291ś312.

[57] Christian Schneider. [n. d.]. Java Deserialization Security FAQ. Retrieved 2022 from https://christian-schneider.net/

JavaDeserializationSecurityFAQ.html.

[58] Robert Seacord. 2017. Combating Java Deserialization Vulnerabilities with Look-Ahead Object Input Streams (LAOIS). https:

//doi.org/10.13140/RG.2.2.34012.49283

[59] Hdiv Security. [n. d.]. Insecure Deserialization: OWASP Top 10 - A8. Retrieved 2022 from https://hdivsecurity.com/owasp-insecure-

deserialization.

[60] Hovav Shacham. 2007. The geometry of innocent lesh on the bone: return-into-libc without function calls (on the x86). In Proceedings

of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. ACM,

552ś561.

[61] Hossain Shahriar and Hisham Haddad. 2016. Object injection vulnerability discovery based on latent semantic indexing. In Proceedings

of the 31st Annual ACM Symposium on Applied Computing, Sascha Ossowski (Ed.). ACM, 801ś807.

[62] Mikhail Shcherbakov and Balliu Musard. 21-24 February 2021. SerialDetector: Principled and Practical Exploration of Object Injection

Vulnerabilities for the Web. In Network and Distributed System Security Symposium (NDSS’21).

[63] Snyk. 2022. Snyk CLI. Retrieved 2022 from https://github.com/snyk/snyk.

[64] Esoteric Software. [n. d.]. Kyro. Retrieved 2022 from https://github.com/EsotericSoftware/kryo.

[65] Michael Stepankin. 2015. [manager.paypal.com] Remote Code Execution Vulnerability. Retrieved 2022 from https://

artsploit.blogspot.com/2016/01/paypal-rce.html.

[66] DOWASP study. 2017. OWASP Top Ten. Retrieved 2022 from https://owasp.org/www-project-top-ten/.

[67] Miles Tracy, Wayne Jansen, Karen Scarfone, and Jason Butterield. 2007. Guidelines on Electronic Mail Security. Retrieved 2022 from

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-45ver2.pdf.

[68] Mario Linares Vásquez, Gabriele Bavota, and Camilo Escobar-Velasquez. 2017. An empirical study on Android-related vulnerabilities. In

Proceedings of the 14th International Conference on Mining Software Repositories, MSR, Jesús M. González-Barahona, Abram Hindle, and

Lin Tan (Eds.). IEEE Computer Society, 2ś13.

[69] Waratek. [n. d.]. The Deserialization Problem. Retrieved 2022 from https://www.waratek.com/wp-content/uploads/2019/06/WP-

Deserialization-20190610.pdf.

ACM Trans. Softw. Eng. Methodol.

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.cnet.com/news/privacy/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cnet.com/news/privacy/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cve.org/ResourcesSupport/Glossary#
https://cve.mitre.org/about/terminology.html#cve_id
https://adoptopenjdk.net/releases.html?variant=openjdk8&jvmVariant=openj9
https://openjdk.java.net/jeps/290
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://docs.oracle.com/en/java/javase/11/core/serialization-filtering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66
https://docs.oracle.com/en/java/javase/11/core/serialization-filtering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66
https://docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html
https://docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/Top10/
https://medium.com/paypal-engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24
https://medium.com/paypal-engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24
https://christian-schneider.net/JavaDeserializationSecurityFAQ.html
https://christian-schneider.net/JavaDeserializationSecurityFAQ.html
https://doi.org/10.13140/RG.2.2.34012.49283
https://doi.org/10.13140/RG.2.2.34012.49283
https://hdivsecurity.com/owasp-insecure-deserialization
https://hdivsecurity.com/owasp-insecure-deserialization
https://github.com/snyk/snyk
https://github.com/EsotericSoftware/kryo
https://artsploit.blogspot.com/2016/01/paypal-rce.html
https://artsploit.blogspot.com/2016/01/paypal-rce.html
https://owasp.org/www-project-top-ten/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-45ver2.pdf
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities • 31

[70] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities due to dangling pointers. In 22nd Annual Network and

Distributed System Security Symposium, NDSS. The Internet Society.

ACM Trans. Softw. Eng. Methodol.

32
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n
Appendix A Vulnerable applications and their patches

Application CVE Code availability Vulnerability description Applied patch GA DV UC

WebSphere Ap-

plication Server

(WAS) Com-

munity Edition

3.0.0.3

CVE-2013-

1777

http://geronimo.apache.org/

downloads.html

Remote exploits can be prevented

by hiding the naming (1099) and

JMX (9999) ports behind a irewall

or binding the ports to a local net-

work interface.

Add instruction

Thread.currentThread().set-

ContextClassLoader(get-

Class().getClassLoader());

in class JMXConnector and

other instructions in the

class JMXSecureConnector

(patch in http://svn.apache.org/

viewvc?view=revision&sortby=

date&revision=1458113)

X

Jboss RichFaces

(Jboss-RF) 3.x <=

3.3.3 and 4.x <=

4.3.2

CVE-2013-

2165

https://richfaces.jboss.org/

download/archive.html

A law in the way JBoss

RichFaces handled deserial-

ization allowing a remote attacker

to trigger the execution of the

deserialization methods in any

serializable class deployed on the

server.

Create a whitelist of classes that

are available to participate in the

RichFaces resource deserialisation

process https://www.bleathem.ca/

blog/richfaces-security-advisory-

cve-2013-2165/ and https:

//codewhitesec.blogspot.com/

2018/05/poor-richfaces.html

X

Android < 5.0.0 CVE-2014-

7911

https://android.googlesour-

ce.com/?format=HTML

luni/src/main/java/java/io/-

ObjectInputStream.java in the

java.io.ObjectInputStream

implementation does not verify

that deserialization will result in an

object that met the requirements

for serialization, which allows

attackers to execute arbitrary code

via a crafted finalize method for

a serialized object in an ArrayMap

Parcel within an intent sent to

system_service, as demonstrated

by the finalize method of

android.os.BinderProxy

Add some checks that the class

being deserialized matches the type

information (enum, serializable,

externalizable) held in the

stream. Delayed static initialization

of classes until the type of the

class has been validated against the

stream content in some cases. (see

https://android.googlesource.com/platform/-

libcore/+/738c833d38d41f8f76eb7e77ab39a-

dd82b1ae1e2%5E%21/#F0 and

https://android.googlesource.com/platform/-

libcore/+/738c833d38d41f8f76eb7e77ab39a-

dd82b1ae1e2)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

http://geronimo.apache.org/downloads.html
http://geronimo.apache.org/downloads.html
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
https://richfaces.jboss.org/download/archive.html
https://richfaces.jboss.org/download/archive.html
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

33

Atlassian Bamboo

before 5.9.9 and

5.10.x before

5.10.0

CVE-2014-

9757

https://www.atlassian.com/

software/bamboo/download-

archives

The Ignite Realtime Smack XMPP

API, as used in Atlassian Bamboo

before 5.9.9 and 5.10.x before 5.10.0,

allows remote conigured XMPP

servers to execute arbitrary Java

code via serialized data in an XMPP

message

The origin of the attack is the

Smack library used in Bamboo.

The patched version Bamboo 5.10.0

uses an updated version of the

smack library in which a lot of

modiications are brought: remov-

ing some classes (like Connection,

Chat, ConnectionManager), mod-

ify the class XMPPConnection into

an Interface , etc. (Patch obtained

doing the dif between the version

5.9.7 and 5.10.0 of Bamboo, and

more preciely the smack library).

X

Atlassian Bamboo

2.2 before 5.8.5

and 5.9.x before

5.9.7

CVE-2015-

6576

https://www.atlassian.com/

software/bamboo/download-

archives

Bamboo 2.2 before 5.8.5 and 5.9.x

before 5.9.7 allows remote attack-

ers with access to the Bamboo web

interface to execute arbitrary Java

code via an unspeciied resource.

Removes the deserializeObject

method from the

DeliverMessageServlet vul-

nerable class.

X

Atlassian Bamboo

before 5.9.9 and

5.10.x before

5.10.0

CVE-2015-

8360

https://www.atlassian.com/

software/bamboo/download-

archives

An unspeciied resource in Atlas-

sian Bamboo before 5.9.9 and 5.10.x

before 5.10.0 allows remote attack-

ers to execute arbitrary Java code

via serialized data to the JMS port.

Use of black and white lists for

serialization (patch obtained using

the dif between the versions

5.10.0 and 5.9.7: there are two iles

serialization-blacklist.list

and

serialization-whitelist.list

in the path "atlassian-bamboo-

5.10.0/atlassian-bamboo/WEB-

INF/classes")

X

Jenkins < 1.638

and LTS < 1.625.2

CVE-2015-

8103

https://github.com/jenkinsci/

jenkins https://wiki.jenkins.io/

display/JENKINS/Jenkins+CLI

The Jenkins CLI subsystem in Jenk-

ins before 1.638 and LTS before

1.625.2 allows remote attackers to

execute arbitrary code via a crafted

serialized Java object

Unknown patch. Mitigation:

remove/disable the CLI support

inside of the running Jenkins

server (https://www.jenkins.io/

blog/2015/11/06/mitigating-

unauthenticated-remote-code-

execution-0-day-in-jenkins-cli/)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://github.com/jenkinsci/jenkins
https://github.com/jenkinsci/jenkins
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/

34
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

VMware vRealize

Orchestrator

6.x, vCenter

Orchestrator 5.x,

vRealize Opera-

tions 6.x, vCenter

Operations 5.x,

and vCenter

Application Dis-

covery Manager

(vADM) 7.x

CVE-2015-

6934

https://docs.vmware.com/en/

vRealize-Orchestrator/7.6/rn/

VMware-vRealize-Orchestrator-76-

Release-Notes.html

Remote attackers can execute arbi-

trary commands via a crafted se-

rialized Java object, related to the

Apache Commons Collections li-

brary

Replace the Commons collections

library by the commons-collections-

3.2.2.jar in the dependencies of the

mentioned products (see https://

kb.vmware.com/s/article/2141244

and https://kb.vmware.com/s/

article/2141244)

X

Adobe Experience

Manager (Adobe-

EM) 5.6.1, 6.0.0,

and 6.1.0

CVE-2016-

0958

No Adobe Experience Manager 5.6.1,

6.0.0, and 6.1.0 might allow remote

attackers to have an unspeciied im-

pact via a crafted serialized Java ob-

ject.

Unknown patch X

Hazelcast < 3.11 CVE-2016-

10750

https://github.com/hazelcast/

hazelcast

A law was found in the cluster join

procedure in Hazelcast. This law

allows an attacker to gain remote

code execution via Java deserializa-

tion.

Add class names blacklisting

and whitelisting by deining

the following system properties:

hazelcast.serialization.filter.enabled,

hazelcast.serialization.filter.black-

list.classes,

hazelcast.serialization.filter.black-

list.packages,

hazelcast.serialization.filter.white-

list.classes and

hazelcast.serialization.filter.white-

list.packages (see

https://docs.hazelcast.org/

docs/3.10.5/manual/html-

single/index.html#untrusted-

deserialization-protection)

X

Apache OFBiz

12.04.x < 12.04.06

and 13.07.x <

13.07.03

CVE-2016-

2170

http://archive.apache.org/dist/

ofbiz/

Remote attackers can execute arbi-

trary commands via a crafted se-

rialized Java object, related to the

Apache Commons Collections li-

brary

Update commons collections to 4.1

and Comment out RMI related code

(see https://issues.apache.org/

jira/browse/OFBIZ-6942,

https://markmail.org/message/

nh6csf4fun5n6e23 and

https://issues.apache.org/jira/

browse/OFBIZ-6726)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://github.com/hazelcast/hazelcast
https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
http://archive.apache.org/dist/ofbiz/
http://archive.apache.org/dist/ofbiz/
https://issues.apache.org/jira/browse/OFBIZ-6942
https://issues.apache.org/jira/browse/OFBIZ-6942
https://markmail.org/message/nh6csf4fun5n6e23
https://markmail.org/message/nh6csf4fun5n6e23
https://issues.apache.org/jira/browse/OFBIZ-6726
https://issues.apache.org/jira/browse/OFBIZ-6726

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

35

SolarWinds Virtu-

alization Manager

<= 6.3.1

CVE-2016-

3642

No The vulnerability exists due to the

deserialization of untrusted data in

the RMI service running on port

1099/TCP. A remote attacker can ex-

ecute operating system commands

as an unprivileged user8

Inaccessible patch (it is men-

tioned that there is a hotix in

https://packetstormsecurity.com/

iles/137486/Solarwinds-

Virtualization-Manager-6.3.1-

Java-Deserialization.html and

https://seclists.org/fulldisclosure/

2016/Jun/29 but no more details are

given)

X

HP Network

Node Manager

i (HP-NNMi)

Software 10.00,

10.01 (patch1),

10.01 (patch 2),

10.10

CVE-2016-

4398

No A vulnerability in Apache Com-

mons Collections for handling

Java object deserialization was ad-

dressed by HPE Network Node

Manager i (NNMi) Software. The

vulnerability could be remotely ex-

ploited to allow remote code execu-

tion.

Unknown patch X

ApacheWicket 6.x

< 6.25.0 and 1.5.x

< 1.5.17

CVE-2016-

6793

https://archive.apache.org/dist/

wicket/

The DiskFileItem class in Apache

Wicket allows remote attackers

to cause a denial of service (ini-

nite loop) and write to, move, and

delete iles with the permissions of

DiskFileItem, and if running on a

Java VM before 1.3.1, execute arbi-

trary code via a crafted serialized

Java object.

Change the class DiskFileItem:

add a check instruction

Files.checkFileName(tempDir.getPath())

in the method getTempFile()

of the patched version (patch

obtained by doing the dif betwwen

the 6.24.0 and 6.25.0 versions)

X

Red Hat JBoss

Enterprise Appli-

cation Platform

(Jboss-EAP) 4 and

5

CVE-2016-

7065

https://developers.redhat.com/

products/eap/download

JBoss EAP 4 and 5 JMX servlet is

exposed on port 8080/TCP with au-

thentication by default. The com-

munication employs serialized Java

objects, encapsulated in HTTP re-

quests and responses. The server

deserializes these objects. This be-

havior can be exploited to cause a

denial of service and potentially ex-

ecute arbitrary code

Red Hat does not ix the issue

because JBoss EAP 4 is out of main-

tenance support and JBoss EAP 5 is

close to the end of its maintenance

period (see https://seclists.org/

fulldisclosure/2016/Nov/143 and

https://seclists.org/fulldisclosure/

2016/Nov/143)

X

8information about a cyber attack in Solarwinds are available in https://www.secureworld.io/industry-news/solarwinds-cyber-attack-impact-update

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://seclists.org/fulldisclosure/2016/Jun/29
https://seclists.org/fulldisclosure/2016/Jun/29
https://archive.apache.org/dist/wicket/
https://archive.apache.org/dist/wicket/
https://developers.redhat.com/products/eap/download
https://developers.redhat.com/products/eap/download
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://www.secureworld.io/industry-news/solarwinds-cyber-attack-impact-update

36
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

Soid IAM < 1.7.5 CVE-2017-

9363

https://github.com/SoidIAM/

console

Untrusted Java serialization in Sof-

id IAM console before 1.7.5 allow-

ing remote attackers to achieve ar-

bitrary remote code execution via a

crafted authentication request

Disable two features in the class

servlet.SignatureReceiver

via throwing two exceptions new

ServletException("Disabled

feature"); and new

UiException("Disabled

feature"); (see

https://github.com/SoidIAM/console/com-

mit/8e9e7c9e537acfc2a245fbbeb41a143b5b-

4f7230#dif-

544c1cb1ac64f2f62b6b326bd0b-

1b6addc17f19416878d319d3643e302a043b7)

X

ZTE ZXIPTV-EPG

< V5.09.02.02T4

CVE-2017-

10934

No This product uses the Java RMI

service in which the servers use

the Apache Commons Collections

(ACC) library that may result

in Java deserialization vulnerabil-

ities. An unauthenticated remote

attacker can exploit the vulnerabil-

ities by sending a crafted RMI re-

quest to execute arbitrary code on

the target host

Unknown patch. Workaround:

Ensure that all exposed ports

used by the server, including the

RMI registry port, are irewalled

from any untrusted IP address.

(see http://support.zte.com.cn/

support/news/

LoopholeInfoDetail.aspx?newsId=

1008682)

X

Akka versions <=

2.4.16 and 2.5-M1

CVE-2017-

1000034

https://mvnrepository.com/artifact/

com.typesafe.akka/akka-actor2 .12

An attacker that can connect to an

ActorSystem exposed via Akka Re-

mote over TCP can gain remote

code execution capabilities in the

context of the JVM process that

runs the ActorSystem under some

conditions (JavaSerializer is en-

abled (default in Akka 2.4.x), etc.)

The system is conigured with

disabled Java serializer: using

DisabledJavaSerializer instead

of JavaSerializer (see the

ile reference.conf for expla-

nation). Additional protection

can be achieved when running

in an untrusted network by

enabling TLS with mutual au-

thentication. https://doc.akka.io/

docs/akka/2.4/security/2017-

02-10-java-serialization.html,

https://akka.io/blog/news/2017/

02/10/akka-2.4.17-released and

https://doc.akka.io/docs/akka/

2.4/scala/remoting.html#remote-

tls-scala

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
https://mvnrepository.com/artifact/com.typesafe.akka/akka-actor_2.12
https://mvnrepository.com/artifact/com.typesafe.akka/akka-actor_2.12
https://doc.akka.io/docs/akka/2.4/security/2017-02-10-java-serialization.html
https://doc.akka.io/docs/akka/2.4/security/2017-02-10-java-serialization.html
https://doc.akka.io/docs/akka/2.4/security/2017-02-10-java-serialization.html
https://akka.io/blog/news/2017/02/10/akka-2.4.17-released
https://akka.io/blog/news/2017/02/10/akka-2.4.17-released
https://doc.akka.io/docs/akka/2.4/scala/remoting.html#remote-tls-scala
https://doc.akka.io/docs/akka/2.4/scala/remoting.html#remote-tls-scala
https://doc.akka.io/docs/akka/2.4/scala/remoting.html#remote-tls-scala

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

37

Cisco Unity Ex-

press (Cisco-UE)

< release 9.0.6

CVE-2018-

15381

No A remote user can create specially

crafted content that, when loaded

by the target user, will trigger a Java

deserialization law and execute ar-

bitrary code on the target user’s sys-

tem. The code will run with root

privileges.

Workaround: this vulnerability

can be exploited over TCP port

1099. The CUE does not need

this port to be open externally

and may be blocked to protect

against remote exploitation of this

vulnerability. An administrator

can conigure an access control

list that blocks all traic with

a destination port of TCP/1099

from reaching the CUE. (see https:

//tools.cisco.com/security/center/

content/CiscoSecurityAdvisory/

cisco-sa-20181107-cue)

X

Apache Storm ver-

sions 1.1.0 to 1.2.2

CVE-2018-

11779

https://archive.apache.org/dist/

storm/

When the user is using the storm-

kafka-client or storm-kafka mod-

ules, it is possible to cause the Storm

UI daemon to deserialize user pro-

vided bytes into a Java class.

Update implementation of serializ-

able classes in v1.2.3: remove the

indirect call to readObject from

getSetComponentObject method

(using the dif between the vulner-

able 1.2.2 version and the non vul-

nerable 1.2.3 version)

X

Jenkins Pipeline

supporting APIs

Plugin <= 2.17

CVE-2018-

1000058

https://updates.jenkins.io/

download/plugins/worklow-

support/

Methods related to Java deserial-

ization like readResolve imple-

mented in Pipeline scripts were

not subject to sandbox protection,

and could therefore execute ar-

bitrary code. This could be ex-

ploited e.g. by regular Jenkins users

with the permission to conigure

Pipelines in Jenkins, or by trusted

committers to repositories contain-

ing Jenkinsfiles.

Adding sandboxing: reinforcement

of the class RiverWriter using

a try/catch bloc in which the

serialization is carried out inside a

GroovySandbox.runInSandbox()

method. The class RiverReader

is also strengthen by perform-

ing the deserialization inside a

sandbox presented by an inner

class SandboxedUnmarshaller.

The patch s found using the dif

between the 2.17 (vulnerable) and

2.18 (patched) versions.

X

Log4j CVE-2019-

17571

https://github.com/apache/log4j A vulnerable SocketServer class

may lead to the deserialization of

untrusted data allowing an attacker

to remotely execute arbitrary code

when combined with a deserializa-

tion gadget

Add class iltering to

AbstractSocketServer: this

allows a whitelist of class names

to be speciied to conigure which

classes are allowed to be deserial-

ized in both TcpSocketServer and

UdpSocketServer (link: https://git-

wip-us.apache.org/repos/asf?p=

logging-log4j2.git;h=5dcc192)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue
https://archive.apache.org/dist/storm/
https://archive.apache.org/dist/storm/
https://updates.jenkins.io/download/plugins/workflow-support/
https://updates.jenkins.io/download/plugins/workflow-support/
https://updates.jenkins.io/download/plugins/workflow-support/
https://github.com/apache/log4j
https://git-wip-us.apache.org/repos/asf?p=logging-log4j2.git;h=5dcc192
https://git-wip-us.apache.org/repos/asf?p=logging-log4j2.git;h=5dcc192
https://git-wip-us.apache.org/repos/asf?p=logging-log4j2.git;h=5dcc192

38
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

JetBrains TeamC-

ity before 2019.1.4

CVE-2019-

18364

https://www.jetbrains.com/fr-

fr/teamcity/download/other.html

Insecure Java Deserialization could

potentially allow remote code exe-

cution

Unknown patch (researching patch

exceeds time limit)

X

Apache Dubbo

2.7.0 before 2.7.5,

2.6.0 before 2.6.8,

and 2.5.x versions

CVE-2019-

17564

https://github.com/apache/dubbo An attacker may submit a POST re-

quest with a Java object in it to com-

pletely compromise a Provider in-

stance of Apache Dubbo, if this in-

stance enables HTTP.

The patched version does not sup-

port outdated http-invoker

rpc protocol anymore

(see https://github.com/

apache/dubbo/commit/

9b18fe228971eaeca9b87d7b7e95df1c2a8f91b

and https://github.com/apache/

dubbo/releases/tag/dubbo-2.7.5)

X

Apache Ofbiz

from 16.11.01 to

16.11.05

CVE-2019-

0189

https://archive.apache.org/dist/

ofbiz/

This issue is exposed by the

"webtools/control/httpSer-

vice" URL, and uses Java de-

serialization to perform code

execution. In the HttpEngine,

the value of the request param-

eter serviceContext is passed

to the deserialize method of

XmlSerializer.

Improve ObjectInputStream

class and redeine it as a new

class SafeObjectInputStream

in which there is an added

whitelist. Also add objects from

org.apache.commons.fileupload

(namely DiskFileItem and

FileItemHeadersImpl) as

non-serializable in this class

SafeObjectInputStream (see the

dif between the two versions

16.11.05 and 16.11.06. See also

https://gitbox.apache.org/repos/asf?p=of-

biz-

framework.git;a=blob;f=framework/ba-

se/src/main/java/org/apache/ofbiz/base/-

util/SafeObjectInputStream.java;h=d50cf-

bf11fc4d3b5855c53cb38a6cde7e101dc83;h-

b=3f60efb)

X

Apache Tapestry CVE-2019-

0195

https://downloads.apache.org/

tapestry/

Manipulating classpath asset ile

URLs, an attacker could guess

the path to a known ile in the

classpath and have it downloaded.

It is possible to download arbitrary

class iles from the classpath by

providing a crafted asset ile URL.

An attacker is able to download

the ile AppModule.class by re-

questing the URL ’http://localhost:

8080/assets/something/services/

AppModule.class’ which contains

a HMAC secret key.

The ix for that bug was a blacklist

ilter that checks if the URL ends

with ’.class’, ’.properties’ or

’.xml’. However, it is proven that

this blacklist solution can simply be

bypassed by appending a ’/’ at the

end of the URL: ’http://localhost:

8080/assets/something/services/

AppModule.class/’ (source:

https://lists.apache.org/thread.html/r237f-

7f286bda31682c254550c1ebf92b0ec61329b-

32fbeb2d1c8751@%3Cusers.tapestry.apache.-

org%3E)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://github.com/apache/dubbo
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://archive.apache.org/dist/ofbiz/
https://archive.apache.org/dist/ofbiz/
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://downloads.apache.org/tapestry/
https://downloads.apache.org/tapestry/
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class/'
'http://localhost:8080/assets/something/services/AppModule.class/'
'http://localhost:8080/assets/something/services/AppModule.class/'
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

39

Apache Tomcat CVE-2020-

9484

https://github.com/apache/tomcat Deserialization law in session per-

sistence storage FileStore leading to

remote code execution

Update the class FileStore

with some checks (patch

in https://github.com/

apache/tomcat/commit/

bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b)

X

OpenNMS Hori-

zon < 26.0.1 and

Meridian before

2018.1.19 and 2019

before 2019.1.7

CVE-2020-

12760

https://github.com/OpenNMS/

opennms/releases/tag/opennms-

26.0.1-1

The ActiveMQ channel conigura-

tion allowed for arbitrary deserial-

ization of Java objects leading to

remote code execution for any au-

thenticated channel user regardless

of its assigned permissions

Remove a parameter after

stopping the use of serial-

ized object messages in a ile

applicationContext-daemon.xml:

<property

name="trustAllPackages"

value="true"/> (see

https://github.com/OpenNMS/

opennms/pull/2983 and

https://github.com/OpenNMS/

opennms/pull/2983/iles/

e21fc14ce355533493da0db815bd81a66e291382)

https://github.com/davidhalter/

parso/issues/75#)

X

IBM Maximo As-

set Management

7.6.0 and 7.6.1

CVE-2020-

4521

https://github.com/nishi2go/

maximo-docker

IBM Maximo Asset Management

could allow a remote authenticated

attacker to execute arbitrary code

on the system, caused by an un-

safe deserialization in Java. By send-

ing specially-crafted request, an at-

tacker could exploit this vulnerabil-

ity to execute arbitrary code on the

system

Inaccessible patch (when con-

necting to https://www.ibm.com/

support/pages/node/6332587 an

error message ("No applicable

IBM support agreement found for

one or more of the products you

selected") appears)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/apache/tomcat
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/davidhalter/parso/issues/75#
https://github.com/davidhalter/parso/issues/75#
https://github.com/nishi2go/maximo-docker
https://github.com/nishi2go/maximo-docker
https://www.ibm.com/support/pages/node/6332587
https://www.ibm.com/support/pages/node/6332587

40
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

Cisco Security

Manager (Cisco-

SM)

CVE-2020-

27131

No Multiple vulnerabilities in the Java

deserialization function that is

used by Cisco Security Manager

could allow an unauthenticated,

remote attacker to execute arbi-

trary commands on an afected de-

vice. These vulnerabilities are due

to insecure deserialization of user-

supplied content by the afected

software. An attacker could ex-

ploit these vulnerabilities by send-

ing a malicious serialized Java ob-

ject to a speciic listener on an af-

fected system. A successful exploit

could allow the attacker to exe-

cute arbitrary commands on the

device with the privileges of NT

AUTHORITY\SYSTEM on theWin-

dows target host. Cisco has not re-

leased software updates that ad-

dress these vulnerabilities

Unknown patch X

Taoensso Nippy <

2.14.2

CVE-2020-

24164

https://github.com/ptaoussanis/

nippy

A deserialization law is present in

Taoensso Nippy before 2.14.2. In

some circumstances, it is possible

for an attacker to create a mali-

cious payload that, when deserial-

ized, will allow arbitrary code to

be executed. This occurs because

there is automatic use of the Java

Serializable interface: Nippy in-

troduced a feature to allow the auto-

matic use of Java’s Serializable

interface as a fallback for types that

Nippy didn’t support via its own

Freezable protocol.

Use a predicate (fn

allow-class? [class-name])

fn that can be assigned to

’*freeze-serializable-allowlist*’

and/or

’*thaw-serializable-allowlist*’.

This predicate is used to record in-

formation about which classes have

been using Nippy’s Serializable

support in the user’s environment

(see http://ptaoussanis.github.io/

nippy/taoensso.nippy.html#var-

allow-and-record-any-

serializable-class-unsafe)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

41

Apache Tapestry 4 CVE-2020-

17531

https://github.com/apache/

tapestry4

Apache Tapestry 4 will attempt to

deserialize the "sp" parameter even

before invoking the page’s validate

method, leading to deserialization

without authentication

Apache Tapestry 4 reached end

of life in 2008 and no update

to address this issue is released

(the upgrade to the latest Apache

Tapestry 5 version is necessary) (see

https://lists.apache.org/thread.html/r700a-

6aa234dbf0555d4187bdc8274d7e4c0afbf35b9-

a3457f09ee76%40%3Cusers.tapestry.apache.-

org%3E) and https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-

2020-17531)

X

Gradle Enterprise

Maven Extension

CVE-2020-

15777

https://mvnrepository.com/artifact/

com.gradle/gradle-enterprise-

maven-extension

The extension uses a socket connec-

tion to send serialized Java objects.

Deserialization is not restricted to

an allow-list, thus allowing an at-

tacker to achieve code execution via

a malicious deserialization gadget

chain. The socket is not bound ex-

clusively to localhost. The port this

socket is assigned to is randomly

selected and is not intentionally ex-

posed to the public (either by design

or documentation). This could po-

tentially be used to achieve remote

code execution and local privilege

escalation.

Add an allow-list in a class

ValidatingObjectInputStream

(patch obtained by doing the dif

between the vulnerable 1.5.3 and

the non-vulnerable 1.6 versions)

X

Apache Camel

Netty (Camel-

Netty)

CVE-2020-

11973

https://github.com/apache/camel/

tree/main/components/camel-netty

Apache Camel RabbitMQ enables

java deserialization, by default,

without any means of disabling

which can lead to arbitrary code

being executed. The highest threat

from this vulnerability is to data

conidentiality and integrity as well

as system availability

Disable object serialization: only

Strings are allowed to be serial-

ized by default, anything else will

only be serialized with a custom en-

coder/decoder (https://github.com/

apache/camel/pull/3537)

X

Apache Camel

RabbitMQ (Camel-

RabbitMQ) 2.22.x,

2.23.x, 2.24.x,

2.25.0, 3.0.0 up to

3.1.0

CVE-2020-

11972

https://github.com/apache/camel Apache Camel RabbitMQ enables

java deserialization, by default,

without any means of disabling

which can lead to arbitrary code

being executed. The highest threat

from this vulnerability is to data

conidentiality and integrity as well

as system availability

Disable RabbitMQ Java seri-

alization by default. It can

be re-enabled using a parameter

"allowMessageBodySerialization"

in a class RabbitMQEndpoint

(see https://github.com/

zregvart/camel/commit/

c15ed20d92b5c920e9e55fe584f8e412b23f14f6)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/apache/tapestry4
https://github.com/apache/tapestry4
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/pull/3537
https://github.com/apache/camel/pull/3537
https://github.com/apache/camel
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6

42
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

Emissary 6.4.0 CVE-2021-

32634

https://github.com/

NationalSecurityAgency/emissary

Unsafe Deserialization of post-

authenticated requests to the

WorkSpaceClientEnqueue.action

REST endpoint.

Remove unsafe serialization

from PayloadUtil. Remove the

class WorkBundle from the list

of serializable classes, remove

some classes like MoveToAction

and MoveToAdapter. Replace

the ObjectInputStream

by DataInputStream

(https://github.com/

NationalSecurityAgency/

emissary/security/advisories/

GHSA-m5qf-gfmp-7638

X

Apache Dubbo

prior to 2.6.9 and

2.7.9

CVE-2021-

30179

https://github.com/apache/dubbo Apache Dubbo by default supports

generic calls to arbitrary methods

exposed by provider interfaces.

These invocations are handled by

the GenericFilterwhich will ind

the service and method speciied in

the irst arguments of the invoca-

tion and use the Java Relection API

to make the inal call. The signature

for the invoke or invokeAsync

methods is Ljava/lang/String;-

[Ljava/lang/String;[Ljava/lang-

/Object; where the irst argument

is the name of the method to

invoke, the second one is an array

with the parameter types for the

method being invoked and the

third one is an array with the

actual call arguments

Native Java deserialization

will not be activated defaultly.

If user still wants use it, set

dubbo.security.serialize.generic.nati-

ve-java-enable as true in

environment. An embedded se-

rialization block list is introduced in

dubbo-common/src/main/resources/secu-

rity/serialize.blockedlist.

(see https://github.com/apache/

dubbo/releases/tag/dubbo-2.7.10)

X

Apache

OFBiz

CVE-2021-

29200

https://github.com/apache/ofbiz-

framework

An unauthenticated user can per-

form an RCE attack

Update UtilObject class. Re-

strict unauthorized deserialisa-

tions to java.rmi instead of

java.rmi.server. (patch in

https://issues.apache.org/jira/

browse/OFBIZ-12216 and https:

//gitbox.apache.org/repos/asf?p=

ofbiz-framework.git;h=1bc8a20)

X

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/apache/dubbo
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12216
https://issues.apache.org/jira/browse/OFBIZ-12216
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;h=1bc8a20
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;h=1bc8a20
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;h=1bc8a20

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

43
CVE-2021-

26295

https://github.com/apache/ofbiz-

framework

An unauthenticated attacker can

use this vulnerability to success-

fully take over Apache OFBiz

The code ix is to "black-

list" RMI server to prevent

it from being exploited. (see

https://issues.apache.org/

jira/browse/OFBIZ-12167 and

https://lists.apache.org/thread.html/r0d97-

a3b7a14777b9e9e085b483629d2774343c4723-

236d1c73f43f0@%3Cdev.ofbiz.apache.org%3E

X

McAfee

Data-

base

Se-

cu-

rity

(DB-

Sec)

<

4.8.2

CVE-2021-

23895

No A remote authenticated attacker

can create a reverse shell with ad-

ministrator privileges on the DB-

Sec server via carefully constructed

Java serialized object sent to the DB-

Sec server

Unknown patch X

CVE-2021-

23894

No A remote unauthenticated attacker

can create a reverse shell with ad-

ministrator privileges on the DB-

Sec server via carefully constructed

Java serialized object sent to the DB-

Sec server.

Unknown patch X

Table 5. 29 studied CVEs and applied patches. The first column designates the name of the studied vulnerable application; the column "CVE" mentions
the CVE ID associated to the vulnerability; the third column "Code availability" indicates if the source code or the binary files are available: if yes, we
give the URL for this code, otherwise we put "No"; the description of each vulnerability is presented in the fourth column; patching or workaround
actions are described in the column "Applied patch"; the last three columns desingate the category of the vulnerability at hand: GA for GAdgets, DV for
Deserialization Vulnerabilities and UC for Untrusted Code. The rows having UC as category are colored in gray because they are not in our scope of study
in this article. Note that the complete table, with 104 CVEs, is available at https://github.com/software-engineering-and-security/java-deserialization-rce

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12167
https://issues.apache.org/jira/browse/OFBIZ-12167
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E
https://github.com/software-engineering-and-security/java-deserialization-rce

44 • Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Appendix B Pre-processing for use of filters

ACM Trans. Softw. Eng. Methodol.

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

45

Attack name (De)Serialized types Is the irst object to deserialize

in external library type (Y/N)?

BeanShell1 PriorityQueue<E> (containing an int and an
XThis$Handler), E is an Integer, This, BshMethod

N

Clojure HashMap<K,V> (containing int and loat), K is an Ab-
stractTableModel$f19274a

N

CommonsBeanUtils1 PriorityQueue<E> (containing an int and a
BeanComparator<T> (in which T is a Templates-
Impl), E is a TemplatesImpl

N

CommonsCollections1 AnnotationInvocationHandler (containing Class<? ex-
tends Annotation>, Map<String, Object> which is
a LazyMap containing ChainedTransformer and a
HashMap)), InvokerTransformer

N

CommonsCollections2 PriorityQueue<E> (containing int, TransformingCom-
parator), E is a TemplatesImpl, InvokerTransformer

N

CommonsCollections3 AnnotationInvocationHandler, InstantiateTransformer,
TemplatesImpl

N

CommonsCollections4 PriorityQueue<E> (containing int, TransformingCom-
parator), E is an Integer, ChainedTransformer, Instanti-
ateTransformer and TemplatesImpl

N

CommonsCollections5 BadAttributeValueExpException (containing Ob-
ject (which is a String)), TiedMapEntry, LazyMap,
ChainedTransformer, InvokerTransformer

N

CommonsCollections6 HashSet<E> (containing anObject), E is a TiedMapEntry,
LazyMap, ChainedTransformer, InvokerTransformer

CommonsCollections7 HashTable<K,V> (containing int and loat), K is a
LazyMap and V is an Integer, ChainedTransformer, In-
vokerTransformer

N

Groovy1 AnnotationInvocationHandler (containing a Con-
vertedClosure and Class<T>), ConversionHandler,
Closure<V>

N

ROME HashMap<K,V> (containing int, loat, ObjectBean),
EqualsBean, ToStringBean, TemplatesImpl

N

MozillaRhino1 BadAttributeValueExpException (containing an Object
which is a String), ScriptableObject, TemplatesImpl

N

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

46
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

MozillaRhino2 NativeJavaObject (containing
org.mozilla.javascript.tools.shell.Environment, Script-
able interface), ScriptableObject, NativeJavaObject,
MemberBox, TemplatesImpl

Y (class in js-1.7-R2)

Spring1 SerializableTypeWrapper$MethodInvokeTypeProvider
(containing TypeProvider (which is a TemplatesImpl),
String and int)

Y (in spring-core library)

Spring2 SerializableTypeWrapper$MethodInvokeTypeProvider
(containing String, int and TypeProvider (which is a
TemplatesImpl)), JdkDynamicAopProxy

Y (in spring-core library)

Click1 PriorityQueue<E> (containing int, Col-
umn$ColumnComparator), E is a TemplatesImpl,
Column

N

Vaadin1 BadAttributeValueExpException (containing an Object
which is a String), TemplatesImpl

N

JDK7U21 LinkedHashSet<E> (HashSet<E>) (containing Object),
E is a TemplatesImpl, HashMap<K,V>, AnnotationInvo-
cationHandler

N

Table 6. Types extracted from known atacks

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

47

Application name Deserialized types

Apache-wicket (6.24.0) String, ObjectInputStream, ReplaceObjectInputStream (containing HashMap<String,
Component> (), ClassLoader (containing boolean, Hashtable, Certiicate[], Vector,
HashMap, Set, URLClassPath)), List<Serializable>, Map<String, SessionEntry> (for Sessio-
nEntry, there are String, boolean, PageWindowManager (containing PageWindowInternal
(with int, long, List<PageWindowInternal>, IntHashMap<Integer> (containing int and
loat)))), InputStream (containing int, byte[]), V, E, Url (containing List<String>, long,
Integer, String, List<QueryParameter> (QueryParameter contains String)), Serializable

Apache storm 1.2.2 ObjectInputStream, ClassLoaderObjectInputStream, KerberosTicket (containing int, byte[],
boolean[], Date, KeyImpl (containing transient variables => not considered), KerberosPrin-
cipal (containing int and char), InetAddress[] (containing int, List<NameService>)), Kryo
(but this class does not implement java.io.Serializable)

Apache-ofbiz-16.11.05 ObjectInputStream, String, ByteArrayInputStream (containing byte and int), Thread

Atlassian-bamboo-5.9.7 ObjectInputStream, E, Hashing<K>, Equiv<K>, K, V, ClassTag (which is an interface) and
A

Apache-xmlrpc-3.1.3 Throwable (containing String, StackTraceElement[], StackTraceElement, List<Throwable>,
and Throwable), ObjectInputStream

Gradle-enterprise-maven-
extension-1.5.3

AuthScheme (which is an interface), TestListenerEvent (containing long and TestDescriptor
(with Long and String))

Apache Chainsaw LoggingEvent (containing long, String, Hashtable(with int, loat, sun.misc.Unsafe), boolean,
ThrowableInformation (containing String[]), LocationInfo (containing String, Method,
StringWriter (containing StringBufer), PrintWriter (containing Writer (containing char[],
int, Object), boolean, Formatter (containing Appendable (chich is an interface), Locale
(containing Cache, char, int and Locale), IOException, char, double, int), PrintStream
(containing boolean, Formatter, BuferedWriter (containing Writer (containing char[], int,
Object), char, int, String), OutputStreamWriter (containing StreamEncoder)), String),
boolean,Map<K,V>, LogPanelPreferenceModel (containing String, Collection, ArrayList,
boolean), ObjectInputStream, Point (containing int), Dimension (containing int), Vector
(Object[], int)

Jackson-databind-2.9.10.6 ObjectIdReader (containing JavaType (which an abstract class contaning Class<?>, Object,
int and boolean), PropertyName (containing long, String, PropertyName, SerializableString
(which is an interface)), ObjectIdGenerator<?>, ObjectIdResolver (which is an interface),
JsonDeserializer<Object> (which is an abstract class), SettableBeanProperty (containing
JsonDeserializer<Object>, PropertyName, JavaType, JsonDeserializer<Object>, TypeDese-
rializer (which is an abstract class), NullValueProvider (which is an interface))

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

48
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

Opennms-source-26.0.1-1 TrapInformation, T, OnmsCriteria, SerializedBatch, OnmsSeverity (containing
Map<Integer, OnmsSeverity>, int, String)

TeamCity-2019.1.3 ObjectInputStream, Serializable, Principal (which is an interface), String[]
Table 7. Serialized and deserialized types extracted from vulnerable real-world applications

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

49
Appendix C Analysis of commits

Application CVE Open source? (Y/N) Internal/External patch? Automatically/manually gener-

ated patch?

Taoensso Nippy <

2.14.2

CVE-2020-24164 Y https://github.com/ptaoussanis/

nippy

Internal patch Manually generated patch

(see Nippy commit and

http://ptaoussanis.github.io/nippy/

taoensso.nippy.html#var-allow-and-

record-any-serializable-class-unsafe)

Jboss RichFaces

(Jboss-RF) 3.x <=

3.3.3 and 4.x <= 4.3.2

CVE-2013-2165 Y https://richfaces.jboss.org/

download/archive.html

Internal patch https://

www.bleathem.ca/blog/richfaces-

security-advisory-cve-2013-2165/ and

https://codewhitesec.blogspot.com/

2018/05/poor-richfaces.html

Manually generated patch (see Jboss

Richfaces commit)

Android < 5.0.0 CVE-2014-7911 Y https://android.googlesour-

ce.com/?format=HTML

Internal patch (see android libcore

commit)

Manually generated patch (see An-

droid commit)

Atlassian Bamboo be-

fore 5.9.9 and 5.10.x

before 5.10.0

CVE-2014-9757 Y https://www.atlassian.com/

software/bamboo/download-

archives

External (the patched version Bamboo

5.10.0 uses an updated version of the

smack library in which a lot of modii-

cations are brought)

-

Jenkins < 1.638 and

LTS < 1.625.2

CVE-2015-8103 Y https://github.com/jenkinsci/

jenkins https://wiki.jenkins.io/

display/JENKINS/Jenkins+CLI

Unknown patch -

VMware vRealize

Orchestrator 6.x,

vCenter Orchestrator

5.x, vRealize Oper-

ations 6.x, vCenter

Operations 5.x, and

vCenter Application

Discovery Manager

(vADM) 7.x

CVE-2015-6934 Y https://docs.vmware.com/en/

vRealize-Orchestrator/7.6/rn/

VMware-vRealize-Orchestrator-

76-Release-Notes.html

External patch (replace the Com-

mons collections library by the

commons-collections-3.2.2.jar

in the dependencies of the

mentioned products (see https:

//kb.vmware.com/s/article/2141244

and https://kb.vmware.com/s/article/

2141244)

-

Hazelcast < 3.11 CVE-2016-10750 Y https://github.com/hazelcast/

hazelcast

Internal patch (see https:

//docs.hazelcast.org/docs/

3.10.5/manual/html-single/

index.html#untrusted-

deserialization-protection)

UnknownA
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy/commit/61fb009fdde2994140f2da2e495ba8af3a873eb2
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
https://richfaces.jboss.org/download/archive.html
https://richfaces.jboss.org/download/archive.html
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://github.com/richfaces4/core/commit/12ee1166f04806b3ba072d27f9a9b3b3feae2ec9
https://github.com/richfaces4/core/commit/12ee1166f04806b3ba072d27f9a9b3b3feae2ec9
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android-review.googlesource.com/c/platform/libcore/+/101525
https://android-review.googlesource.com/c/platform/libcore/+/101525
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://github.com/jenkinsci/jenkins
https://github.com/jenkinsci/jenkins
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://github.com/hazelcast/hazelcast
https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection

50
•

Im
en

S
ay
ar,A

lexan
d
re

B
artel,E

ric
B
o
d
d
en
,an

d
Y
ves

L
e
T
rao

n

Apache OFBiz

12.04.x < 12.04.06

and 13.07.x <

13.07.03

CVE-2016-2170 Y http://archive.apache.org/dist/

ofbiz/

External patch (Update commons

collections to 4.1 and Comment

out RMI related code (see https:

//issues.apache.org/jira/browse/

OFBIZ-6942, https://markmail.org/

message/nh6csf4fun5n6e23 and

https://issues.apache.org/jira/

browse/OFBIZ-6726)

-

Apache XML-RPC

(aka ws-xmlrpc)

library 3.1.3

CVE-2016-5003 Y https://archive.apache.org/dist/

ws/xmlrpc/sources/

Internal patch Manually generated patch (see XML-

RPC commit)

Apache Wicket 6.x

< 6.25.0 and 1.5.x <

1.5.17

CVE-2016-6793 Y https://archive.apache.org/dist/

wicket/

Internal patch (obtained by doing the

dif betwwen the 6.24.0 and 6.25.0 ver-

sions)

Manually generated patch (see wicket

commit Announcing CVE-2016-6793:

Apache Wicket deserialization vulner-

ability)

Red Hat JBoss En-

terprise Application

Platform (Jboss-EAP)

4 and 5

CVE-2016-7065 Y https://developers.redhat.com/

products/eap/download

Red Hat does not ix the issue be-

cause JBoss EAP 4 is out of mainte-

nance support and JBoss EAP 5 is close

to the end of its maintenance period

(see https://seclists.org/fulldisclosure/

2016/Nov/143 and https://seclists.org/

fulldisclosure/2016/Nov/143)

-

Log4j CVE-2019-17571 Y https://github.com/apache/log4j Internal Manually generated patch (see log4j

commit)

JetBrains TeamCity

before 2019.1.4

CVE-2019-18364 Y https://www.jetbrains.com/fr-fr/

teamcity/download/other.html

Unknown patch -

Apache Dubbo 2.7.0

before 2.7.5, 2.6.0 be-

fore 2.6.8, and 2.5.x

versions

CVE-2019-17564 Y https://github.com/apache/

dubbo

Internal Manually generated patch (see Dubbo

commit and https://github.com/

apache/dubbo/releases/tag/dubbo-

2.7.5)

WebSphere Applica-

tion Server (WAS)

Community Edition

3.0.0.3

CVE-2013-1777 Y http://geronimo.apache.org/

downloads.html

Internal patch http://svn.apache.org/

viewvc?view=revision&sortby=

date&revision=1458113

Manually generated patch (http:

//svn.apache.org/viewvc?view=

revision&sortby=date&revision=

1458113)

Apache Ofbiz from

16.11.01 to 16.11.05

CVE-2019-0189 Y https://archive.apache.org/dist/

ofbiz/

Internal Manually generated patch (see Ofbiz

commit)

Apache Tomcat CVE-2020-9484 Y https://github.com/apache/

tomcat

Internal Manually generated patch (see Tomcat

commit

OpenNMS Horizon

< 26.0.1 and Merid-

ian before 2018.1.19

and 2019 before

2019.1.7

CVE-2020-12760 Y https://github.com/OpenNMS/

opennms/releases/tag/opennms-

26.0.1-1

External patch (see https:

//github.com/OpenNMS/opennms/

pull/2983)

-

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

http://archive.apache.org/dist/ofbiz/
http://archive.apache.org/dist/ofbiz/
https://issues.apache.org/jira/browse/OFBIZ-6942
https://issues.apache.org/jira/browse/OFBIZ-6942
https://issues.apache.org/jira/browse/OFBIZ-6942
https://markmail.org/message/nh6csf4fun5n6e23
https://markmail.org/message/nh6csf4fun5n6e23
https://issues.apache.org/jira/browse/OFBIZ-6726
https://issues.apache.org/jira/browse/OFBIZ-6726
https://archive.apache.org/dist/ws/xmlrpc/sources/
https://archive.apache.org/dist/ws/xmlrpc/sources/
https://src.fedoraproject.org/rpms/xmlrpc/c/ef4efbf91d241070f6f41950f7536049688a3a67?branch=master
https://src.fedoraproject.org/rpms/xmlrpc/c/ef4efbf91d241070f6f41950f7536049688a3a67?branch=master
https://archive.apache.org/dist/wicket/
https://archive.apache.org/dist/wicket/
https://github.com/apache/wicket/commit/134686ef7185d3f96fec953136ab4847cd36b68
https://github.com/apache/wicket/commit/134686ef7185d3f96fec953136ab4847cd36b68
https://github.com/apache/wicket-site/commit/c202a1f616f460643bf82441480946e3f689f884
https://github.com/apache/wicket-site/commit/c202a1f616f460643bf82441480946e3f689f884
https://github.com/apache/wicket-site/commit/c202a1f616f460643bf82441480946e3f689f884
https://developers.redhat.com/products/eap/download
https://developers.redhat.com/products/eap/download
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://github.com/apache/log4j
https://github.com/apache/logging-log4j2/commit/5dcc19215827db29c993d0305ee2b0d8dd05939d
https://github.com/apache/logging-log4j2/commit/5dcc19215827db29c993d0305ee2b0d8dd05939d
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
http://geronimo.apache.org/downloads.html
http://geronimo.apache.org/downloads.html
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
https://archive.apache.org/dist/ofbiz/
https://archive.apache.org/dist/ofbiz/
https://github.com/apache/ofbiz-framework/commit/40c971275a743bcbad6a5384fd2c9cbfd6e80239
https://github.com/apache/ofbiz-framework/commit/40c971275a743bcbad6a5384fd2c9cbfd6e80239
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b#diff-d2801d6b9c9ff6f98a6871accb7e61499ed3899f5234028997387ad65906e5e7
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b#diff-d2801d6b9c9ff6f98a6871accb7e61499ed3899f5234028997387ad65906e5e7
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983

A
n
In
-d
ep
th

S
tu
d
y
o
f
Java

D
eserializatio

n
R
em

o
te-C

o
d
e
E
xecu

tio
n
E
xp
lo
its

an
d
V
u
ln
erab

ilities
•

51

Apache Tapestry 4 CVE-2020-17531 Y https://github.com/apache/

tapestry4

No available patch (Apache Tapestry

4 reached end of life in 2008 and

no update to address this issue

is released (the upgrade to the

latest Apache Tapestry 5 version

is necessary) (see Tapestry 4 mes-

sage) and https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-

17531)

-

Apache Camel Netty

(Camel-Netty)

CVE-2020-11973 Y https://github.com/apache/

camel/tree/main/components/

camel-netty

Internal Manually generated patch (see Camel

Netty commit)

Apache Camel

RabbitMQ (Camel-

RabbitMQ) 2.22.x,

2.23.x, 2.24.x, 2.25.0,

3.0.0 up to 3.1.0

CVE-2020-11972 Y https://github.com/apache/camel Internal patch (see RabbitMQ patch) Manually generated patch (see Camel

commit)

Emissary 6.4.0 CVE-2021-32634 Y https://github.com/

NationalSecurityAgency/emissary

Internal patch (https://github.com/

NationalSecurityAgency/emissary/

security/advisories/GHSA-m5qf-

gfmp-7638)

Manually generated patch (see emis-

sary commit)

Apache Dubbo prior

to 2.6.9 and 2.7.9

CVE-2021-30179 Y https://github.com/apache/

dubbo

Internal patch (see https://github.com/

apache/dubbo/releases/tag/dubbo-

2.7.10)

Manually generated patch (see dubbo

commit and https://github.com/

apache/dubbo/pull/7436)

Soid IAM < 1.7.5 CVE-2017-9363 Y https://github.com/SoidIAM/

console

Internal patch Manually generated patch (see Sof-

idIam commit)

Apache OFBiz
CVE-2021-29200 Y https://github.com/apache/ofbiz-

framework

Internal Manually generated patch (see Ofbiz

commit)

CVE-2021-26295 Y https://github.com/apache/ofbiz-

framework

Internal Manually generated patch (see

https://issues.apache.org/jira/

browse/OFBIZ-12167 and Ofbiz

commit)
Table 8. Analysis of the patches of 25 open source vulnerable applications. In this table, the fourth column "Internal/External patch?" describes if the
patch concerns the code of the application itself (Internal) or the code of the libraries used in the concerned application (External). The fith column
"Automatically/manually generated patch?" indicates if the patch was manually generated or automatically generated by tools like Snyk [23, 63]. For
each existing patch, we give the link to the commit in which is described the patch. For the applications for which we do not find commit for patch, we
use the keyword "Unknown" in the last column. For the applications that do not have a patch, we put the "-" symbol.

A
C
M

T
ran

s.
So
ftw

.
E
n
g
.
M
eth

o
d
o
l.

https://github.com/apache/tapestry4
https://github.com/apache/tapestry4
https://lists.apache.org/thread/mcl3xzw50vjb7rv76nsgq5zorhbg5gyy
https://lists.apache.org/thread/mcl3xzw50vjb7rv76nsgq5zorhbg5gyy
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/pull/3537/commits/58aff9f9cd4aab3163b8eda8281cb795cb3b59c8
https://github.com/apache/camel/pull/3537/commits/58aff9f9cd4aab3163b8eda8281cb795cb3b59c8
https://github.com/apache/camel
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/apache/camel/pull/3633
https://github.com/apache/camel/pull/3633
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/commit/40260b1ec1f76cc92361702cc14fa1e4388e19d7
https://github.com/NationalSecurityAgency/emissary/commit/40260b1ec1f76cc92361702cc14fa1e4388e19d7
https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/pull/7436/commits/390c80a502dc7c2c6f29d544639760bcd2dc54fb
https://github.com/apache/dubbo/pull/7436/commits/390c80a502dc7c2c6f29d544639760bcd2dc54fb
https://github.com/apache/dubbo/pull/7436
https://github.com/apache/dubbo/pull/7436
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework/commit/1bc8a206346f251c9076c2fb9babc896ba6bdf0d
https://github.com/apache/ofbiz-framework/commit/1bc8a206346f251c9076c2fb9babc896ba6bdf0d
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12167
https://issues.apache.org/jira/browse/OFBIZ-12167
https://github.com/apache/ofbiz-plugins/commit/a3438121d8f50545b3a5c397c589fe97ca33202b
https://github.com/apache/ofbiz-plugins/commit/a3438121d8f50545b3a5c397c589fe97ca33202b

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Overview of Typical Deserialization Attacks
	2.3 A Concrete Real-World Example

	3 Experimentation and Evaluation
	3.1 Methodology
	3.2 Experimental Evaluation

	4 Synthesis and Take-away Messages
	4.1 Persistent deserialization of untrusted data
	4.2 Disable Serializable
	4.3 Library use frequency vs. duration of finding patches
	4.4 Definition of deserialization vulnerabilities in CVEs
	4.5 Gadgets inspection

	5 Limitations
	5.1 Scope of our study
	5.2 Source code accessibility
	5.3 CVEs keyword-based search precision

	6 Related work
	6.1 Deserialization vulnerabilities
	6.2 Java Security

	7 Conclusion
	References
	A Vulnerable applications and their patches
	B Pre-processing for use of filters
	C Analysis of commits

