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Abstract

With the increased popularity of embedded devices, low-level programming languages like

C and C++ are currently experiencing a strong renewed interest. However, these languages

are unsafe, meaning that programming errors may lead to undefined behaviour, which, in turn,

may be exploited to compromise a system’s integrity. Many programs written in these lan-

guages contain such programming errors, most infamous of which are buffer overflows.

In order to fight this, there exists a large range of mitigation techniques designed to hinder

exploitation, some of which are integral parts of most major operating systems’ security con-

cept. Even the most sophisticated mitigations, however, can often be bypassed by modern

exploits, which are based on the principle of code reuse: they assemble, or chain, together

existing code fragments (known as gadgets) in a way to achieve malicious behaviour. This

technique is currently the cornerstone of modern exploits.

In this dissertation, we present ROPocop, an approach to mitigate code-reuse attacks.

ROPocop is a configurable, heuristic-based detector that monitors program execution and

raises an alarm if it detects suspicious behaviour. It monitors the frequency of indirect

branches and the length of basic blocks, two characteristics in which code-reuse attacks dif-

fer greatly from normal program behaviour. However, like all mitigations, ROPocop has its

weaknesses and we show that it and other similar approaches can be bypassed in an auto-

matic way by an aware attacker. To this end, we present PSHAPE, a practical, cross-platform

framework to support the construction of code-reuse exploits. It offers two distinguishing

features, namely it creates concise semantic summaries for gadgets, which allow exploit

developers to assess the utility of a gadget much quicker than by going through the indi-

vidual assembly instructions. And secondly, PSHAPE automatically composes gadgets to

construct a chain of gadgets that can invoke any arbitrary function with user-supplied pa-

rameters. Invoking a function is indeed the most common goal of concurrent exploits, as

calling a function such as mprotect greatly simplifies later steps of exploitation.

For a mitigation to be viable, it must detect actual attacks reliably while at the same

time avoiding false positives and ensuring that protected applications remain usable, i.e.,

do not crash or become very slow. In the tested sample set of applications, ROPocop detects

and stops all twelve real attacks with no false positives. When executed with ROPocop,
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real-world programs exhibit only some slight input lag at startup but otherwise remain re-

sponsive. Yet, we further show how PSHAPE can be used to fully automatically create

exploits that bypass various mitigations, for example, ROPocop itself. We also show gad-

gets PSHAPE found easily, that have great relevance in real exploits, and which previously

required intense manual searches to find. Lastly, using PSHAPE, we also discovered a new

and very useful gadget type that greatly simplifies gadget chaining.
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Zusammenfassung

Mit der Verbreitung eingebetteter Systeme erleben hardwarenahe Programmiersprachen

wie C und C++ einen großen Aufschwung. Allerdings sind diese Sprachen unsicher, was

bedeutet, dass Programmierfehler zu sogenanntem undefiniertem Verhalten führen können.

Dies kann ausgenutzt werden, um ein System zu kompromittieren. Viele Programme, die in

C/C++ geschrieben sind, beinhalten solche Programmierfehler, zu welchen beispielsweise

Pufferüberläufe zählen. Um diese Gefahr zu bekämpfen, existieren diverse Abwehrmech-

anismen, von denen einige in unseren Betriebssystemen integriert sind und einen wichti-

gen Beitrag zur Systemsicherheit leisten. Allerdings können selbst die ausgeklügeltsten Ab-

wehrmechanismen umgangen werden, wie aktuelle Angriffe zeigen. Diese Angriffe basieren

auf dem Konzept, vorhandene Programmfragmente neu zusammenzusetzen, um bösarti-

gen Code zu erzeugen. Diese Technik ist der Grundstein moderner Angriffe.

In dieser Dissertation präsentieren wir ROPocop, eine Methode um solche Angriffe zu

verhindern. ROPocop ist ein auf einer Heuristik basierendes, konfigurierbares Programm,

das den Programmfluss eines anderen Programms zur Laufzeit analysiert und Alarm aus-

löst, falls es ungewöhnliches Verhalten feststellt. Es analysiert Eigenschaften, in denen sich

reguläres von bösartigem Programmverhalten, bei dem vorhandene Programmfragmente

neu zusammengesetzt werden, unterscheidet. Wie alle aktuellen Abwehrmechanismen hat

auch ROPocop Schwächen und wir zeigen, wie ROPocop und ähnliche Abwehrmechanis-

men vollautomatisiert umgangen werden können. Hierfür präsentieren wir PSHAPE, ein

plattformübergreifendes Framework, welches die Entwicklung von Angriffen unterstützt.

PSHAPE hilft in zweierlei Hinsicht: es erzeugt kompakte, semantische Zusammenfassun-

gen für Programmfragmente. Diese erlauben eine schnelle Feststellung der Auswirkun-

gen, die ein Fragment auf den Programmzustand hat. Außerdem ist PSHAPE in der Lage,

Programmfragmente vollautomatisch zusammenzufügen, um einen Exploit zu erzeugen,

der eine Funktion mit beliebigen Parametern aufruft. Dieses Verhalten ist realitätsnah, da

das Aufrufen einer Funktion wie mprotect nachfolgende Schritte der Exploit-Entwicklung

stark vereinfacht.

Ein praxistauglicher Abwehrmechanismus muss Angriffe zuverlässig erkennen und löst

im Idealfall keinen falschen Alarm aus. Außerdem muss sichergestellt sein, dass das ge-
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schützte Programm bedienbar bleibt, das heißt, nicht stark verlangsamt wird oder gar ab-

stürzt. Wir haben ROPocop mit zwölf realen Exploits getestet, die alle zuverlässig erkannt

wurden, ohne dass ROPocop einen Fehlalarm auslöste. Programme laufen, geschützt durch

ROPocop, zu Beginn leicht verlangsamt, danach jedoch ohne merkbare Verzögerungen. Des

Weiteren zeigen wir, wie PSHAPE vollautomatisch Exploits erzeugt, die in der Lage sind, di-

verse Abwehrmechanismen, wie beispielsweise ROPocop, zu umgehen. Außerdem zeigen

wir, dass es bestimmte Programmfragmente, die bisher unter großem Zeitaufwand manuell

gesucht werden mussten, zuverlässig und vollautomatisch findet. Zudem findet PSHAPE

eine neue Art von Programmfragment, das die Exploit-Entwicklung stark vereinfacht.
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Chapter 1

Introduction

Low-level memory-corruption vulnerabilities date back to 1988 when the Morris worm [155]

spread across the internet. While there are no official numbers, it is widely believed that it

infected 10% of computers connected to the internet, at that time an estimated 6,000 com-

puters. Since then, other infamous worms spawned, such as Code Red (2001) [79], Slammer

(2003) [46], or Blaster (2003) [54], which exploited similar vulnerabilities. While this lead to

increased awareness of such bugs, they are still common in today’s software and modern

exploits still abuse the same types of vulnerabilities that existed almost 30 years ago.

The underlying problems are twofold: due to the Von-Neumann architecture [166], code

and data are not separated in memory, which means that a program can be tricked into

executing data. The second problem concerns programming languages: unsafe languages

like C and C++ are still widely used, due to their high performance and because there is

a large amount of legacy code. The problem with those languages is that they allow the

programmer to directly access and manipulate memory, as well as putting the responsibility

to sanitize user input into the hand of the programmer. For example, if the programmer

declares a buffer of 20 characters, the programmer has to check that the user’s input is not

longer than 20 characters. If the programmer neglects this, longer input overwrites other

data in memory, which can lead to wrong program output, crashes, or, in the worst case,

allow an attacker to execute arbitrary code.

Up until the early 2000s, when mitigation techniques were not widely deployed, ex-

ploitation was simple and consisted of the following steps: (i) inject shellcode1 into the

target program. Since almost all programs take some form of user input, this was usually

not a problem. (ii) leverage a buffer overflow vulnerability to overwrite a code pointer, such

as a return address. This attack, widely known as stack smashing [3], allows hijacking the

intended control-flow of the program because the attacker can force the program to con-

1Traditionally, shellcode is code that opens a shell, but nowadays, shellcode is used as an umbrella term

describing any code the attacker wants to run.
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tinue execution at an arbitrary location. Normally, the attacker would overwrite the code

pointer with the memory address of the code injected in the previous step, which will then

be executed.

To battle these exploits, large numbers of mitigation techniques, designed to prevent

exploitation of such vulnerabilities, have been proposed by academia and industry alike.

A few of them are now standard on modern architectures, such as data execution preven-

tion (DEP) [4], which prevents the execution of injected code, and address-space-layout-

randomization (ASLR) [80], which makes it hard for the attacker to know, where her shell-

code is in memory. While they are often effective, attackers still bypass them regularly,

developing more and more sophisticated attack techniques. Indeed, it is often the case that

a new mitigation is bypassed just weeks after its adoption.

One attack technique, called return-oriented programming (ROP) [135,144], has become

a cornerstone of today’s exploits, and is based on the principle of code-reuse. DEP pre-

vents the execution of data, making it impossible for an attacker to inject and run arbitrary

code. However, the exploitation of the underlying vulnerability, hence also the control-flow

hijacking, is not prevented, allowing an attacker to jump to any code that already exists

in memory. Due to the specifics of certain architectures, including the popular x86-64 ar-

chitecture, which we focus on in this dissertation, it is possible to chain carefully selected

code-fragments or gadgets together, which then execute consecutively. This combination of

ROP gadgets is called a ROP chain.

Because ROP is Turing complete [135, 144], it is in theory possible to use ROP to con-

struct any arbitrary program. This is, however, complex, cumbersome, and requires a lot

of manual labour and attention to detail. Therefore, exploit developers normally avoid this

path. Instead, they use ROP to invoke an API that allows them to execute injected shellcode,

effectively bypassing DEP. Such exploits are often referred to as two-staged: the first stage

employs ROP to bypass DEP, using an operating system API such as VirtualProtect

(Windows) or mprotect (Linux). These APIs exist because the system needs a way to

change memory protection levels at runtime, e.g., when a program dynamically generates

code. After this first stage, the second stage, which is regular shellcode, executes. In prac-

tice, we are only aware of one pure ROP attack [95], as these attacks are much more difficult

to create and provide no benefit over two-staged exploits.

Such two-staged attacks are simpler to construct than a pure ROP attack because they

only need to use ROP to invoke one function. Yet, their construction nevertheless requires

a large amount of manual effort. Currently available tools designed to support ROP exploit

development often contain bugs, have limited functionality, are outdated, or do not support

modern architectures. This limits their usefulness in practice, and the fact that those tools

are only used for the simple task of gadget discovery is testament to that.

2



CHAPTER 1. INTRODUCTION

On the other hand, many mitigations proposed by academia drastically reduce the num-

ber of available gadgets in a binary, forcing exploit developers to use more complex gadgets.

Complex gadgets are often long and typically contain side-effects, i.e., do not only achieve

the task originally desired by the exploit developer, but also affect memory or registers in an

undesired way. Furthermore, complex gadgets often have preconditions, for example, re-

quire a certain register to point to readable memory in order for the gadget to work correctly.

Currently available tools perform badly in current scenarios, and cannot work at all when

such mitigations are used, making ROP exploit development a predominantly manual task,

with very basic tool-support.

In this dissertation, we look at both the mitigation and construction of ROP exploits.

First, we present an approach to detect ROP exploits, called ROPocop. Next, we propose an

attempt to automate ROP exploit development, even in the face of state-of-the-art mitigation

techniques, called PSHAPE.

1.1 Research Motivation

ROP is an essential technique used in today’s exploits, which makes it a large threat to

a system’s integrity. A large body of work has been proposed to mitigate this problem,

however, none of the approaches are widely adopted and new attacks have already shown

that many of them can be bypassed. Clearly, there is a need for further investigation on how

ROP can be hindered effectively.

At the same time, more sophisticated mitigations make ROP exploit development in-

creasingly difficult. However, currently, tool support for this task is very limited, especially

in regards to bypassing mitigations. This topic has not been researched very well so far,

despite it being a topic interesting to a large audience. Indeed, ROP exploit development is

a task frequently attempted not only by blackhat hackers for malicious purposes, but also

by security professionals, penetration testers, researchers, or security analysts. For example,

researchers might aim to implement a secure compiler that generates code which contains

a minimal amount of useful gadgets. To evaluate whether this helps in practice, they may

attempt to build a ROP exploit using the remaining gadgets. The process of developing ROP

exploits is currently a manual, time-consuming task and the outcome is directly related to

the skill and experience of the analyst. A tool, on the other hand, is deterministic, hence

delivering reproducible and comparable results. Tool support, however, is very limited and

has several issues. Many tools currently available are outdated and do not support the

omnipresent x86-64 architecture. Other tools are not maintained any longer, contain bugs

or simply do not work as expected. Lastly, many tools are restricted to gadget discovery.

While an essential task, various other features are desirable. For example, gadget discovery
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usually produces a large text file often containing millions of gadgets. From this file, the

exploit developer has to manually pick the gadgets she needs and assemble them, i.e., put

the gadgets in the correct order to achieve her goal.

Automating this process would provide a large benefit to exploit developers. It saves

time and allows them to focus on other steps of exploit development, such as bypassing

other mitigation techniques. However, automation introduces challenges: one main issue

regarding automation is that of state explosion. Millions of gadgets and no assumptions

about the exploit developer’s goal make almost all random combinations of gadgets useful

in some way or the other, which results in billions of usable ROP chains. Clearly, creating

and analysing all these chains is infeasible.

Furthermore, all current tools output gadgets in assembler code. While showing every

single instruction in a gadget provides a lot of detail, this high level of detail is often not

required. Instead, gadgets could be summarized and translated into a more human-readable

form. Determining the effect of a gadget that consists of 20 or more instructions can take

even an experienced analyst some time but, even worse, is error prone. Considering that

binaries usually contain millions of gadgets, this is a time-consuming process.

Hence, we identify two main problems in current ROP chain development: state explo-

sion, caused by millions of gadgets and no assumptions about the exploit developer’s goals,

and the lack of a more compact and easy to read representation of gadgets. If done right,

such a representation allows the developer to search for specific effects a gadget has.

To summarize, both the mitigation of ROP exploits, as well as the construction of ROP

exploits, leave room for improvement.

1.2 Solution Overview

We address the problems stated above as follows.

To mitigate ROP exploits, we propose ROPocop, a configurable, heuristic-based detec-

tor that continuously monitors program execution. ROPocop monitors the frequency and

length of basic blocks, which are characteristics in which ROP attacks, and code-reuse at-

tacks in general, often differ greatly from regular program behaviour. The detection thresh-

olds can be configured freely, to fine-tune them to the application that requires protection.

To increase protection even further, we enforce non-executable data regions similar to DEP,

however, without a way to bypass it. More precisely, we only allow the instruction pointer

to point inside a binary, but never to other mapped memory.

To assist in the construction of ROP exploits, we propose PSHAPE. PSHAPE addresses

the challenges raised before as follows.
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State explosion. As we explained in the previous chapter, attacks are almost exclusively

two-staged, i.e., they use ROP to invoke a function that allows the execution of injected code.

This approach requires the exploit developer to correctly initialize arguments to the appro-

priate API. Usually, the exploit developer provides the arguments in memory and then uses

gadgets to move the parameters from memory into the correct registers used for passing

parameters to functions. Therefore, by making the realistic assumption that an exploit de-

veloper wants to invoke a function, one can discard gadgets that do not move data between

memory or registers. Since this still leaves many gadgets to consider, we propose a further

reduction of the search space by analysing the remaining gadgets, assessing their useful-

ness and quality, and then keeping only the most suitable gadgets. These gadgets are then

permuted and the resulting gadget chains analysed.

Compact gadget representation. To achieve a more compact and human-readable form,

we propose gadget summaries, consisting of a gadget’s preconditions and postconditions.

Preconditions are requirements that have to be satisfied for the gadget to run correctly, for

example, that a register has to point to readable memory. Postconditions describe the state

of registers and memory after a gadget has executed.

We implemented this approach in a tool called PSHAPE. PSHAPE extracts gadgets and

runs a deep gadget analysis, where gadgets are converted to an intermediate representation

(IR), semantically analysed, and summarized. This summary is a compact representation of

a gadget’s pre- and postconditions. Based on this summary, gadgets not useful for loading

data into registers are discarded. Then, PSHAPE runs a gadget quality assessment algorithm

called GaLity to determine the quality of each gadget. Lastly, PSHAPE uses smart gadget

permutations to chain the most suitable gadgets together with the goal of ensuring a spec-

ified number of registers is loaded with data the exploit developer can control. PSHAPE

also works well against restrictions imposed by mitigations, such as ROPocop and various

others. Since we show how various complex mitigations, including ROPocop, can be by-

passed completely automatically with PSHAPE, our thesis statement concentrates on the

automation part of this dissertation:

Coalescing deep gadget analysis, smart gadget permutation, and gadget-quality assessment

enables feasible automation of gadget chaining even in the presence of mitigations.

1.3 Contributions

To summarize, this dissertation makes the following original contributions.

• ROPocop: A prototype for an exploit mitigation system. It consists of DEP+, software-

enforced data-execution prevention which cannot be bypassed using operating sys-

tems APIs, and AntiCRA, a configurable, heuristic-based code-reuse attack detector.
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• PSHAPE: A framework for automated ROP chain generation. It analyses gadgets,

creates summaries, and chains gadgets together fully automatically.

• GaLity: A set of metrics for assessing gadget quality. It allows PSHAPE to reduce the

search space to make gadget chaining feasible.

1.4 Publications

Parts of this work have been published at conferences, journals, and workshops. Our mitiga-

tion technique ROPocop [64] (Chapters 4.2.1, 4.2.2, 4.2.3, and 4.2.4), was published in the El-

sevier Journal of Information Security and Applications (JISA). PSHAPE [63], responsible for

creating gadget summaries and chaining gadgets together (Chapters 4.3.2, 4.3.3, 4.3.4 , 4.3.5,

and 4.3.6), was published at the International Workshop on Security and Trust Manage-

ment (STM), co-located with ESORICS. The metrics to grade gadgets (Chapters 4.4.1, 4.4.2,

and 4.4.3) were implemented in a tool called GaLity [62] and published at the International

Symposium on Engineering Secure Software and Systems (ESSoS), where it also received an

Artifact Evaluation Award2. Lastly, a talk on exploit automation, covering all three publica-

tions, was given at DeepSec3.

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 covers background

knowledge required to be able to understand the remainder of this work. It covers certain

aspects of the x86-64 architecture, such as registers, memory management, and function

calls, three classes of vulnerabilities which are prime targets for exploitation, exploit mitiga-

tion, and code-reuse attacks. Chapter 3 discusses related work. Chapter 4.1 explains how

code-reuse attacks are used in practice and elaborates upon restrictions that make code-

reuse attacks more difficult. In Chapter 4.2 we present ROPocop, which represents such a

restriction. Next, in Chapter 4.3 we discuss how the process of gadget chain creation can

be automated, presenting PSHAPE. Lastly, in Chapter 4.4, we introduce GaLity, the set of

metrics that assesses the quality of gadgets, which is necessary so the search space for au-

tomation can be limited in a sensible way. Chapter 5 presents three case studies, involving

all three of our tools. Chapter 6 discusses ideas for future directions, and Chapter 7 con-

cludes.

2http://www.artifact-eval.org/
3https://deepsec.net/
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Chapter 2

Background

In this chapter we introduce relevant background information which also serves as a means

for the reader to look up concepts referred to later in this dissertation. Chapter 2.1 discusses

basics of the x86-64 architecture [84, 100]. It does not, by any means, claim completeness

and instead focuses on topics relevant for this dissertation: registers, function calls and

calling conventions, and memory management (i.e., heap and stack). Chapter 2.2 intro-

duces buffer overflow, use-after-free, and type confusion vulnerabilities and how they are

exploited. Chapter 2.3 covers mitigation techniques, concentrating on those implemented

in popular operating systems (OS). Lastly, Chapter 2.4 covers code-reuse attacks, a sophisti-

cated technique, which is the cornerstone of today’s exploits.

2.1 Basics of the x86-64 Architecture

In this chapter we introduce basics of the x86-64 architecture, also referred to as AMD64,

IA-32e, or EM64T. It covers topics such as registers, management of stack and heap, and

function calls.

2.1.1 Registers

Registers are extremely fast memory storages (orders of magnitude faster than RAM and

Cache) used to hold data for operations or memory pointers. x86-64 has 16 general purpose

registers which are 64 bit long, and shown in Table 2.1. Addressing only parts of a whole 64-

bit general purpose register is possible, and often done when it is not necessary to use the

whole register. If, for example, the value 42h should be stored in rax, it makes no difference

whether this value is stored in rax, eax, ax, or al, because it occupies only seven bit (42h=

1000010b). The size of the generated instruction, however, is greatly affected, as Table 2.2

shows. Therefore, compilers will usually choose the smallest possible subregister when

optimizations are enabled.
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Table 2.1: x86-64 registers and subregisters

64-bit register

(bits 63. . . 0)

Lower 32 bits

(Bits 31. . . 0)

Lower 16 bits

(bits 15. . . 0)

Higher 8 bits

(bits 15. . . 8)

Lower 8 bits

(bits 7. . . 0)

rax eax ax ah al

rbx ebx bx bh bl

rcx ecx cx ch cl

rdx edx dx dh dl

rsi esi si - sil

rdi edi di - dil

rbp ebp bp - bpl

rsp esp sp - spl

r8 r8d r8w - r8b

r9 r9d r9w - r9b

r10 r10d r10w - r10b

r11 r11d r11w - r11b

r12 r12d r12w - r12b

r13 r13d r13w - r13b

r14 r14d r14w - r14b

r15 r15d r15w - r15b

Table 2.2: Instruction sizes and subregisters

Instruction OpCode Size

mov rax, 42h 48C7C042000000 7

mov eax, 42h B842000000 5

mov ax, 42h 66B84200 4

mov al, 42h B042 2
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Despite these registers being dubbed “general purpose”, two of them have a clear in-

tended usage.

• rsp, the stack pointer, always points to the top of the stack, a data structure to store

data such as variables, introduced in Chapter 2.1.2.

• rbp, the base pointer or frame pointer, also points to the stack (more precisely, it points

at the bottom of the current stack frame. We discuss this in more detail Chapter 2.1.3)

and is usually used to access local variables and parameters, with local variables being

at a negative offset and parameters being at a positive offset of rbp. Compilers can,

however, decide to not use a base pointer, in which case rbp can be used like any

other general purpose register and therefore hold arbitrary information. This is an

optimization referred to as base pointer omission. In that case, variables on the stack are

accessed using offsets of rsp, which makes manual program analysis more difficult.

Another very important register is rip, the instruction pointer or program counter. It al-

ways points to the instruction that is executed next, and is therefore responsible for the

program-flow (see Chapter 2.1.3). rip cannot be a changed directly, e.g., by using it in con-

junction with a mov instruction, but only through certain instructions. For example, ret

loads the value rsp points to into rip and increases rsp by 8 bytes, mimicking a pop rip

instruction. The most important instructions that can change rip are ret, call, jmp, and

loop.

The last register important to this work is the rflags register, which is in essence a

collection of flags. Those flags store, among other data, information about results of previous

operations. For example, if an operation’s result is zero, the Zero flag ZF is set (1), if it is

not zero, ZF is cleared (0). Some of these flags are used to determine control flow using

condition instructions.

Consider the example in Listing 2.11. The cmp instruction compares two values by sub-

tracting them, discarding the result, and setting flags in rflags accordingly. Remember

that ZF is set, if the result of an operation is zero. Therefore, in this example, if rax and

rbx contain the same value, ZF is set, otherwise cleared. The next instruction, cmovnz

rcx, rbx writes the value of rbx in rcx if ZF is cleared2. Otherwise, the instruction is not

executed. Listing 2.2 shows equivalent C code.

Many other registers exist on the x86-64 architecture, such as registers specifically for

floating point instructions (xmm0 through xmm15) or debug registers. However, none of

1Note that throughout this dissertation we use Intel syntax for assembler code, i.e., the order of parameters

for an instruction is destination before source. Parameter size is determined by the name of the register that is

used.
2The cmovnz instruction can be read as conditional move if not zero.
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Listing 2.1: Conditional assembler instruction

1 cmp rax, rbx

2 cmovnz rcx, rbx

Listing 2.2: C-equivalent of Listing 2.1

1 if (rax != rbx) {

2 rcx = rbx; }

these are relevant to this work, which is why we omit them. The Intel Architecture Software

Developer’s Manual [84] contains more detailed information. To summarize, in the context

of this dissertation, the important registers are the 16 general purpose registers, with rsp

and rbp having a special meaning, the instruction pointer rip, and the rflags register.

2.1.2 Memory Management

Memory can be allocated statically or dynamically. Static memory allocation uses the stack,

is very fast and handled automatically, but space is limited. Dynamic memory allocation

uses the heap, is slightly slower than static memory allocation and requires the programmer

to manage memory, but has no limits on size.

Stack

The stack is a small area of memory (depending on the compiler and OS between 1 and 8

MiB), allocated for every individual thread. This memory is used by functions as a scratch

pad to temporarily store information, local variables, and some housekeeping information.

Stacks can be divided further into stack frames, with every function creating its own stack

frame on top of the caller’s stack frame. We discuss how this works in detail and what data

is stored on the stack in Chapter 2.1.3.

Memory management on the stack is inherently simple, thanks to rsp: to allocate mem-

ory, rsp simply needs to be decreased3 by the required amount. Conversely, to de-allocate

3The stack grows towards lower addresses. Therefore, if data is stored in newly allocated memory, it is stored

at lower addresses than older data.
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(a) Before push
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b

a

...

(c) After pop

Figure 2.1: Change of the stack pointer by push and pop instructions.4

memory, rsp is increased. This implies that data on the stack is not erased upon de-

allocation and remains in memory until it is overwritten.

The two most important instructions that implicitly use the stack for storing and retriev-

ing data, namely push and pop, always do so from the top, i.e., the lowest address, and

automatically change rsp accordingly: when a value is pushed on the stack, rsp is auto-

matically decreased by 8 bytes. Conversely, when a value is popped off the stack, rsp is

automatically increased by 8 bytes. push and pop instructions can therefore also be seen as

a combination of a mov instruction, loading data rsp points to into a target 64-bit register,

and the according increase or decrease of rsp by 8 bytes (see Listing 2.3 and Listing 2.4).

Listing 2.3: push equivalent

push rax

; equivalent to:

sub rsp, 8

mov [rsp], rax

Listing 2.4: pop equivalent

pop rax

; equivalent to:

mov rax, [rsp]

add rsp, 8

Figure 2.1 shows how the stack and rsp change when value 42h is pushed and then

popped into rax. Figure 2.1a shows the stack in its original state. Figure 2.1b after the push

instruction: 42h is on top of the stack and rsp has been adjusted automatically to point to

it. Figure 2.1c shows the stack after the pop instruction: 42h is still on the stack, but it has

also been copied into rax (not shown) and rsp has been adjusted.

4Please note that in all figures the stack grows upwards, towards lower addresses i.e., towards address 0.
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Heap

As opposed to the stack, the heap does not have a fixed size. In fact, it can grow almost

arbitrarily large. This is why it is usually used for data too large for the stack or when the

programmer does not know how much memory will be required. The downside is that

the heap is not managed automatically by the hardware in the background, like the stack

is. Allocation, de-allocation, and heap management is done in software by the operating

system.

Stack space allocation is done automatically in C. Space is reserved with the declaration

of local variables and freed when the variable goes out of scope. Space on the heap, however,

is always allocated explicitly by using keywords (malloc or new). This space has also to be

de-allocated by the programmer explicitly using free or delete, as it otherwise leads to a

memory leak5.

2.1.3 Function Calls

Normally, program flow is strictly sequential. The instruction at rip is read, rip is moved

to the next instruction, and the previously read instruction is executed:

1. Read the instruction at rip.

2. Increase rip by n bytes, n being the length of the instruction. This makes sure rip

points to the subsequent instruction.

3. Execute the instruction read in Step 1.

4. Go to Step 1.

In essence, there are two ways that interrupt this linear program-flow: jumps and calls.

A jmp instruction simply updates rip6. A function call, initiated using the call instruc-

tion, however, requires the program flow to return to the calling function, the caller, once

the called function, the callee, has finished. This implies that i.) the return address, i.e., the

address where the program has to continue once the callee has finished has to be stored,

ii.) information about the current stack frame has to be stored, and iii.) parameters have to

be passed to the callee. The following steps show how a function call works conceptually:

1. The caller sets up the registers and stack with the parameters that need to be passed in

accordance with the respective calling convention (discussed in the next paragraph).

5A memory leak occurs when memory is allocated but not de-allocated. C / C++ do not automatically free

unreferenced objects using, e.g., a garbage collector.
6For example, jmp rax would be equivalent to mov rip, rax. However, keep in mind that rip can only

be changed by certain instructions
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2. The call instruction pushes the return address on the stack.

3. The call instruction sets rip to the target address.

4. The callee pushes rbp on the stack and sets rbp to rsp, creating a new stack frame for

the callee, which sits on top of the caller’s stack frame.

5. The callee reserves some space on the stack by decreasing rsp.

6. The remaining instructions in the callee execute.

7. The callee frees the memory it occupies on the stack by setting rsp to rbp.

8. The callee pops into rbp, restoring the original value of rbp which was stored in Step

4.

9. The ret instruction loads the value rsp points to into rip. This is the return address

which was previously stored in Step 2. ret also increases rsp by 8 bytes, mimicking

a pop rip instruction.7

10. If parameters were passed on the stack, the callee cleans up the stack by increasing

rsp again. introduce that too

Steps 4 and 5 are often called function prologue, and steps 7 and 8 are called function epi-

logue. Listing 2.5 shows typical function pro- and epilogues8. If the base pointer is omitted,

i.e., if rsp is used to access variables instead of rbp, Steps 4. and 8. are skipped. This speeds

up function calls, because there are fewer instructions to execute, and frees up a register.

Listing 2.5: Function prologue and epilogue

1 push rbp ; Step 4

2 mov rbp, rsp ; Step 4

3 sub rsp, 42h ; Step 5

4 ...

5 mov rsp, rbp ; Step 7

6 pop rbp ; Step 8

7 ret ; Step 9

In Step 1 we mentioned that parameters are set up in accordance to the calling conven-

tions. On x86-64, there are two main calling conventions, which are very similar to each
7However, since rip is not a general purpose register, it cannot be used in conjunction with a pop instruction.
8Note that Steps 7 and 8 could be condensed by using the leave instruction, which executes the same

instructions shown in Step 7 and 8 and is therefore semantically equivalent.
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other. The Microsoft Calling Convention, followed by 64-bit Windows platforms, passes the

first four arguments to a function through registers rcx, rdx, r8, and r9. Additional argu-

ments are passed using the stack. The System V AMD64 ABI, followed, among others, by

Linux, passes the first six arguments to a function through registers rdi, rsi, rdx, rcx,

r8, and r9. Additional arguments are passed using the stack. This is a big difference com-

pared to x86, where many different calling conventions exist, and parameters are almost

exclusively passed on the stack.

Consider the function call in Listing 2.6, which follows the Microsoft Calling Convention:

lines 1 to 4 load arguments in the appropriate registers. Line 5 pushes the fifth argument,

which is in rax, on the stack. Line 6 executes the actual call, in this case to a custom function

called myfunc, which takes five arguments.

Listing 2.6: Function call

1 mov rcx, [rbp-40h] ; Argument 1

2 mov rdx, [rbp-38h] ; Argument 2

3 mov r8, 1 ; Argument 3

4 mov r9, 100h ; Argument 4

5 push rax ; Argument 5

6 call myfunc

Next, we show the stack frame before and after the function call. We assume that the

caller’s name is foo. Figure 2.2 shows the stack frame for function foo. It contains the

return address necessary so foo can return to its caller, and the caller’s frame pointer, as

well as three local variables. rsp points to the top of the stack, rbp to the saved base pointer.

Figure 2.3 shows the stack after foo called function myfunc and myfunc allocating space

for a local variable. The saved base pointer in the stack frame of myFunc belongs to function

foo, the saved base pointer in the stack frame of foo belongs to foo’s caller.

Please note that, for brevity, we had to slightly simplify some concepts. For example, the

Microsoft Calling Convention uses a memory area of at least 32 byte called register parameter

area or home space between stack frames, which can be used to spill parameters [103]. The

System V AMD64 ABI defines a red zone, a 128 byte memory area above rsp that can be

used without moving rsp [100] (Chapter 3.2.2). Those details are, however, not relevant to

the understanding of the topics.
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Figure 2.2: Stack with one stack frame
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Figure 2.3: Stack with two stack frames
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2.2 Bugs and Vulnerabilities

In this chapter we introduce three commonly exploited low-level memory vulnerabilities,

but first we define the terms vulnerability and exploit.

Definition 1. A vulnerability is “A flaw or weakness in a system’s design, implementation, or

operation and management that could be exploited to violate the system’s security policy” [145].

An exploit is input that triggers a vulnerability to achieve a certain goal. This can range

from crashing the program (denial-of-service, or DoS, attack), to manipulating internal data

to change the outcome of an operation, to elevating one’s privileges (privilege escalation at-

tack), to arbitrary code execution. Arbitrary code execution is usually the goal of an attacker,

as this gives her the most power. It is, however, also the most difficult one to achieve and,

depending on the vulnerability, may not be possible at all. This holds, of course, true for all

goals, i.e., it is possible that a vulnerability exists, but cannot be exploited to achieve any of

the goals stated above.

In the remainder of this chapter, we discuss three widely exploited memory corruption

vulnerabilities. Classic buffer overflows, most prevalent until about 2010; use-after-free, cur-

rently widely exploited; and type confusion, which is becoming an increasingly large threat.

A buffer overflow is a spatial memory error, where an out-of-bounds-pointer is dereferenced,

while a use-after-free vulnerability is referred to as temporal memory error, because a pointer

that points to an object which does not exist anymore is dereferenced. These bugs are man-

ifestations of the fact that C/C++ are not memory safe, a property commonly defined as not

committing spatial or temporal memory errors. Type confusion vulnerabilities exist because

C/C++ are not type safe. Further, type unsafety results in memory unsafety. We show exam-

ples of typical bugs that cause such vulnerabilities as well as techniques to exploit them.

2.2.1 Buffer Overflow

Until about 2010, buffer overflows were the most widely exploited memory-corruption vul-

nerability accounting for almost two thirds of all exploited vulnerabilities, at least in Mi-

crosoft products [10]. They are relatively simple to exploit, especially when compared to

use-after-free vulnerabilities, which we introduce in Chapter 2.2.2. Conceptually, a buffer

overflow is a simple vulnerability: a fixed-size buffer is filled with more data than it can

hold, which causes adjacent memory to be overwritten. This chapter covers the underlying

problem of buffer overflows and how they are exploited.
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Underlying Problem

We identify two major issues. The first issue is that control-flow data is sometimes stored

in the same memory area with other, potentially user-controlled data and not protected in

any way. The second issue is that C has no automatic bounds checks, which makes buffer

overflows possible in the first place.

Storage of Control-Flow Data. Oftentimes, an address the program uses later for determin-

ing control-flow is stored in writeable memory, i.e., on the stack or the heap. Remember,

for example, how function calls work: first, parameters to the function are set up. Then,

the actual call instruction executes and pushes the return address, i.e., the address of the

instruction after the call instruction, on the stack. Then program execution continues at

the call address. When the callee has finished, the previously stored return address is used

to return to the caller, where program execution continues. This means that while the callee

executes, an address that will be used later to control the program flow is stored on the stack

together with other data.

No Implicit Bounds Checks. C heavily relies on arrays if several elements of the same

type need to be stored. A typical example is the data type string, which does not exist

in C. Instead, strings are stored in an array of characters, i.e., as a series of characters ter-

minated by the string termination character '\0'. The size of an array is static, and no

meta-information, such as its length, is stored with it9. Furthermore, during compilation

all information about variables and their respective sizes is lost. This is due to the fact that

variable declarations in C are compiled to a single memory allocation, i.e., moving rsp to

allocate space for them in the function prologue. Listing 2.7 shows C code, Listing 2.8 its

ASM counterpart. Note how only one large block of memory, which is large enough to hold

all variables, is allocated (the long long type is 8 bytes long, char is 1 byte long). Access-

ing variables works simply through an offset of rbp or rsp, if base pointer omission is used

as variables per se do not exist, only memory locations.

Listing 2.7: Variable declaration

1 int main() {

2 long long i, j, k, l;

3 char buffer[32];

4 ...

9During the design of C there were discussions whether a string terminator should be used or if the length

of the array should be stored in the first byte. Ultimately, it was decided to use a terminating character, as this

more closely resembled C’s predecessor, B [134]
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Listing 2.8: Space allocation

1 sub rsp, 40h ; 40h = 64

Both of these issues combined cause the problem that it is not possible to implicitly check

whether accesses to an array are within its bounds. While it is to some extent possible to

extract information about variables, e.g., from debugging symbols, forcing bounds checks

on every array access has a negative effect on performance, one of the main benefits of C /

C++. Therefore, it is the programmers’ responsibility to explicitly implement correct bounds

checks. If they neglect this, it is possible that memory accesses are out of bounds. Listing 2.9

shows an example of this. This simple program creates a buffer and then uses a loop to

initialize its elements to the character ’A’. buffer contains 32 elements (line 2), but the loop

(line 4) will execute 33 times10. In the last iteration the program overwrites data which is

not part of buffer, more precisely, it overwrites the byte following buffer. Depending on

what data is stored at this location, the program might crash.

Listing 2.9: Out of bounds access in an array

1 main() {

2 char buffer[32];

3

4 for (int i = 0; i <= 32; i++ ){

5 buffer[i] = 'A';

6 }

7 }

Exploiting Buffer Overflows

In Chapter 2.1.3 we reviewed the concept of function calls, which store the return address

on the stack. If a buffer overflow affects a buffer located on the stack it may be possible

to overwrite a return address. By carefully crafting an input that triggers the vulnerability,

an attacker may therefore overwrite the return address with an arbitrary value, hijacking

the program flow. This attack is know widely known as stack smashing [3]. Listing 2.10

shows code containing a buffer overflow that can be exploited by an attacker to hijack the

control-flow.

10This is known as an off-by-one-error.
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Listing 2.10: A buffer overflow vulnerability

1 int vuln() {

2 char buffer[24];

3 long long length = 0;

4 gets(buffer);

5 length = strlen(buffer);

6 return length;

7 }

This function reads user input and returns the input’s length. Line 2 declares a variable

called buffer, which can store 24 bytes. The actual usable size is 23 bytes, because the

string termination character (\0) requires another byte. Line 3 declares an integer variable

called length and initializes it to 0. Line 4 reads user input from the keyboard into variable

buffer using library function gets. Line 5 computes the length of buffer using library

function strlen and stores it in length. Line 6 returns the value of length to the caller.

In this toy example, line 4 introduces a buffer overflow vulnerability. In this line, user

input is read into buffer, a variable with a fixed length of 24. Therefore, if the user enters

more than 23 characters (the string terminator is appended automatically after hitting enter),

contents in adjacent memory, in this case the saved base pointer and the return address, are

overwritten. Figure 2.4a and Figure 2.4b show the stackframe of function vuln before and

after the overflow11. Note that the program still expects the return address at the same

location, therefore, it can be controlled by the attacker.

Assume a malicious user tries to actively exploit the vulnerability, entering the follow-

ing string: AAAAAAAAAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD The stack will look like

shown in Figure 2.5. When function vuln has finished and the function prologue runs (see

Chapter 2.1.3), Step 7 works correctly, but Steps 8 and 9 load user-controlled data into rbp

and rip. rip contains 4444444444444444h (the ASCII value of ’D’, which is 44h, re-

peated 8 times), an address where likely no code is mapped, causing an access violation

which leads to a crash of the program. However, since the user can enter arbitrary data,

she can craft a more malicious exploit, shown in Figure 2.6. Here, the user injects shellcode

and overwrites the return address with the start address of the buffer, in this case 18FF00h.

When the program executes the ret instruction, 18FF00h is loaded into rip, which causes

the shellcode to be executed.

This is just one possible exploit structure. It has the disadvantage, that the attacker has

only 40 bytes of space available for her shellcode. Another approach would be, for example,

11This is a generic visualization and different compilers will produce different layouts.
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Listing 2.11: Fixed buffer overflow

1 int vuln() {

2 long long length = 0;

3 char buffer[16];

4 fgets(buffer, sizeof(buffer), stdin);

5 length = strlen(buffer);

6 return length;

7 }

to place the shellcode beyond the current stack frame, resulting in a layout as shown in

Figure 2.7. If the program allocates space on the heap it may also be possible to place the

shellcode there.

Lastly, Listing 2.11 shows the code snippet from Listing 2.10 with the buffer overflow

bug fixed. Instead of reading user input using gets, fgets is used. It takes two additional

parameters, the maximum size that should be read, which is set to the size of the buffer

using the sizeof function, and where data should be read from. In this example we use

stdin, which is the keyboard.

2.2.2 Use-After-Free

Due to the popularity of buffer overflow exploits, awareness for this bug has increased and

researchers proposed many effective mitigation techniques, which we introduce in Chap-

ter 2.3. Due to these steps, the security community has noticed a decrease in buffer overflow

exploits. Instead, attackers now often target use-after-free vulnerabilities, which are an at-

tractive target due to the fact that, unlike buffer overflows, no mitigation techniques against

such attacks have been widely deployed at this point. In 2013, use-after-free exploits ac-

counted for almost 50% of exploited Microsoft CVEs, while only about 25% were buffer

overflows [10].

Underlying Problem

In essence, a use-after-free vulnerability is caused by a programming bug where an object

that has been freed at time t is accessed after t. A pointer to such a freed object is called

a dangling pointer. If a dangling pointer is dereferenced it results in unspecified behaviour.

Oftentimes a program will simply crash, because the allocated heap memory has since been
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Figure 2.4: Stack before and after a buffer overflow.
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Figure 2.5: Buffer overflow
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Figure 2.6: Exploited buffer overflow with shellcode before the return address
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Figure 2.7: Exploited buffer overflow with shellcode after the return address
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Listing 2.12: Use-after-free bug #501572 in openssl

1 dtls1_hm_fragment_free(frag);

2 pitem_free(item);

3

4 if (al==0)

5 {

6 *ok = 1;

7 return frag->msg_header.frag_len;

8 }

reused to store a different object or other data. In other cases, the program might continue

running correctly.

Listing 2.12 shows an example of a real use-after-free bug12. In line 1, object frag is

freed. However, in line 7, frag is dereferenced if al is zero.

Use-after-free vulnerabilities are most severe if objects containing a vtable are affected. A

vtable is used to implement dynamic binding, also known as late binding. We use the code

in Listing 2.13 as an example: a base class Animal has two derived classes: Cat and Dog.

All three classes have a function called identify, which prints the name of the respective

class, and a function makenoise which prints the noise the animal typically makes. In

the main function, an Animal pointer is created, which is randomly either of type Cat or

Dog13. Then, on this object function makenoise is called. The output of this code fragment

is either “Meow” or “Woof”. Due to late binding, the program can determine the object the

pointer points to at runtime and invoke the correct function, despite the pointer being of

type Animal.

Late binding is implemented using vtables. The concrete implementation may differ be-

tween compilers, but Figure 2.8 shows the abstracted concept, based on the code in List-

ing 2.13. When a new object is created, the required number of bytes to store it are allocated.

In addition to that, space for a pointer is allocated. This pointer points to the virtual func-

tion table, or vtable, and is called vpointer. The vtable is stored somewhere in memory14 and

12https://bugzilla.redhat.com/attachment.cgi?id=344671&action=diff
13The random assignment ensures that the compiler cannot statically detect which function should be in-

voked, thereby forcing it to create a vtable and the necessary pointers. Otherwise the compiler might optimize

these structures away.
14The location depends on the compiler.
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Listing 2.13: Virtual functions

1 class Animal {

2 public:

3 unsigned int number_of_legs;

4 unsigned int weight;

5 virtual void identify()

6 {cout << "I'm a generic animal\n";}

7 virtual void makenoise()

8 {cout << "Generic noise\n";}

9 };

10

11 class Cat: public Animal {

12 public:

13 void identify()

14 {cout << "I'm a cat\n";}

15 void makenoise()

16 {cout << "Meow\n";}

17 };

18

19 class Dog: public Animal {

20 public:

21 void identify()

22 {cout << "I'm a dog\n";}

23 void makenoise()

24 {cout << "Woof\n";}

25 };

26

27 main() {

28 Animal* a;

29 if(rand() % 20 < 10){

30 a = new Cat;

31 } else {

32 a = new Dog;

33 }

34 a->makenoise();

35 }
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Figure 2.8: Object with virtual functions

Listing 2.14: Virtual function dispatch

1 mov rcx, ... ; load object in rcx

2 mov rax, [rcx] ; load vtable in rax

3 mov rdx, [rax + 8] ; load second vtable entry in rdx

4 call rdx ; call virtual function

contains the addresses of the actual functions, which are, as all static code, in the .text or

.code segment.

Listing 2.14 shows how virtual function dispatching works on the assembler code level.

We assume in this example that a Cat object has been created. Line 1 loads a pointer to the

object in rcx. In line 2, rcx is dereferenced and the result is stored in rax. As the memory

layout in Figure 2.8 shows, the first 8 bytes of a Cat object are occupied by its vptr, a

pointer to the object’s vtable. Therefore, the second line loads the address of the vtable in

rax. In line 3, the second entry of the vtable is retrieved and stored in rdx. Therefore, rdx

now contains the address of cat::makenoise(). Lastly, in line 4, an indirect call to rdx

invokes the function.

Exploiting Use-After-Free

The behaviour described in the previous chapter creates a large attack surface, as an attacker

can, for example, overwrite the original vptr of a deallocated object, making it point to a fake

injected vtable, which allows arbitrary control-flow changes. The difficulty in exploiting a

use-after-free vulnerability lies within the fact that the attacker needs the ability to reliably

re-allocate the freed memory before it is dereferenced again, as this allows her to overwrite

control-flow data. Figure 2.9 shows these steps visually.
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Figure 2.9: Use after free exploitation timeline.

number_of_legs

weight

vptr &cat::identify

@Shellcode

void identify()

void makenoise()

Shellcode

Object of type Cat
(Heap)

Cat’s vtable
(Compiler dependent)

Actual functions
(.text segment)

Figure 2.10: A vtable corruption attack. Red marks attacker-controlled data.

If the attacker is able to reliably re-allocate the memory area, for example, by using tech-

niques such as Heap Feng Shui [153], she has several ways of exploiting a user-after-free

vulnerability. We assume that a program invokes makenoise() on a Cat object, i.e., deref-

erences the second entry of the corresponding vtable.

vtable Corruption Technically, this is just a general attack on vtables and does not rely on a

use-after-free vulnerability. However, since it is a realistic threat, we discuss it in this chapter.

A vtable corruption attack attempts to overwrite one or several entries in a vtable. Since a

vtable usually exists only once in memory and all objects of that type have a reference to it,

whenever such an object accesses the vtable it accesses corrupted data, giving the attacker

control over the program flow. Figure 2.10 shows this in a visual way. The second entry of

the vtable is overwritten with the address of shellcode, which is placed somewhere else in

memory. This attack requires that vtables are placed in writeable memory.

vtable Injection In this attack, the attacker crafts and injects a data structure similar to a

vtable, i.e., an array of pointers. After an object has been freed, the attacker reallocates the

memory area the original object has occupied and overwrites the vptr with the address

of the injected vtable. When a virtual function of that object is invoked, the data from the
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Figure 2.11: A vtable injection attack. Red marks attacker-controlled data.

injected vtable is used. Figure 2.11 shows this visually. The original vptr is overwritten,

and shellcode and a fake vtable are injected. The first entry of the vtable is irrelevant because

only the second one is dereferenced, which points to the injected shellcode.

vtable Reuse Lastly, an attacker may also overwrite the vptr with an address pointing to

other data which will result in a valid address when interpreted as address. This might be

necessary, if a compiler generates additional checks that make sure, all vtables are stored in

read-only memory. Note that only the vptr is attacker controlled, but not the data it points

to. Also note, that the pointer points at arbitrary data in read-only memory, which can be

another vtable, but also any other data. In this scenario the attacker is very lucky as there

is data which, when interpreted as address, points to her shellcode. Figure 2.12 depicts this

visually.

2.2.3 Type Confusion

Exploits based on type confusion vulnerabilities are becoming an increasingly large threat,

especially for programs written in C++. In October 2016, a search for “type confusion” in

the common vulnerabilities and exposure database15 shows 96 results, 84 of which are from

2014 or later. Among affected programs are popular and widely used ones such as Chrome,

Firefox, Flash, and PHP.

15https://cve.mitre.org/
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Figure 2.12: A vtable reuse attack. Red marks attacker-controlled data.

Underlying Problem

Generally, type confusion is caused by accessing an object of one type as another type, which

C++ allows through casting. C++ offers a variety of cast operators but for performance

reasons static_cast is often preferred. However, as opposed to dynamic casting forced

through dynamic_cast, static casts cannot guarantee that a cast is not illegal. This can

lead to type confusion vulnerabilities, as shown in Listing 2.15. In line 11, an object of type

Animal and a pointer of the same type, which points to it, are created. In line 12, the pointer

is casted to type Cat, and in line 13, the member ruined_objects, which only type Cat

has, is accessed. This leads to an out-of-bounds memory write.

Figure 2.13 shows the corresponding memory layouts of Animal and Cat objects. Fig-

ure 2.14 shows how, due to an unsafe cast16, adjacent data is erroneously interpreted as

member variable ruined_objects and overwritten.

Exploiting Type Confusion

If the overwritten memory contains control-flow data, such as a vtable or return address,

and the attacker can control the data written to it, she can hijack the control-flow. These

16More precisely a downcast, as a pointer of a base class is casted down to a derived class. The opposite

operation is called upcasting and is generally safe, because all members of the base class must also be present in

the derived class. Therefore, it is not possible to access a member that does not exist.
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Listing 2.15: Unsafe downcast

1 class Animal {

2 ...

3 };

4

5 class Cat: public Animal {

6 public:

7 unsigned int ruined_objects;

8 };

9

10 main() {

11 Animal* a = new Animal();

12 Cat* c = static_cast<Cat*>a;

13 c.ruined_objects = 1;

14 }

...

Animal Members
Animal

object

Data

...

...

Animal Members

ruined_objects

Cat

object

Data

...

Figure 2.13: Type confusion memory layout

29



CHAPTER 2. BACKGROUND

...

Animal Members

Data treated like ruined_objects

Cat

object

...

Figure 2.14: Type confusion vulnerability caused by treating an Animal object as object of

type Cat

attack vectors are very similar to buffer overflow exploits and use-after-free exploits, which

we described in Chapter 2.2.1 and Chapter 2.2.2, respectively.

2.3 Exploit Mitigation

This chapter presents currently used mitigation techniques, which are designed to prevent

exploitation of memory-corrupting vulnerabilities. The most common ones are DEP, ASLR,

and stack cookies, which are an integral part of both Windows and Linux security, and

have also made their way into most mobile operating systems, despite low-level attacks not

being a real threat yet on those platforms. We also introduce various other, less widespread

mitigation techniques.

2.3.1 Executable Space Protection

We use executable space protection as a collective term describing techniques that protect

against traditional code injection attacks, in which in attacker injects code into a running

program and then uses a memory corruption vulnerability to redirect control flow to this

code (see Chapter 2.2). Such mitigation techniques prevent injection attacks by enforcing

that memory pages that do not contain code, such as heaps and stacks, are mapped as non-

executable. There are various names for technologies implementing such protection; on

Windows it is called data execution prevention (DEP) [4], for Linux there are WˆX [52],

PaX [123], and Exec Shield [163]. In this work, we refer to all techniques as DEP.

DEP employs a mix of hardware and software to enforce non-executable pages. It makes

use of a processor’s NX (No eXecute) bit, marking non-code pages as non-executable by

setting bit 63 in their respective page-table entry. 1 means that the contents of the page are

not executable, while 0 means that the contents of the page are executable. An attempt to
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put the program counter inside a protected page causes a hardware-level exception. On

the software side, operating systems need to support DEP so page tables can be configured

correctly. Generally, software has to be designed in such a way that it does comply with

DEP. This, however, can pose a problem, especially with self-modifying code or dynami-

cally generated code (JIT compiled code), very common in browsers to implement, e.g., Java

Script. For such cases, software needs to allocate memory using appropriate APIs, such as

VirtualProtect or VirtualAlloc on Windows, or mprotect or mmap on Linux. These

APIs allow changing the protection level of already allocated pages or allocating memory

with a programmer-specified protection level. DEP is an integral part of of today’s defences

against code injection attacks and supported, among others, by Windows (since XP SP 2),

Linux (kernel 2.6.8 or higher), OS X (version 10.4.4 or higher) Android (version 2.3), and iOS

(version 5).

DEP is extremely effective and efficient since it is implemented in hardware, and to this

day, there are no attacks that exploit a weakness in the concept itself. However, DEP neither

fixes the underlying vulnerability, nor does it prevent hijacking of the control-flow. This

allows code-reuse attacks, in which an attacker puts together pieces of existing code. We

discuss such attacks in depth in Chapter 2.4.

2.3.2 Address Space Layout Randomization

Most attacks rely on the premise that an attacker knows about a program’s memory layout,

i.e., knows where in memory certain data resides. For example, in Chapter 2.2.1 we have

shown an attack where the address of the shellcode was hard-coded. Until about 2005 this

premise was true, because programs and libraries were always loaded at the same static

address. However, the introduction of ASLR [15, 80, 122] removes this knowledge from

the attacker by randomizing the address of the program image, its libraries, heaps, and

stacks. Therefore, each time a program is restarted, all addresses will be different from

the previous run. Figure 2.15 shows this in a visual way. This forces an attacker to guess

memory addresses and a wrong guess usually results in a program crash.

ASLR provides only probabilistic security. Depending on the entropy used for random-

ization, an attacker may be lucky enough to successfully guess the correct memory address.

Under certain circumstances an attacker may also be able to guess repeatedly without caus-

ing a program crash. A well known example is the Apache server, where for every con-

nection a new child process is forked. These child processes, however, are not randomized

again but share the memory layout with the main process. This gives an attacker the oppor-

tunity to try different addresses, until a correct one is found. This is, of course, a very noisy

attack and might be detected by an intrusion detection system (IDS). The preferred method
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Figure 2.15: Different memory layouts between reboots due to ASLR

of bypassing ASLR and other mitigations that are based on hiding information in memory,

however, are information leaks [32, 142, 143].

Another big issue is granularity. ASLR only randomizes the start address of an exe-

cutable, but not its contents. This means that offsets within the binary stay the same. An at-

tacker can use this knowledge to her advantage: by discovering a single pointer to a known

location inside the binary, she can calculate all other addresses inside that binary simply by

applying static offsets.

Lastly, ASLR is not necessarily enabled for all binaries of a program. Especially legacy

software might not have been linked with the appropriate switches, leaving some binaries

unprotected. Another risk is software that introduces and loads 3rd party libraries which

are not ASLR enabled. A popular example is Java 6, which loads msvcr71.dll, a library

that is not relocatable and has not changed since 2006. This library has been used by many

universal ASLR DEP bypasses, such as Sayonara [39,83]. We introduce more techniques and

discuss all attacks mentioned so far in more detail in Chapter 3.
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2.3.3 Stack Canaries

A stack canary [23, 41], also knows as stack cookie, is a pseudo-random number which is

inserted on the stack before the saved base pointer and the return address as part of the

function prologue17. Upon returning from a function, in the function epilogue, the value of

the canary is compared to a protected copy and if they do not match, the program aborts.

This is very effective because if an attacker exploits a buffer overflow to overwrite a return

address, the canary is inevitably overwritten, too. Figure 2.16 shows a stack frame where a

canary is protecting the return address.

The implementation of a canary is dependant on the compiler which has to generate code

accordingly18. As opposed to DEP and ASLR, no hardware or operating system support is

required, allowing any program to be compiled with a canary. To increase performance,

compilers assess whether a function is vulnerable to buffer overflows and omit stack ca-

naries if this is not the case. For example, a function that has no array variables is not

susceptible to buffer overflows and therefore does not require a stack canary.

Stack canaries suffer from several weaknesses. They only protect return addresses, but

other code pointers such as entries in vtables are not protected. Furthermore, the canary, like

ASLR, offers only probabilistic security, as an attacker may be able to guess the correct value.

Lastly, stack cookies share yet another weakness with ASLR, which are memory leaks. If an

attacker is able to read the value off the stack, she can incorporate it into her exploit by

overwriting the stack cookie with the correct value.

2.3.4 Control-Flow Integrity

Control-Flow Integrity (CFI) [1] is based on the observation that correct program flow can

be described by a control-flow graph (CFG). This graph contains all possible paths through

a program. Even indirect control-flow transfers are somewhat deterministic, as, e.g., ret

must return to the caller. CFI uses this knowledge and inserts checks before indirect control-

flow transfers that ensure that the target is in line with the CFG. This effectively forces a

program to not deviate from the pre-computed paths.

While CFI has seen a large increase in interest by researchers in recent years, it has not

yet been widely adopted. Microsoft introduced Control Flow Guard [101] in Windows 8.1

and Visual Studio 2015. Clang supports CFI since version 3.9 [36, 162].

Many different CFI implementations have been proposed. We discuss them along with

weaknesses in Chapter 3. Some implementations protect only forward edges, i.e., indirect

17The position of the canary, i.e., whether it is placed before or after the saved base pointer, may vary between

compilers. Also, some compilers may use a different kind of canary, such as a terminator canary, which uses

characters that terminate strings instead of a random value.
18In Visual C++ the switch is called /GS, in GCC -fstack-protector
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Figure 2.16: Stack canary

call and jmp instructions, some protect only backward edges, i.e., ret instructions, and

some protect both. In this chapter, we only introduce the general approach, which most

implementations rely upon. The biggest differences between various approaches are short-

cuts to increase performance and adding additional mitigations to make the implementation

more secure.

CFI is usually implemented using labels or lookup tables. In this chapter we describe

how implementations using labels typically work. After constructing the CFG, CFI inserts a

unique label at all legal destinations as determined by the CFG. Before an indirect control-

flow transfer, code is added that checks that the target is in the set of legal targets. Assume,

for example, there is a call rcx instruction and, using the CFG, CFI determines that the

only legal targets of this call are a functions A and B. Function A is assigned the label 10,

function B is assigned the label 20. CFI inserts instrumentation code just before the call,

which checks whether rcx points to either 10 or 20. If this is not the case, an illegal target

would be called, which indicates an ongoing attack. If the target is legal, the jump is taken

and an offset is added, to ensure that the label is skipped.

2.3.5 Variable Reordering

Some compilers make sure that stack variables are ordered in such a way that arrays can

only overwrite other arrays but not other non-array variables. To achieve this, arrays are

located together below any other variables. Listing 2.16 shows some variable declarations,

which are compiled to two different stack layouts, shown in Figure 2.17. Without variable

reordering, as shown in Figure 2.17a, either buffer can overwrite isAdmin, a variable that
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controls which rights a user has. In Figure 2.17b, this is not possible, because an overflow in

either one of the arrays cannot overwrite non-array local variables.

SafeStack [35] takes this idea one step further and completely separates return-addresses,

spilled registers, and variables whose access it deems safe from other data, notably arrays,

using a separate area of memory. SafeStack is part of CPI [91] and currently only available

in LLVM, with plans to port it to GCC. We discuss CPI in more detail in Chapter 3.1.

1 int main() {

2 int i;

3 char usr_in[16];

4 char usr_out[16];

5 int len;

6 bool isAdmin;

7 ...

8 }

Listing 2.16: C code to show variable reordering

2.4 Code-Reuse Attacks

Code-reuse attacks were born out of the necessity to find a new attack vector after DEP

prohibited executing injected code. In code-reuse attacks, no new code is introduced to the

attacked system and instead, fragments of existing code, dubbed gadgets, are put together

in a malicious way. These gadgets can be taken from the main binary itself or any of its

dependencies.

In this chapter, we describe how code-reuse attacks work and some of the different man-

ifestations that exist. First, in Chapter 2.4.1 and Chapter 2.4.2, we introduce techniques

that allow putting gadgets together in a way so they execute consecutively. Then, in Chap-

ter 2.4.3, we discuss gadgets in more detail, show special kinds of gadgets and introduce an

interesting property of the x86-64 architecture that allows discovering more gadgets.

Currently, several techniques that allow putting gadgets together in such a way that

they execute consecutively, exist. Often, they can be combined. The most widespread one

is called return-oriented programming (ROP) [135, 144], which we introduce first. Another

technique called jump-oriented programming (JOP) [18, 28, 107] is barely used, but to facil-

itate a deeper comprehension of code-reuse-attacks, we still introduce it. There are many

derivatives, which are, however, not used in practice, and we refer the interested reader
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Figure 2.17: Different stack layout due to variable reordering
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...

@Gadget1 rsp

@Gadget2

@Gadget3

...

xor rax, rax; ret

(a) ROP 1

...

@Gadget1

@Gadget2 rsp

@Gadget3

...

add rax, 40 ; ret

(b) ROP 1

Figure 2.18: ROP

to the original papers: string-oriented programming (SOP) [127], sigreturn-oriented pro-

gramming (SROP) [19], data-oriented programming (DOP) [81], crash-resistant oriented

programming (CROP) [68], or printf-oriented programming [25].

2.4.1 Return-Oriented Programming

The ret instruction is basically a pop rip instruction, meaning that if an attacker can con-

trol the memory area around rsp, she has control over the program execution. This allows

her to execute code fragments from arbitrary memory locations whose addresses are placed

on the stack. Injecting the addresses in a program’s memory space is usually not a problem,

since all useful programs take some form of input. Consider the example shown in Fig-

ure 2.18a, assuming the next instruction executed is a ret instruction: ret loads the value

rsp points to into rip, sets rsp to the next value on the stack, and program execution

continues at the abstract address @Gadget1. Disassembling at this address reveals an xor

rax, rax19 and then another ret instruction. The CPU will execute the xor instruction

and then arrive at the ret. At this point, shown in Figure 2.18b, rsp points to the abstract

address @Gadget2. The ret instructions is executed, loading @Gadget2 into rip and in-

creases rsp so it points to @Gadget3. Then, @Gadget2, which ponts to an add rax, 40

and a ret instruction sequence, executes. This example shows how gadgets ending with

a ret can be put together so they execute consecutively. For the purpose of ROP, rsp can

be considered another program counter, as it is responsible for the control flow: rsp moves

from gadget to gadget, and rip executes the actual instructions of a gadget.

This very simple example initializes register rax to 40hwithout introducing and execut-

ing any new code. All code that is executed is taken from the main executable or any of its

19xor’ing a register with itself basically zeroes that register and is faster and requires fewer bytes to store than

the alternatives (such as mov rax, 0 or sub rax, rax).
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...

@Gadget1

40h

@Gadget2

...

pop rax; ret

Figure 2.19: ROP with data intertwined

dependencies. Another way of achieving the same goal is to intertwine data with addresses

of gadgets, and then use gadgets to load that data into the appropriate register, as shown

in Figure 2.19. As opposed to the previous example, where two gadgets were used (one to

zero out the target register, and one to add a constant to the register), in this example one

is sufficient. In this scenario, the desired constant is injected together with the addresses of

gadgets. During execution, the gadget stored at @Gadget1 simply loads the constant from

memory into the appropriate register. This technique actually gives the attacker the advan-

tage of being able to choose the constant freely, while with the other example, the attacker

has to rely on a combination of arithmetic gadgets to create the desired value dynamically.

However, depending on the technique used to inject the data into the program’s memory

space, it may not be possible to inject arbitrary values. Keep in mind that pop is equiva-

lent to mov r64, [rsp], i.e., loads 8 bytes in the target register. Therefore, if rax should

contain 40h, the attacker actually needs to inject 0000000000000040h, which obviously

contains null bytes, which may or may not be prohibited.

So far we have implicitly assumed that rsp points to the ROP gadgets injected by the

attacker. However, this is not necessarily always the case. Think of, for example, a buffer

overflow where the attacker has not enough space on the stack to inject the necessary gad-

gets, but is able to inject them on the heap. In this case, the attacker first has to point rsp

to the memory location where the gadgets are located. To achieve this, a stack pivot gadget

is used. This special kind of gadget ensures that rsp points indeed to the injected gadgets

and must therefore be executed as the very first gadget. For example, if the attacker knows

that the injected gadgets are located somewhere in memory and that rsi points to them, a

useful stack pivot would be xchg rsp, rsi ; ret. The xchg instruction switches the

values of rsp and rsi, so afterwards rsp points to the attacker-controlled gadgets. Then,

the ret instruction works as usual, i.e., executes the next gadget.
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Since ROP gadgets can be combined arbitrarily, ROP is a very versatile technique. In

fact, ROP has been shown to be Turing complete on several platforms [90,135,144], therefore

allowing arbitrarily complex computations. This means that any shellcode an attacker wants

to execute in a regular code injection attack, she can also create using ROP. This effectively

bypasses DEP and makes ROP extremely dangerous.

A main problem of ROP is, however, that the addresses of gadgets have to be known

to the adversary beforehand, which is exactly what ASLR attempts to prevent: as we have

shown in Chapter 2.3.2, ASLR ensures that binaries are always located at a different address

for each execution. Therefore, if all modules are protected by ASLR, an attacker has to

exploit one of ASLR’s weaknesses we described in Chapter 2.3.2 to learn an address first.

2.4.2 Jump-Oriented Programming

Like ROP, JOP [18, 28, 107] also reuses short sequences of code, however, JOP gadgets end

with an indirect jump, e.g., jmp rax. Therefore, JOP lacks a convenience the ret instruc-

tion at the end of ROP gadgets brings naturally: since ret moves rsp, it automatically

points to the next gadget. To make JOP gadgets execute consecutively, JOP requires a dis-

patcher gadget; this special gadget moves the register that points to the gadgets forward, so

it points to the next one. Listing 2.17 and Listing 2.18 show simple dispatcher candidates.

This behaviour is similar to the one in the previous chapter about ROP, where we described

how rsp can be considered another program counter. In JOP, any register can serve in this

function, however, at the cost that the register has to be moved to the next gadget using a

dispatcher gadget.

This implies that only gadgets whose jmp instruction targets the register pointing to the

dispatcher gadget can be used. Therefore, having only one register point to the dispatcher

gadget means that the number of JOP gadgets will likely be small, as only gadgets that

end with a jump to this one register can be used. On the other hand, if there are several

registers pointing to the dispatcher gadget, those registers must not be changed by any

of the gadgets. Another difficulty arises from the limitation that the register used by the

dispatcher to invoke the gadgets must also not be changed, meaning that JOP makes at least

two registers unusable. Figure 2.20 summarizes the necessary steps of a JOP exploit.

JOP is even more cumbersome than ROP, due to the restriction described in this chapter.

Currently, it has almost no relevance in real exploits, however, since many mitigations target

ROP and ret instructions specifically, JOP might turn into a viable alternative.
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add rcx, 8

jmp [rcx]

@Gadget1

@Gadget2

@Gadget3

xor rax, rax

jmp rsi

add rax, 40h
jmp rsi

rcx

rcx+8

rcx+10h

rsi

Figure 2.20: A schematic overview of JOP. The dispatcher gadget on the left, pointed to

by rsi, increments the register pointing to the gadgets, in this case rcx, so it successively

invokes all gadgets. The gadgets have to end with an indirect jump to the register pointing

to the dispatcher gadget, i.e., jmp rsi in this example.

Listing 2.17: JOP dispatcher gadget

add rax, 8

jmp [rax]

Listing 2.18: JOP dispatcher gadget

add rax, rdi

jmp [rax + 10h]

2.4.3 Gadgets

Schacham [144] and Roemer et al. [135] describe different gadget classes, such as load, store,

control flow, arithmetic, and logic. They focus, however, on showing that ROP is Turing

complete, which is rarely required in practice. Indeed, special gadgets which are used in

certain situations are more important in real exploits.

In this chapter we introduce these gadgets, and also show why the x86-64 architecture

inadvertently supports code-reuse attacks better than some other architectures.

Special Gadgets

In some scenarios, specific gadgets are required. We have already introduces the stack pivot

gadget, which is used when rsp does not point to the injected gadgets. Basically, any gadget

that changes rsp is a stack pivot candidate. If rsp points somewhere close to the attacker-

controlled buffer, a simple addition or subtraction to rsp might suffice. In other scenarios,

where another register points to the buffer, loading the value of this register into rsp is

necessary.

Another gadget that is sometimes necessary is the write null gadget, that writes a series

of zeros to memory. This gadget held a bigger importance a few years ago, when x86 was

predominant, where parameters were passed on the stack. Depending on the vulnerability,
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an attacker might not be able to use null bytes in her payload, prohibiting injecting a param-

eter containing null directly. Usually, such a gadget first zeroes a register, e.g., using xor

rax, rax. Then, the value of that register is written to a memory location pointed to by

another register, e.g., mov [rbx], rax. A write-what-where gadget is the generalization of

this. It is a simple primitive that allows writing arbitrary data at arbitrary memory locations,

provided the the exploit developer can control these registers.

Some newer mitigation techniques, which we discuss in Chapter 3, use heuristics to

detect abnormal program behaviour, such as long sequences of short basic blocks. Since

attackers mainly rely on short gadgets that achieve a simple task, such as zeroing a register

or writing a value to memory, such heuristics have a good chance of detecting them. There-

fore, using special gadgets consisting of many instructions which do not use many registers

to bypass such mitigations have been proposed by Davi et al. [49], Göktaş et al. [71], and

Carlini and Wagner [26]. They dubbed such gadgets long-NOP gadget, heuristic breaker, or

long termination gadget, respectively.

If an attacker wants to invoke a system call directly instead of going through a corre-

sponding API, she needs a syscall gadget. On 64-bit Linux, this is a simple syscall instruc-

tion, with the number of the syscall stored in rax.

Unintended Instructions

Lastly, we look at an interesting property of the x86-64 architecture. Instructions are not

aligned and of varying length (1 to 15 bytes), which allows for unintended instructions. An un-

intended instruction is an instruction that results from disassembling from a different offset

than originally intended. Consider the following byte stream: 488D450F490F43C2482BD8.

When disassembled from the start, it results in the instruction sequence shown in List-

ing 2.19.

Listing 2.19: Disassembly of 488D450F490F43C2482BD8

1 lea rax, [rbp+0fh] ; 48 8D 45 0F

2 cmovnb rax, r10 ; 49 0F 43 C2

3 sub rbx, rax ; 48 2B D8

Due to the high density of the x86-64 instruction set, it is likely that disassembling from

an arbitrary offset into this byte stream yields legal instructions. Therefore, unintended

instructions are very common, as our example shows: continually skipping one byte from

the start, results in the disassemblies shown in Listing 2.20 - Listing 2.25.
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Listing 2.20: Disassembly of 8D450F490F43C2482BD8

1 lea eax, [rbp+0fh] ; 8D 45 0F

2 cmovnb rax, r10 ; 49 0F 43 C2

3 sub rbx, rax ; 48 2B D8

Listing 2.21: Disassembly of 450F490F43C2482BD8

1 cmovns r9d, [r15] ; 45 0F 49 0F

2 ret 2b48h ; 43 C2 48 2B

3 - - ; D8

Listing 2.22: Disassembly of 0F490F43C2482BD8

1 cmovns ecx, [rdi] ; 0F 49 0F

2 ret 2b48h ; 43 C2 48 2B

3 - - ; D8

Listing 2.23: Disassembly of 490F43C2482BD8

1 cmovnb rax, r10 ; 49 0F 43 C2

2 sub rbx, rax ; 48 2B D8

Listing 2.24: Disassembly of 0F43C2482BD8

1 cmovnb eax, edx ; 0F 43 C2

2 sub rbx, rax ; 48 2B D8

Listing 2.25: Disassembly of 43C2482BD8

1 ret 2b48h ; 43 C2 48 2B

2 - - ; D8
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The instructions in Listing 2.21 and Listing 2.22 are especially interesting because, as

they end with ret20, they can be used for ROP exploits. This shows that, by jumping in

the middle of an instruction, new and possibly useful gadgets can be generated. Neither

hardware nor software are aware what the correct disassembly should look like, therefore

this behaviour is not prohibited.

2.5 Summary

In this chapter we presented background information on which the remainder of this disser-

tation builds upon. Chapter 2.1 introduced some aspects of the x86-64 architecture, required

to understand how low-level memory structures are organized and how function calls work.

Chapter 2.2 elaborated on widely exploited bugs and presented techniques how they can be

exploited. Chapter 2.3 presented common mitigation techniques, designed to prevent such

exploits. Lastly, Chapter 2.4 introduced ROP, the currently most important exploitation tech-

nique, which requires knowledge of all topics presented previously in this chapter.

In the next chapter we discuss related work and revisit some of the concepts presented

here to discuss them in more detail.

20The two bytes after the instruction are added to rsp, which is normally used by the compiler to clean up

the stack from passed parameters. E.g., if, on Windows, a function took six parameters, the compiler will likely

emit a ret 10h instruction.
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Related Work

In this chapter we discuss related work. It is divided into three sub chapters. Chapter 3.1

and Chapter 3.2 discuss mitigations against attacks and attacks against mitigations. While

the focus is on current scenarios, i.e., mitigations against attacks used in the wild such as

use-after-free, and attacks against real mitigations, such as ASLR, we also discuss attacks

and mitigations which are of academic nature and are, at least currently, not used in real

attacks. Lastly, Chapter 3.3 discusses work related to gadgets and automation.

3.1 Mitigations

Shadow Stack

The concept behind a shadow stack is to have an area of memory where backup copies of

all return addresses are stored. Upon returning from a function, the return address stored

on the stack is compared to the one on top of the shadow stack. During correct program

execution they should be identical. Using a shadow stack battles ROP attacks, because an

attacker would have to overwrite both the return address on the stack and the one on the

shadow stack. However, typically, the shadow stack is protected, e.g., using guard pages or

hidden in memory without any user-space accessible pointers to it. Shadow stacks can only

protect return addresses, but provide no protection against JOP attacks or attacks targeting,

e.g., vtables. Shadow stacks can be considered a fine-grained form of backwards-edge CFI.

Many different implementations exist [8, 34, 40, 47, 50, 74, 88, 110, 121, 130, 147], which

differ in regards to performance, as a result of whether they’re implemented as compiler

extension, using binary rewriting, or dynamic binary instrumentation. Dang et al. [45] give

an excellent overview and found the average overhead to be about 10%.

As oposed to software implementations, hardware implementations like StackGhost [65],

HAFIX [47], or Intel’s Control-flow Enforcement Technology (CET) [85] have almost no

measurable performance impact. StackGhost is implemented for the SPARC architecture,
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HAFIX for Intel Siskiyou Peak and SPARC, and CET will be part of Intel’s future x86-64 pro-

cessors. There is, however, no information regarding a release date at the time of writing.

Bounds Checking

Bounds checking fights the problem of memory corruption at its root and tries to prevent

buffer overflows. It can be implemented as a compiler extension, where it works on source

code, where information about buffers and pointers is readily available [2], or on compiled

binaries [149], which uses debugging symbols or tools like Howard [148] to reconstruct

buffer information from stripped binaries. Once buffers and potentially unsafe accesses

have been identified, code is added to secure these accesses. Depending on whether the im-

plementation is based on source code or on the binary level, as well as the granularity, i.e.,

the object-level or variable level, the overhead lies between 10% and 2 to 3x. PAriCheck [171]

takes a slightly different approach and marks pointers that go out-of-bounds as the result of

an arithmetic operation as invalid. It achieves this by assigning a label to each memory area

inhabited by an object and, upon pointer arithmetic, checks whether the label at the begin-

ning of the operation is the same as the label of the resulting pointer after the operation has

finished. PAriCheck requires recompilation and exhibits a runtime overhead of about 49%.

Control-Flow Integrity

We introduced the general concept of CFI in Chapter 2.3. Here, we discuss the various

implementations and give an overview in Table 3.1.

To make CFI practical in terms of performance and applicability, many CFI implementa-

tions are very coarse-grained [1, 85, 88, 175]. They classify indirect control-flow instructions

and indirect control-flow targets into groups and enforce policies so indirect call-sites match

the possible targets. For example, a simple policy might use just two categories, also referred

to as labels, and enforce that all ret instructions must return to a call-preceded instruction

and all indirect calls must target a function entry point. While this drastically reduces the

number of available gadgets, many attacks, which we introduce in the next Chapter, have

shown that they can be bypassed because they are overly permissive.

More fine-grained approaches [108, 125, 162, 164, 165, 174] increase the number of cat-

egories, taking even more leeway away from an attacker. A popular approach taken by

many mitigations [85, 88, 125] to protect backward-edges, i.e., ret instructions, is using a

shadow stack. Other tools [162, 165] use information about arity to create more groups, i.e.,

enforce that a call that prepares n arguments can only invoke a function that consumes

at most n arguments. CCFIR [174] creates an own group for sensitive functions, which are

not allowed to be targets of indirect branches. Despite these approaches, even fine-grained
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CFI can sometimes be bypassed, as research in Chapter 3.2 shows. We deem a shadow stack

essential to protect backward-edges, as policies enforcing call-precedence can be bypassed

fully automatically using PSHAPE, as we show in Chapter 5. Another large drawback of

current CFI implementations is that they do not protect JIT-compiled code. Burow et al. [24]

offer a detailed comparison of many CFI approaches.

Heuristic-based Code-Reuse Attack Detectors

Heuristic-based solutions monitor programs at runtime and detect “unusual” behaviour

that can be linked to code-reuse attacks. The difficulty of these approaches is defining what

unusual behaviour means in terms of code-reuse attacks. Most implementations [29, 33, 64,

120], including our own called ROPocop, rely on two distinct features current attacks ex-

hibit, namely a large number of consecutive indirect control-flow transfers and short basic-

blocks. Table 3.2 gives an overview over popular approaches.

To increase performance, some implementations [33, 120] use a debugging / profiling

feature known as last branch record (LBR) many modern CPUs offer. LBR stores the source

and destination address of the previous n branches, n currently being between 4 and 32,

depending on the CPU architecture [84] (Vol 3B, 17.4.8.). In addition, they also do not con-

stantly monitor the parameters mentioned above, but only at certain key events, such as

when syscalls are performed. While solutions using dynamic binary instrumentation [29,64]

exhibit an overhead which is between 2 to 5x, implementations using LBR, which forego

constant monitoring at the cost of security, reduce the overhead to about 2%.

HDROP [176] uses a slightly different approach, and relies on a CPU’s branch prediction,

or, in the event of ROP attacks, a large number of mispredicted return instructions. Since

these can be monitored using hardware performance counters (HPC), this approach is rela-

tively fast, at an overhead of 19%. It does, however, require recompilation of the program

because it inserts checking points, where it reads and interprets the HPC values.

These solutions can only provide probabilistic security and work best against an un-

aware attacker. If the attacker knows that a heuristic is monitoring program execution in the

background, she can try to use longer and more complex gadgets in her exploit in order to

avoid detection. Doing this manually is difficult, however, but we show that these heuristics

can be bypassed automatically by PSHAPE in Chapter 5.

Heap Protection / Use-After-Free Mitigation

Mitigations in this category aim at hindering exploitation of use-after-free bugs. We further

divide them into two broad groups. Approaches in the first group, namely FreeSentry [170]
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Table 3.1: Overview of CFI implementations

Tool Implemen-

tation

Details Overhead

CFI [1] Binary

rewriting

Uses Vulcan [57] for CFG extraction and bi-

nary rewriting. Return must target call-

preceded instruction. Original proposal.

16%

BR [88] Binary

rewriting

Uses binary annotations based on symbols.

Protects backward-edges with a shadow

stack. Requires hardware changes.

2%*

O-CFI [108] Binary

rewriting

Transforms branch checking problem to

bounds checking. Combines coarse-grained

CFI and fine-grained ASLR.

4.7%†

CFI for COTS [175] Binary

rewriting

Return must target call-preceded instruction. 6.4%

CCFIR [174] Binary

rewriting

Prevents invocation of sensitive functions

through indirect control-flow transfers. Re-

turn must target call-preceded instruction.

3.6%

Lockdown [125] DBI Uses libdetox [126] for instrumentation. Pro-

tects backward-edges with a shadow stack.

32.5%

TypeArmor [165] DBI Uses Dyninst [13] for instrumentation. Tar-

gets specifically COOP [138] attacks. Arity of

call-site and target must match. Protects only

forward-edges.

3%

CET [85] Compiler

extension

Hardware shadow stack and new instruc-

tions for CFI enforcement. Part of Intel’s fu-

ture CPU generations.

n/A‡

IFCC [162] Compiler

extension

Implemented in LLVM. Forces all indirect

calls and jumps to go through a table contain-

ing legal targets. Arity of call-site and target

must match. Protects only forward-edges.

4%

CCFI [164] Compiler

extension

Adds message authentication codes (MACs)

to control-flow elements. Dynamically clas-

sifies pointers. More precise than static ap-

proaches.

10%

*Based on simulations with emulated hardware.
†Without Intel MPX. Estimated overhead using MPX is 4.17%.
‡Not available at the time of writing.
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Table 3.2: Overview of heuristic-based mitigations

Tool Monitored

Parameters

Monitoring

Interval

Implemen-

tation

Overhead

ROPocop [64] Basic-block length and

# of consecutive indi-

rect branches

Constantly PIN [98] 2.4x

DROP [29] Basic-block length and

# of consecutive indi-

rect branches

Constantly Valgrind [111] 5.3x

kBouncer [120] Basic-block length and

# of consecutive indi-

rect branches

Before syscalls Detours [82]

and LBR

1%

ROPecker [33] Basic-block length and

# of consecutive indi-

rect branches

Before syscalls Linux kernel

module and

LBR

2.6%

HDROP [176] Mispredicted returns

and # of returns

Configurable gcc module

and HPC

19%

and DANGNULL [92] trace pointers at runtime and nullify all pointers to a freed object.

This turns a use-after-free bug into a null-dereference. They require recompilation and incur

overheads of about 42% (FreeSentry) and 80% (DANGNULL). The latter also reports large

memory overheads of up to 5x. The former does not discuss memory overheads. Therefore,

these approaches may not work well for applications using many objects, such as browsers.

The second group contains approaches which change the way memory allocation and

deallocation works [12, 114, 169]. An infinite heap, as proposed by Berger and Zorn [12],

spaces out objects “infinitely” far from each other. Of course this is not possible in practice,

as virtual addresses are finite, which is why only approximations of such systems exist. This

requires the heap to be M times larger than would be required. It allows applications to con-

tinue execution during an accidental buffer overflow. To increase security against attacks,

DieHarder [114] improves the original design by increasing the entropy of the algorithm

that selects where in memory an object is stored.

Microsoft uses Memory Protector [169] in Internet Explorer. It consists of an isolated

heap [160] and delay free [161]. The isolated heap allocates objects which are often used in

conjunction in use-after-free attacks on different heaps, e.g., strings and IE element ob-

jects. A similar technique has been added to the Adobe Flash allocator [22]. Delay free

does not deallocate memory immediately, but instead adds a freed object to an array. The

objects in this array are only freed under certain conditions, making it more difficult for an

attacker to reliably force freeing memory. Microsoft introduced safe unlinking and reference
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count hardening [102] in Windows to further increase heap security against certain classes of

attacks.

Virtual Function Table Protection

Corruption of vtables is currently a primary attack vector in many exploits. Therefore, many

researchers proposed solutions to prevent such attacks [20, 67, 75, 86, 162, 172, 173]. vtable

corruption and vtable injection attacks are easily thwarted by enforcing that all vtables are

in a memory region that does not grant write permissions. However, this still leaves the

option of reusing existing vtables or data that can be interpreted as vtable, similarly to code-

reuse attacks. Table 3.3 gives an overview over the various defences against such attacks.

These defences can be considered forward-edge CFI for C++.

To prevent vtable reuse attacks, there are different approaches. Some, based on source

code, build a class hierarchy and insert checks to only allow invocations of functions in

vtables matching the base class or its derived classes [75, 86, 162, 173].

Others [67, 129, 172] add checks to dispatchers to decrease the chance that random data

can be interpreted as vtable, increasing security probabilistically. For example by querying a

random vtable entry and checking that it points to non-writeable memory [67]. This implies

that data close to the fake vtable entry the attacker wants to use also needs to be a valid code

pointer. Another option is inserting an ID before legitimate vtables [172]. In this case, data

before the fake vtable entry the attacker wants to use has to match the ID. vfGuard [129]

takes yet another approach: it discovers vtables using signatures and enforces a policy that

specifies that an indirect call invoking the nth function can only target vtables which contain

at least n functions.

Solutions generally exhibit a very low overhead in the low, single-digit area, which was

reduced even further by Bounov et al. [20] who implement a new way of storing and check-

ing vtables, reducing overheads to just 1% for compiler-based approaches.

Type Confusion Mitigation

CAVER [93] is implemented as LLVM extension. It stores meta-data that contains for an

object of type T , which types it can be casted to. A runtime library verifies that casts adhere

to the stored data. The authors instrumented Chromium and Firefox and their evaluation

shows that CAVER adds an overhead of about 33%. TypeSan [76] improves upon this design

and has better coverage at lower overhead of approximately 22%.
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Table 3.3: Overview of vtable protection schemes

Tool Prevention of

vtable reuse

Implementation Overhead

T-VIP [67] Probabilistic Binary rewriting 2.2%

VTint [172] Probabilistic Binary rewriting 2%

vfGuard [129] Probabilistic DBI 18%

VTrust [173] Class-tree hierarchy Compiler extension 2%

SafeDispatch [86] Class-tree hierarchy Compiler extension 2.1%

VTV [162] Class-tree hierarchy Compiler extension 8.4%

ShrinkWrap [75] Class-tree hierarchy VTV [162] Extension 5%

Address Space Randomization

Approaches in this chapter aim to improve current ASLR, which only randomizes on the

binary level, i.e., only the start address of a binary is randomized. This enables an attack

vector in which the attacker can leak a single address inside that binary, e.g., by reading

a return address from the stack. Since only the start address of the binary is random, all

offsets within the binary are constant, giving the attacker full knowledge in regards to the

addresses of all gadgets. Table 3.4 gives an overview over the various proposals.

Early approaches suggested up until around 2013 improve shortcomings of ASLR at

that time, i.e., randomize the main binary [14, 51, 77, 89, 119, 168], and/or randomize on a

lower level, e.g., on a function [89], basic block [51, 168], or even instruction level [77, 119].

They work on binaries and do not require source code, allowing for effective randomization.

However, with the introduction of JIT ROP [150] and a growing number of information

leak vulnerabilities, these solutions became moot, as using these techniques, an attacker can

disclose memory at runtime.

Many new approaches aim at preventing the leakage of code pointers [7, 21, 42, 43, 97].

They use a variety of techniques to achieve this: i) complete separation of code and data.

ii) enforcement of execute-only memory. iii) hiding forward pointers by using trampolines

redirecting to execute-only memory. iv) encrypting return addresses. On top of that, all

approaches use fine-grained randomization. Most of them, however, do not protect JIT-

compiled code, enabling a new attack vector [5]. Their overheads are between 1 to 6%.

Other mitigations take different approaches: Fine-Grained ASR [69] and TASR [16] use

runtime rerandomization. Fine-Grained ASR rerandomizes in fixed intervals, leading to

varying overheads between 50% when randomizing once every second to 10% when ran-

domizing every ten seconds. TASR, on the other hand, rerandomizes only before program

input and after program output. The argument behind this is that any program output could

potentially be an info leak, therefore the memory layout is changed, rendering the disclosed
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information stale. To further increase security, rerandomization is also applied before pro-

cessing any input, as input can potentially be an exploit. The authors only evaluated TASR

against SPEC CPU2006, which has barely any input or output, therefore low overheads of

2.1% are no surprise. Unfortunately, they did not apply TASR to real programs.

Lastly, Isomeron [48] loads the original program and a diversified copy in parallel. At

runtime, execution switches between the two versions. A switch can appear before any

control-flow transfer. Isomeron does not try to hide any information from the attacker but

instead provides probabilistic security: each gadget the attacker uses reduces the chance of

success. If she needs just one gadget, the chance of guessing the right binary is 50%. For two

gadgets the chance of guessing correctly decreases to 25%. Considering many contemporary

ROP chains use around ten gadgets, the chance of success decreases to less than 0.1%. In

Chapter 5 we present a single gadget that loads all registers used for passing parameters,

which greatly increases the chance of success. PSHAPE is able to find such gadgets fully-

automatically.

Execute-Only Memory

Fine-grained ASLR improves over ASLR by removing constant offsets even within a binary.

In such scenarios, an attacker repeatedly exploits an info leak to read pages containing code,

extract gadgets, and construct a ROP chain at runtime. We discuss this technique called JIT

ROP [150] in more detail in Chapter 3.2.

Two systems aim to mitigate this threat [6,159]. They both identify the root problem that

code that is executable is automatically also readable. This allows an attacker to read code

like data, construct a ROP chain when enough code has been read, and then execute it.

Backes et al. [6] introduce the notion of execute-no-read (XnR), which allows code to be

executed, but not read as data. It intercepts all read accesses to code or data and determines

the kind of access, i.e., reading code to execute it (known as instruction fetch operation),

reading data, or reading code as data. It is implemented in the Linux kernel and exhibits an

overhead of about 3%.

Heisenbyte [159] takes a slightly different approach they call destructive code reads. Here,

code may be read as data, but if this is detected, the code is garbled after the reading opera-

tion. It works on COTS binaries and introduces an overhead of about 17%.

Miscellaneous

Microsoft EMET [106] includes several ROP detection mechanisms, e.g., caller checks, which

make sure that critical functions are invoked via call and not ret, or a routine that detects
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Table 3.4: Overview of ASLR improvements

Tool Implemen-

tation

Details JIT

code

Overhead

Oymoron [7] Binary

rewriting

Hides code pointers located in code pages

using trampolines. Can be bypassed [48].

No 2.7%

Readactor [42] LLVM Separates code and data. Enforces XoM

using a thin hypervisor. Hides code point-

ers using trampolines.

Yes 6.4%

Readactor++ [43] LLVM Similar to Readactor. Adds further ran-

domization to prevent reuse of whole

functions.

Yes 1.1%

LR2 [21] LLVM Implements known techniques on ARM

to introduce leakage-resilient randomiza-

tion to embedded and mobile devices.

No 6.6%

ASLR-

GUARD [97]

GCC Uses a secure stack for sensitive stack data

(e.g., return addresses). Hides code point-

ers using trampolines.

No 1%

TASR [16] GCC Rerandomizes after program input and

output.

No 2.1%*

Fine-Grained

ASR [69]

LLVM Uses live-rerandomization in certain in-

tervals.

No 50%†

Isomeron [48] DBI Executes the original program and a di-

versified copy in parallel. Switches be-

tween them at runtime.

No 2.2x

*SPEC benchmarks have little input and output, therefore real numbers regarding performance do not exist.
†Measured using a microkernel, randomizing once every second. Randomizing every ten seconds leads to

an overhead of about 10%.
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stack pivoting. EMET works directly on binaries and is very easy to use, however, many

versions of EMET have been bypassed rather quickly after their release [115, 131].

Code-pointer Integrity (CPI) [91] splits memory into a regular and a safe region. It uses

static analysis during compilation to identify which code pointers need to be protected and

places these on a SafeStack which is hidden in the safe region. It introduces an overhead of

about 5%. Evans et al. showed how it can be bypassed [58], outlining that the main issue

is that the safe area is not well enough hidden in memory, and can be found. Their attack,

however, is either noisy, causing many crashes, or slow, taking several days to succeed.

Li et al. [94] aim at preventing ROP by creating a compiler extension for LLVM which

emits code that does not use ret instructions and instead uses direct jmp instructions. Re-

turn addresses are stored in read-only memory. It allows an attacker to return to an arbitrary

return address and does not protect from other forms of code-reuse attacks. It introduces an

overhead of about 11%.

G-Free [117] enforces that all functions must be entered through their header, aligns in-

structions to get rid of unintended instructions, and encrypts/decrypts return addresses in

the function prologue/epilogue, respectively. It is implemented as a compiler extension and

introduces an overhead of 3.1%.

RUNTIMEASLR [96] aims to prevent a very specific kind of attack, namely, clone-probing

attacks (e.g., BROP [17] which we introduce in Chapter 3.2). This attack is used to break

ASLR and relies on the assumption that services like a daemon process fork a new pro-

cess for every connection. These forked processes all inherit the original memory layout of

the main process, allowing brute force attacks. RUNTIMEASLR re-randomizes forked pro-

cesses, mitigating such attacks without a measurable runtime overhead, but at the cost of

longer startup time.

Graffiti [44] is a tool that detects heap spraying. It is based on a hypervisor which anal-

yses memory at runtime. Graffiti is OS-independent and allocator-agnostic which allows

deployment on a wide variety of applications. It detects certain patterns, such as those

heap sprays or data sprays exhibit. Similarly, NOZZLE [133] also detects heap sprays us-

ing certain heuristics, e.g., looking for NOP-sleds, and interpreting object data as code and

performing static analysis to detect malicious intent. HexPADS [124] also uses patterns to

detect a variety of attacks, such as side-channel or covert-channel attacks. HexPADS uses

hardware performance counters to measure cache behaviour, which can be an indicators for

certain attacks.

Stancill et al. [156] propose a framework which analyses documents and detects ROP

payloads. It opens a document in the native application, takes a memory snapshot, scans

for gadget chains, and, if chains are found, profiles their overall behaviour. This technique,

which aims at detecting attacks, is very different from approaches that aim at preventing
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attacks. It is much simpler to deploy and has no compatibility issues. However, since it uses

many heuristics, it can potentially be bypassed by an aware attacker.

StackArmor [31] protects against stack-based attacks, working on binaries without the

need for source code or debugging symbols. Using static analysis, it discovers buffers us-

ing reverse-engineering techniques and decides which buffers are potentially vulnerable.

In the next step, it rewrites the binary to allocate vulnerable buffers in new, isolated, and

randomized stack frames and updates all references accordingly. Without debugging sym-

bols, StackArmor relies on many heuristics to safely move buffers to other memory regions,

which may lead to unprotected buffers. StackArmor introduces an overhead of about 28%.

3.2 Attacks

ASLR

Serna [143] describes info leaks, a general term for a wide range of vulnerabilities that allow

an attacker to infer information about the memory layout. One popular approach is lever-

aging a heap overflow to overwrite the first bytes of a Javascript string. These bytes store

the length of the string, and by overwriting them with 0xffffffff an attacker can access

arbitrary memory locations using Javascript read primitives.

Leakless [60] executes arbitrary functions in any loaded library in the presence of ASLR.

It abuses the ELF dynamic loader’s lazy symbol resolving functionality to resolve a function

name the attacker injected. Leakless achieves this by crafting data structures used to resolve

functions and overwriting pointers which point to them. One large drawback is that it does

not work if the main binary is compiled as position-independent executable (PIE). Further-

more, depending on whether the binary is compiled with partial or full RELRO, it needs

specific gadgets. PSHAPE can help automate this attack by finding these gadgets.

Cross-VM ASL INtrospection (CAIN) [9] targets processes running in a virtual machine

(VM). It exploits a memory page deduplication side-channel: when the same page exists in

two guests, it is merged to save resources. Subsequent writes to such a page are slower,

hence allow an attacker to know when a page has been merged. To exploit this, the attacker

crafts pages that must exist in the victim VM, guessing their base-addresses. Once the correct

base-address has been found, it will be merged, which the attacker can measure by writing

to it again. HexPADS [124] can detect and slow down this type of attack.

JIT ROP [150] bypasses fine-grained ASLR by constructing the payload at runtime us-

ing a scripting environment, e.g., Javascript, commonly found in browsers, or Actionscript,

found in many Adobe products. Based on just one code-pointer (leaked through arbitrary

means, e.g., a regular info leak) and a DiscloseByte primitive, which takes an address and

discloses its content, JIT ROP automatically harvests code pages and discovers gadgets. The
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underlying concept is that the initial code-pointer discloses a whole page (4 KiB). This page

can be read using the DiscloseByte primitive. In these 4 KiB of code, there are likely more

code-pointers which can easily be found by looking for call and jmp instructions and

which point to new pages. These steps can be repeated until a large part of memory has

been mapped. This attack renders fine-grained ASLR approaches useless. Rerandomization

approaches work well, however, as real JIT ROP attacks take up to 23 seconds.

Seibert et al. [141] implement remote side channels and found that simply executing

a program leaks information about the code. By modifying certain data in memory and

employing fault analysis and timing information, knowledge about the program state can

be obtained. Modifying data requires a memory corruption vulnerability that allows the

attacker to overwrite arbitrary data, e.g., variables on the stack, return addresses, or code

pointers. Depending on what she can overwrite, she can infer information about the mem-

ory layout. For example, by overwriting a code pointer with an arbitrary address and timing

how long it takes to execute, the attacker may be able to identify which function is executing.

Blind ROP (BROP) [17] introduces an interesting ASLR bypass, but only works as long as

the target application contains a stack-based vulnerability and restarts after a crash without

re-randomizing its memory layout. Several nginx or apache vulnerabilities fit this profile.

To bypass ASLR in such a scenario, simple brute-forcing could be used: the attacker over-

writes the return address with 0 and increases the value till the program continues without

crashing. When this happens, the correct return address has been discovered, i.e., a code

pointer inside the main library has been found and, due to the constant offsets, addresses of

all gadgets are now known. The basic idea of BROP’s stack reading technique is to overwrite

the target data byte by byte. The last byte can be one of 256 values, i.e., it takes, on average

128 attempts to guess it. Then, the next byte can be guessed, which again takes on average

128 bytes. Therefore, to guess the return address or the stack canary on a 64 bit system,

about 1,024 attempts are necessary.

CFI and Heuristic-based Mitigations

In 2014 and 2015 many attacks targeting various CFI implementations and heuristic-based

mitigations, e.g., kBouncer [120], ROPecker [33], or CFI for COTS [175] have been published.

As these mitigations place tight restrictions on indirect control-flow transfers, hence also

gadgets, those attacks often incorporate gadgets that would rarely be used in real attacks.

E.g., Carlini and Wagner [26], Davi et al. [49], and Göktaş et al. [71], and Schuster et al. [139]

discovered that long gadgets with few side effects are suitable for breaking heuristics-based

mitigations. Such gadgets should consist of at least 20 instructions, preserve as many regis-

ters as possible, have few side-effects, and easily fulfillable preconditions. PSHAPE makes
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Table 3.5: Overview of ASLR attacks

Attack Requirements Impact

Info Leaks [143] Info leak vulnerability Vulnerability-dependent*

BROP [17] Stack-based overflow,

forking application

Leaks arbitrary stack value (e.g., ca-

nary, return address)

CAIN [9] Process inside a VM Leaks library base address

Leakless [60] Non-PIE ELF binary, cer-

tain gadgets

Invokes arbitrary function in any

loaded library

JIT ROP [150] A code-pointer, scripting

environment

Leaks large parts of memory layout

Seibert et al. [141] Memory corruption vul-

nerability

Vulnerability-dependent

*May range from allowing the attacker to read just one byte at a fixed address to reading arbitrary addresses

finding such gadgets very easy, as we show in Chapter 5. Another kind of gadget commonly

used in these attacks is an LBR-flushing gadget [26,139]. LBR is used by kBouncer [120] and

ROPecker [33] to store the last n addresses of taken branches. When certain, critical APIs are

invoked, the LBR is inspected and, depending on whether the control-flow appears legiti-

mate or not, an exception is raised. LBR-flushing gadgets are gadgets that naturally contain

many indirect branches, present in the regular control flow, e.g., functions that call lots of

sub-functions. By using such a gadget, the LBR is filled with legitimate addresses and there

is no trace of irregular control flow, i.e., ROP, in the LBR.

Counterfeit Object-Oriented Programming (COOP) [43, 138] is a technique to exploit

C++ programs which reuses whole virtual functions. Useful computation is achieved solely

through the side effects of whole functions. In a COOP attack, the attacker injects fake

objects and repeatedly invokes virtual functions on them. This is achieved by using a main-

loop gadget (ML-G) which iterates over an array of objects and invokes a virtual function

on each of them. The authors show that COOP can be used to bypass many variants of CFI

and vtable protection.

Stackdefiler [37] presents implementation errors in real CFI implementations, namely

IFCC and VTV, which allow bypassing them. The biggest threat is arguably that callee-

saved registers, which often hold data used for CFI checks, are spilled on the stack, hence an

attacker may be able to overwrite them. According to the authors, this holds true for about

26% of all functions in Chromium. They also created a fix, which results in an increase of

the overhead of about 0.5%.

Carlini et al. [25] discuss the effectiveness of theoretic CFI implementations against ROP

attacks. Instead of evaluating real implementation, which usually take shortcuts to increase

performance, they base their assessment on a perfect, fully-precise implementation. They
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find that a shadow stack is essential for a strong defence, but even with a shadow stack,

under certain circumstances attackers may be able to divert program flow and achieve ma-

licious computations. Similarly, Control Jujutsu [59] shows that even fine-grained CFI so-

lutions can be exploited. Over-approximation, which is necessary in order to avoid false

positives, in conjunction with certain coding practices introduces edges an attacker can ex-

ploit. More precisely, the authors created exploits for apache and nginx, using gadgets that

adhere to the CFG created by the state-of-the art DSA algorithm. They discuss shortcomings

of the analysis and elaborate upon possible ways to improve it, while remaining practical.

Information Hiding

Gawlik et al. [68] introduce a crash-resistant memory scanning technique for web browsers.

They abuse legitimate exception handling functionality to survive access to unmapped mem-

ory. In this case the exception handler, if installed, handles the error and may continue the

program. Alternatively, syscalls may be abused. In this case, the return status code indicates

whether a given address is mapped or not. Next, with the ability to probe memory without

crashing, they create a memory oracle in Javascript, which, given an address, either returns

a byte of data or an error. Together, this creates a powerful primitive that allows reading

arbitrary memory locations without causing program crashes.

Göktaş et al. [72] discuss the security of information hiding. Many mitigations we in-

troduced in Chapter 3 rely on data structures “hidden” in memory which are only accessed

through segmentation registers or registers which are never spilled to memory, preventing

an attacker from obtaining their location. They developed a technique called thread spraying,

which they demonstrate on Firefox by finding the SafeStack CPI [91] uses. First, they force

the program to allocate a large number of threads, therefore also a large number of SafeS-

tacks. Next, for every thread, they create a large amount of repetitive but thread-unique

data that will be deemed “safe” by CPI, hence placed on the SafeStack. This allows them

to identify each individual SafeStack. Next, using a simple brute-force search and the pre-

viously introduced non-crashing memory scanning primitive [68], they scan the memory to

discover a SafeStack. The authors report that their attack takes about 46 seconds. A draw-

back of this attack is, however, that spawning such a large number of threads is noisy and

can potentially be very resource-intensive.

Oikonomopoulos et al. [116] take a different approach and infer information about the

memory layout by recovering information about unmapped memory holes between mapped

memory. They require the attacker to be able to read from and write to arbitrary memory,

cause memory allocations of arbitrary size, and the ability to know whether an allocation

was successful or not. They then repeatedly allocate memory and see if the allocation suc-

ceeds. Thereby, they are able to infer information about the size of holes in the memory
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layout. By continually discovering holes, they also know where no hole is and can probe it

using previously introduced techniques.

Miscellaneous

Athanasakis et al. [5] present an attack where the adversary targets code generated by

JIT compilers. Such compilers, which generate native code from, e.g., Javascript, are om-

nipresent and used, for example, in browsers. This dynamically generated native code is

often not protected by static approaches such as CFI, and allows an attacker access to new

gadgets. In a scenario where the attacker sets up a malicious website and attempts to trick

people into visiting it, she has full control over the Javascript code, hence can introduce arbi-

trary ROP gadgets. Modern JIT compilers attempt to make this process difficult, for example

by obfuscating code or adding nop instructions. However, the authors show that these mit-

igations can be bypassed and that protection mechanisms, such as CFI, need to be applied

holistically. Maisuradze et al. [99] build upon this attack and show that it can be used to

bypass various mitigations that enforce execute-only memory, even when they protect JIT

compiled code. They show that, since the attacker has the ability to create Javascript code

that will be compiled to predictable native code, she does not need to read the code in the

first place.

A similar attack by Snow et al. [151] against destructive code reads [159] also abuses

JIT compilers. They force the JIT compiler to create two identical code sections of the same

Javascript input. Then, they can use one copy to find gadgets and, after discovering the

base address of the other copy, use all gadgets from the ungarbled code section. Next, they

present a technique to force a browser to unload and reload a library, allowing an attacker

to also first find gadgets, force an unload of the garbled library, force a reload of the same

library, and, after discovering its base address, use all gadgets. They furthermore present an

interesting technique they call implicit reads, which allows them to infer information about

the code following already read code. For example, consider an ASLR implementation ran-

domizing basic-block order of functions. An attacker can compute all possible orders of

basic blocks for any given function. She can then read all basic blocks one after the other

except for the last one, and she will know the contents of it.

In this dissertation we focus on attacks that hijack the control-flow. However, corrupting

non-control data such as the user identity data, configuration data, or decision-making data

can be a viable approach, as Chen et al. [30] show. Think of, for example, a computation

at time t which results in a user’s privilege level. The result is spilled to memory, and later

at time t′ used to grant the user certain rights. If an attacker is able to overwrite this value

in memory between t and t′, she can elevate her rights without corrupting any control-

flow data. Chen et al. show that such attacks are real and demonstrated them on a variety
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of servers, e.g., WU-FTPD, Null HTTPD, NetKit Telnetd, GHTTPD, and two SSH server

implementations.

3.3 Gadgets and ROP Chains

ROPMEMU [73] helps analysing ROP chains. It works on a memory snapshot and uses

emulation to create a CFG. Based on this CFG, regular reverse-engineering techniques can be

applied to reconstruct a ROP chain’s behaviour. This is an interesting and, so far, overlooked

field of research. Especially with the automation of ROP chains and the ability to use long

and complex gadgets, manual analysis of such chains will get increasingly difficult. This

makes tools like ROPMEMU very important.

Q [140] takes an existing exploit which does not bypass DEP or ASLR, and attempts to

harden it, i.e., rewrite it so it bypasses these mitigation techniques. To bypass ASLR it relies

on unrandomized code sections and then uses gadgets from those sections to construct a

ROP payload to bypass DEP. The payload is written by the attacker using QooL, Q’s own

exploit language. In their evaluation, the authors show how Q hardens nine simple stack

buffer overflow exploits for Windows and Linux, with a payload that invokes a linked func-

tion or system/WinExec. Q cannot handle gadgets containing pointer dereferences, which

PSHAPE not only handles, but also ensures they are safe to use.

ROPC [118] is based on Q, but publicly available. Its main feature, however, is not exploit

hardening, but a gadget compiler, which takes an input binary and a program written in

their own ROP language called ROPL. Then, ROPC creates this program using only gadgets

from the input binary. Unfortunately, only a proof of concept prototype, dating back to June

2013, is available, which only works on a small synthetic example, but not on real binaries.

The author also explicitly states that ROPC is a proof of concept and not practical, i.e., the

opposite of PSHAPE.

nrop [167] helps analysts by finding semantically equivalent gadgets. For a given in-

struction and input binary, nrop outputs gadgets which are semantically equivalent to the

input instruction. PSHAPE could be used for a similar purpose, as semantically equivalent

gadgets have the same summary, i.e., pre- and postconditions.

Dullien et al. [56] create a framework for gadget discovery which works independently

of the processor architecture. It finds gadgets on ARM, SPARC, MIPS, and x86-64 using

an IR called Reverse Engineering Intermediate Language (REIL), which the authors devel-

oped. An input binary is first converted to REIL, where instructions that move the program

counter are identified. Then, an analysis finds all paths leading to these instructions, result-

ing in a set of gadgets. All gadgets are analysed in terms of their functionality and then

assigned to a category, based on which a Turing-complete set of gadgets is created.
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Homescu et al. [78] present a hand-picked set of gadgets for the x86 architecture, where

the size of the gadgets is limited to a maximum of three bytes. Their set of gadgets consists

of 17 primitives, which is Turing-complete, allowing them arbitrary computations. In a

realistic attack scenario, where Turing-completeness is not necessary, they built an exploit

using a reduced set of gadgets, that contained only eight primitives.

There are many tools available that assist exploit developers to find and sort gadgets [38,

53, 109, 136, 137, 154], but none of them take into account the quality of gadgets. Some of

these tools also attempt to automatically build a ROP exploit for one predefined scenario

(e.g., ROPgadget [136], Mona.py [38], or ropper [137]), however, from our experience they

are not very sophisticated and often fail, even if the necessary gadgets are available. We

compare PSHAPE to these tools and discuss issues in Chapter 4.3.5.

ROPER [157] is a new project currently under development, that uses a very interesting

and novel approach to ROP chain generation, a genetic component. It starts out with creat-

ing chains by randomly combining gadgets. Next, it selects four of these chains and assesses

their fitness by executing them. The two least fit chains are discarded, the two fittest chains

are mated and their children are added to the pool of randomly created chains. This pro-

cess is repeated until one or several chains meet the user-specified machine-state. This is an

interesting take on ROP chain generation, however, like PSHAPE, it will have to overcome

the issue of state explosion. Randomly combining gadgets has to be controlled to some ex-

tent because otherwise the number of chains is infinite. This control mechanism, however,

needs to be intelligent enough to not prevent the creation of possibly useful chains. Further-

more, this approach uses emulation and will therefore have to emulate the execution of a

large amount of possibly complex chains. Assuming only 1,000 gadgets exist, the maximum

length of the generated chain is limited to ten gadgets, and every gadget may only be used

once in a chain, this results in almost one nonillion1 possible chains2. This is only in the first

step, before chains are mated.

11,000,000,000,000,000,000,000,000,000,000
2Computed as the total number of possible k-permutations of n objects: Pn,k = n!

(n−k)!
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Chapter 4

Gadget Chaining

In Chapter 2.4.1 we introduced the basics of ROP. Now, in Chapter 4.1, we look beyond

ROP’s theoretical capabilities and elaborate on how it is used in practice and why it is

currently the most important exploitation technique. Then, in Chapter 4.2, we present

ROPocop, a tool that detects ROP attacks by monitoring program execution and search-

ing for patterns typical for ROP. It detects ongoing attacks by inspecting the average length

of basic blocks during execution and counting the frequency of indirect branches. Config-

urable thresholds allow tailoring its detection algorithms to individual programs. We also

use ROPocop as an exemplary restriction the environment places on ROP development.

Unaware attackers, i.e., if the attacker does not know that ROPocop is deployed, have a

very high chance of being detected, but even an aware attacker will be forced to rethink her

approach to exploit development in order to bypass ROPocop.

In Chapter 4.3 we propose a technique to automate ROP chain generation. Creating

ROP chains manually is cumbersome, even without any restrictions. With defences, such

as ROPocop, the task is even more difficult, as the developer has to utilize longer and more

complex gadgets. Longer gadgets usually contain register aliasing, involve memory read

and write operations, and access several registers. Manually determining all effects of gad-

get is time consuming and error prone. We propose PSHAPE, a tool that creates semantic

gadget summaries, allowing a developer to immediately understand the effects of a gadget.

Moreover, PSHAPE also chains gadgets together fully automatically, making sure that all

dereferenced registers are user-controlled before being dereferenced. This allows an ana-

lyst to invoke arbitrary functions and ensures that the gadget chain does not crash due to

accesses of unmapped memory. One large problem of ROP automation is state explosion.

Randomly combining gadgets quickly leads to billions of combinations, even on very small

sets of gadgets. We propose smart permutations, where we use only the gadgets which have

the highest chance of being viable. This leaves us with only thousands of combinations,
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which can be analysed quickly. In this chapter, we treat the algorithm that selects the most

promising gadgets as a black box, and present details in the following chapter.

In Chapter 4.4, we discuss how gadget quality can be measured. We define a set of four

metrics that grade individual gadgets and sets of gadgets and implement them in a tool

called GaLity. Our algorithms unite several aspects of exploit building, look for gadgets

required in real-world exploits, and calculate overall gadget quality. The results are used by

PSHAPE to select the most well-suited gadgets.

4.1 ROP in Practice

ROP is the predominant form of code-reuse attacks, which is why we focus on it in this dis-

sertation. As we have stated in Chapter 2.4.1, ROP is often Turing complete, and therefore

allows arbitrary computations. However, writing shellcode using only ROP is a cumber-

some task and such a payload will likely be very large. In reality, payloads are usually

two-staged: Stage 2 runs regular shellcode, i.e., is similar to simple exploits that are able to

inject and execute arbitrary data. Stage 1 uses ROP to invoke an OS function that changes

the permissions of the memory page(s), where Stage 2 is stored, allowing it to run as if DEP

were not present. Stage 1 ends with a control-flow transfer to Stage 2. Figure 4.1 shows this

visually. Depending on the architecture, calling convention, environment, and availability

of gadgets, Stage 1 can be very short (less than five gadgets) or very long, without an upper

limit. The three biggest influences, apart from the availability of useful gadgets, are:

• Whether arguments are passed in registers or on the stack. This is dictated by the

architecture and calling convention.

• Whether certain characters have to be avoided in user input. For example, if a strcpy

causes an exploitable vulnerability, null bytes have to be avoided, because the function

stops copying once a null byte is found. Another example for bad characters would

be any non-printable ASCII characters when the input is supposed to be the path to a

file.

• Whether the arguments are static and known in advance. For example, in a typi-

cal attack on Windows, an attacker might want to call VirtualProtect to change

the protection level of some pages. Its parameters are the start address lpAddress,

the size dwSize, the new protection level of the affected pages flNewProtect, and

an address where the old protection level will be stored lpflOldProtect. If no

randomization techniques such as ASLR are present, all these parameters are known

beforehand, because dwSize and flNewProtect are constant and known to the at-
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Stage I

ROP Part

Stage II

Shellcode

Figure 4.1: Structure of real ROP exploits. Stage 1 uses ROP to bypass DEP, allowing Stage

2 to execute.

Table 4.1: Estimated number of gadgets in various environments to build a chain to

VirtualProtect. Null bytes means that the environment allows the injection of null

bytes. Static arguments means, that the arguments are known to the attacker beforehand.

Arguments passed determines whether parameters are passed in registers or on the stack.

Null bytes Static arguments Arguments passed # of gadgets

yes yes stack 0

yes no stack 5 - 15

no yes stack 0 - 10

no no stack 5 - 100

yes yes registers 5

yes no registers 10 - 25

no yes registers 0 - 20

no no registers 15 - 100

tacker, and lpAddress and lpflOldProtect will not change between runs, hence

can be determined statically.

Table 4.1 shows rough estimates for how many gadgets are required in different environ-

ments with the goal of invoking an API such as VirtualProtect. The numbers are by no

means set in stone and should mostly show which scenarios are favourable for an attacker

and under which circumstances ROP is more difficult. Take, for example, an environment

where null bytes are allowed, the arguments are static and passed in registers. Figure 4.2

shows what a simple ROP chain for this scenario on Windows would look like. It consists

of very simple gadgets which load parameters directly from memory into the correspond-

ing registers, invokes VirtualProtect, and then returns into shellcode. Of course this is

an ideal case, which assumes all necessary gadgets are present in the loaded libraries, and

the environment places no restrictions on ROP development. While this is true for current

environments, there is a lot of research on mitigations that implement certain restrictions.

In the next chapter we discuss what such restrictions might look like and introduce a

realistic example for a restriction.
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...

@Gadget1 pop rcx ; ret

data Parameter lpAddress

@Gadget2 pop rdx ; ret

1000h Parameter dwSize

@Gadget3 pop r8 ; ret

40h Parameter flNewProtect

@Gadget4 pop r9 ; ret

data Parameter lpflOldProtect

@VirtualProtect

@Shellcode

...

Figure 4.2: A simple ROP chain to VirtualProtect. Parameter flNewProtect has to be

set to 40h which grants read/write/execute permissions.
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4.2 Environment Restrictions

We have discussed ROP both in theory and in practice in Chapter 2.4.1 and Chapter 4.1.

Usually, short gadgets are combined in such a way, that the ret instruction, the last instruc-

tion of each gadget, ensures that all gadgets execute consecutively. This leads to ROP often

exhibiting traits extremely uncharacteristic in correct program behaviour, such as

• ret instructions not returning to an instruction preceded by a call instruction

• Large numbers of consecutive short basic blocks

• Considerably more ret than call instructions

Currently, the environment, i.e., hardware and software, does not implement rules to en-

force such basic properties, which allows an attacker to freely combine gadgets in arbitrary

ways 1.

In the remainder of this chapter we present a restriction called ROPocop. ROPocop con-

sists of two mitigation techniques, AntiCRA and DEP+. AntiCRA monitors program execu-

tion and detects unusually high numbers of short basic blocks. Since it does not rely on ret

instructions it can detect all kinds of code-reuse attacks, such as JOP, too. DEP+ enforces

the concept of non-executable data in software. We implemented ROPocop using PIN [98],

a dynamic binary instrumentation tool by Intel. ROPocop is available for download on the

companion website2.

4.2.1 AntiCRA

When designing AntiCRA, we manually analysed code-reuse exploits by looking at the gad-

gets they use and their properties. We found that the exploits share properties which are

unusual and typically not present in a normal program’s execution. Based on these obser-

vations, we implemented a heuristic which monitors the following two properties:

Indirect Branches

Code-reuse attacks consist of gadgets which all end in an indirect branch. We analysed

benchmarks as well as real-world applications like Adobe Reader, VLC, Microsoft Office,

Open Office (the complete list can be found in Table 4.2) and found that executing a very

high number of consecutive indirect branches is unusual. The highest number of subsequent

indirect branches we found during our experiments was 47 (in Microsoft Word), but only 8

of the 35 programs execute 15 or more subsequent indirect branches.
1Intel CET [85], which will be part of future CPU generations, will enforce CFI, using, among other tech-

niques, a hardware shadow stack.
2https://sites.google.com/site/ropocopresearch/
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Average Length of Basic Blocks

To reduce side-effects on other registers, the stack, or flags, exploit developers try to use

gadgets that are as short as possible. Therefore, at least for contemporary approaches, gad-

gets can be considered basic blocks with very few instructions. As with indirect branches,

we analysed program behaviour of legitimate programs and found that the average num-

ber of instructions over a sliding window of 10 basic blocks did not drop below 2.33. Our

experiments showed, that making the window smaller resulted in an increase of false posi-

tives, while increasing the window resulted in missed attacks. We also found an interesting

correlation between this and the previous property: the more consecutive indirect branches,

the longer the corresponding basic blocks. We make use of this knowledge in the next para-

graph, when we try to find default parameters which work for a wide set of applications.

Since programs exhibit varying characteristics regarding these two properties, ROPocop

first runs in learning mode. This requires nothing from the user but simply using the pro-

gram she wants to protect as usual, while in the background, ROPocop observes the pro-

gram flow and determines appropriate thresholds for these two properties. This, of course,

leads only to limited coverage, however for our approach high coverage is not required. Ex-

ploiting a buffer overflow requires some sort of input, generally provided by the attacker as

a file that has to be opened by the victim and is then processed by the vulnerable program.

Thus, a user working with the program might not cover all possible paths, but it covers the

important paths which lead to exploitation.

While we do recommend setting individual thresholds for different programs, at the

same time we evaluate whether it is possible to provide default values which cover as many

programs as possible. After analysing our test set of benign applications, by running the

learning mode and using the programs in our sample set (e.g., opening various media files

using VLC, opening various PDF files with Adobe Reader, working with Microsoft Word,

etc.) we set the following thresholds: 35 subsequent indirect branches and an average basic

block length of 2.25 or lower; as described earlier, we found a correlation that larger numbers

of subsequent basic blocks also means longer basic blocks. Therefore we added another

threshold; 36 till 50 subsequent indirect branches and an average basic block length of 4 or

lower. AntiCRA signals an exploitation attempt if one of the two bounds is violated or if,

at any point, more than 50 subsequent indirect branches are executed. While our sample

set of benign applications may not be large enough to make a claim, that these suggested

thresholds hold for all programs, they do hold for all programs in our set, which includes

some of the most exploited applications. Therefore, they serve as an excellent starting point

for fine-tuning, should it be required. Since we included many programs that are often

found and exploited in business environments (e.g., Word, Excel, Adobe Reader), ROPocop

can be deployed immediately without the need to fine-tune thresholds. Programs that make
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heavy use of dynamically generated code such as browsers using Javascript, are challenging

to protect using AntiCRA. This is because every website using Javascript exhibits different

behaviour, making it difficult to find suitable thresholds. This is a problem shared by all

heuristic approaches and we leave this challenge for future work.

To increase performance and make the algorithm less prone to false positives, calculating

averages starts only after we have collected 15 basic-block lengths, i.e., the first computed

average is available only after 15 subsequent indirect branches. This prevents false alarms

based on short sequences of short basic blocks, whose sample size is otherwise not signifi-

cant enough. While this allows for attacks requiring less than 15 gadgets to go undetected by

AntiCRA, it decreases false positives because in our experiments we discovered sequences

of three to seven consecutive indirect branches with small basic block lengths which would

trigger a false alarm. However, these parameters may be changed by the user. Algorithm 1

summarizes AntiCRA in a formal way. Figure 4.3 (in Chapter 4.2.4) shows how the two

thresholds form a (shaded) area in a two-dimensional plain. If an execution falls into the

shaded area then AntiCRA will signal it as malicious. The figure also summarizes the re-

sults of our empirical evaluation, and will be explained in more detail in Chapter 4.2.4.

4.2.2 Impact on Exploit Development

For a code-reuse attack to circumvent AntiCRA, it must not use more than 34 / 49 con-

secutive indirect branches. If this is possible at all depends on the availability of gadgets,

which varies between programs based on what libraries are loaded and whether or not

ASLR is employed. Furthermore, the average number of instructions in the gadgets used

must never fall below 2.25 / 3.5. Combined, these restrictions make it difficult for an at-

tacker to create a pure ROP or JOP payload. Attackers could attempt to raise the average

number of instructions per gadget by inserting longer gadgets. But longer gadgets usually

have unwanted side-effects, like manipulating other registers that hold important data, or

the stack, or modifying flags. Furthermore, since the total number of gadgets is limited to 34

/ 49, inserting long gadgets whose side effects are irrelevant just for the sake of increasing

the average wastes precious slots for useful gadgets. To bypass AntiCRA, an attacker would

have to try and insert direct branches, but, due to limited availability and side-effects, e.g.,

potentially losing control over the program counter, this is difficult. Furthermore, we know

of no gadget compiler that supports direct branches at this point and have not found ex-

ploits that use gadgets that incorporate direct branches. Depending on the program it might

still be possible, but, as previously mentioned, AntiCRA’s goal is to break current exploits

and make the development of new code-reuse exploits significantly more difficult, which

AntiCRA certainly achieves.
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Input: bbl: a basic block, delivered automatically by PIN, thrStartAvgCalc: the

number of consecutive indirect branches after which the calculation of average

basic block length starts (default: 15), thrAlarm: the threshold for the average

basic block length (default: 2.33)

Output: state: a flag that indicates that a ROP attack is probably in progress

state← noAlarm

cntIndBranch← 0

avg ← 0

if bbl was reached through indirect branch then

cntIndBranch← cntIndBranch+ 1;

log size of bbl;

if cntIndBranch >thrStartAvgCalc then

avg← average length of the last 10 bbl;

if avg >thrAlarm then

state← alarm;

end

end

else
cntIndBranch← 0;

end
Algorithm 1: Algorithm for AntiCRA. We use PIN to continuously monitor basic blocks at

runtime and use them as input for our algorithm. Once enough basic block lengths have

been collected, i.e., thrStartAvgCalc is exceeded, calculation of average basic block length

starts. If this average falls below thrAlarm, an alarm is raised.
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However, due to its heuristic nature, false positives as well as false negatives are possi-

ble. As we show in this work, however, in practice the heuristic seems effective enough to

go without any false decisions, at least in our benchmark set. Furthermore, under circum-

stances very favourable to an attacker it might be possible to create a two-staged exploit that

disables DEP using fewer than 15 gadgets and then runs a regular payload. This would not

be detected by AntiCRA.

4.2.3 DEP+

DEP+ is based on the same concept as DEP, i.e., the premise that data should not be ex-

ecutable. DEP+ thus monitors the loading and unloading of images and creates a virtual

memory map based on this information. All virtual memory space where no image is

mapped is considered to hold potentially malicious data, since stacks or heaps can be al-

located in these areas. To enforce that the instruction pointer never points outside an image,

DEP+ checks the register’s value after each indirect branch, i.e., after each return, indirect

call, and indirect jump. Opposed to DEP, DEP+ cannot be bypassed through API calls such

as VirtualProtect.

Implementation Details

PIN’s IMG_AddInstrumentFunction as well as IMG_AddUnloadFunction are used to

monitor the loading and unloading of images. When an image is loaded, DEP+ stores its

start and end address; if the same image is unloaded at runtime, this information is removed.

This approach results in a virtual-memory map that distinguishes only between images and

non-images, i.e., code regions and data regions. DEP+ treats these data regions as space for

potentially malicious data, hence does not allow rip to point into it. To do so, DEP+ checks

after any indirect branch is taken, but before it is executed, if the instruction pointer points

inside any of the data regions. Algorithm 2 summarizes DEP+ in a formal way.

The reason DEP+ checks if rip points inside data regions instead of checking if rip

points inside a loaded image is due to performance: many programs load 30 or more li-

braries, which means that there can be an equally high number of code regions that need to

be checked. As we found, checking each of those regions after each indirect branch can in-

cur a significant performance penalty. To increase performance on Windows, we thus make

use of the fact that Windows’ memory management is relatively deterministic. Images, in

general, tend to be loaded at very high addresses, around 0x60000000 and higher, while

stacks and heaps reside at low addresses and new ones are allocated towards increasingly

higher addresses. Depending on the memory usage of a process, it is generally valid to as-

sume that stacks and heaps, where an attacker would inject his payload, reside below most

images.
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Input: p: a program, mmap: a map of virtual memory that contains start and end

addresses of loaded images and allows calculating start and end addresses of

data regions

Output: state: a flag that indicates that code is executed from outside an image

state← noAlarm

if instruction pointer points inside a data region in mmap then
state← alarm

end
Algorithm 2: Algorithm for DEP+ (without performance optimizations). We use PIN to

instrument the target program so the algorithm is called after an indirect branch is taken,

but before the instruction is executed. It checks whether the instruction pointer points into

a data region, i.e., outside all loaded images.

DEP+ makes use of this knowledge by not checking if rip points inside any of the

loaded images but instead checking if rip points inside data regions, where heaps and

stacks are located, which results in a much lower number of necessary checks. To this end,

DEP+ monitors a program’s heap and stack sizes to dynamically increase or decrease the

number of data regions that need to be taken into account.

This is, of course, a heuristic, which trades security for performance, but as our evalua-

tion in Chapter 4.2.4 shows, the heuristic helps DEP+ to bring the checks down to a mini-

mum while still recognizing all tested attacks.

Comparison to DEP

The original shortcomings of DEP are that it may not be enabled at all, or that it can be

bypassed by both pure code-reuse attacks and by code-reuse attacks that invoke an API

such as VirtualProtect to disable DEP. DEP+ improves over DEP in that it prevents the

execution of injected code by enforcing non-executable data regions even for processes that

run with regular DEP disabled. In particular, DEP+ cannot be bypassed by calls to operating

system APIs like VirtualProtect and its siblings, as such calls have no effect on DEP+.

Hooking said functions is not an option either, because the operating systems regularly

uses legitimate calls to these functions, e.g., when loading executables. Furthermore, as

Chapter 4.2.4 shows, the overhead introduced by DEP+ is negligible.

Limitations

Processes which rely on the ability to execute code from outside images, e.g., processes

which generate code at runtime or incorporate self-modifying code, are not compatible with

DEP+. Such a process is not compatible with DEP either, unless it uses the VirtualProtect
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API etc. to disable DEP for memory regions with generated code. Since it is difficult to de-

tect whether a call to the API usually abused to bypass DEP by an attacker is legitimate, i.e.,

originating from the program itself, we decided against supporting such calls. This results

in a strong increase in security, at the drawback of reduced compatibility.

Like DEP, DEP+ cannot detect and thus not prevent the exploitation of the vulnerability

itself, e.g., the overwriting of data on the stack due to a buffer overflow. Therefore, non-

control data attacks [30] or information leakages are still possible. Furthermore, DEP+ does

not prevent pure code-reuse attacks, motivating the need for AntiCRA (Chapter 4.2.1).

4.2.4 Evaluation

Our implementation is highly modular, so that one may deploy AntiCRA or DEP+ inde-

pendently as well as in combination. Running both of them, however, strongly increases

security, in a similar fashion as running with DEP and ASLR.

In this chapter we evaluate AntiCRA and DEP+ by addressing the following research

questions:

RQ1: How effectively does AntiCRA detect pure code-reuse payloads?

RQ2: How effectively does AntiCRA detect two-staged ROP payloads?

RQ3: How effectively does DEP+ detect code-injection attacks?

RQ4: What is the performance overhead of AntiCRA and DEP+?

Evaluation of AntiCRA (RQ1/RQ2)

For evaluating RQ1 we looked at pure code-reuse attacks, however, at this point such pay-

loads are only rarely found in the wild and are mostly used in academia as proof of concept.

The only real-world pure code-reuse exploit we found is a ROP exploit for Adobe Reader.

Since neither the exploit’s source code, nor an infected file are publicly available, our conclu-

sion is based on an analysis by Li and Szor [95]. Analysing the exploit’s source code reveals

that the address 0x6acc1049 is repeated 9,344 times; the instruction at that address is a

simple ret. This equals to over 9,000 indirect branches in a row, which would, of course, be

detected by AntiCRA.

The likely reason for why pure ROP and JOP payloads still seem to be rare in practice

is that two-staged payloads (which aim to disable DEP through ROP/JOP) are simpler to

construct and are sufficient in many cases.
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We analysed 11 real-world exploits in total. To operate on an unbiased test set, we anal-

ysed the 10 most recent exploits from http://www.toexploit.com/3 which claim to

bypass ASLR and also added the previously mentioned pure ROP exploit. Figure 4.3 and

Table 4.2 show the results of our analysis, i.e., the number of consecutive indirect branches

and the average basic block length for each exploit and also for legitimate programs. As

the numbers indicate, legitimate programs rarely have more than 15 consecutive indirect

branches and their average basic block length is higher than that of exploits. This confirms

that our generalized thresholds, which work for a wide variety of programs, are well-suited

to detect attacks.

AntiCRA detects 10 out of the 11 exploits in our sample set. In five cases this is due

to the number of indirect branches in a row. Three exploits are detected because they use

very short gadgets, which mostly only execute one instruction and then transfer program

execution to the next gadget. Two exploits trigger both mechanisms, since they use more

than 35 indirect branches in a row and also very short gadgets.

One exploit cannot be detected by AntiCRA. This is because it requires only 13 gadgets

to prepare the stack for calling VirtualProtect. This is not enough to trigger the indirect-

branch check. The average length of the basic blocks is 2.2, which would trigger an alarm.

However, as explained in Chapter 4.2.1, we only trigger inspections after a total of 15 indirect

branches in a row.
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Figure 4.3: Analysis of the number of indirect branches in a row and the lowest average

basic block length of our test set

3Unfortunately, the website is not available anymore, but the exploits can be requested from the author of

this thesis or found online using any search engine and the full name of the exploit, as shown in Table 4.2
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ID Name Indirect

Branches,

threshold:

35

Average

BB-Length,

threshold:

2.25

E01 ASX to MP3 Converter v3.1.2.1

SEH Exploit (Multiple OS, DEP

and ASLR Bypass)

>50 >2.25

E02 BlazeDVD 5.1 Stack Buffer Over-

flow With ASLR/DEP Bypass

20 1.9

E03 BlazeDVD 6.1 PLF Exploit DE-

P/ASLR Bypass

16 2

E04 DVD X Player 5.5.0 Pro / Stan-

dard version Universal Exploit,

DEP+ASLR Bypass

17 2

E05 DVD X Player 5.5 Pro (SEH DEP

+ ASLR Bypass) Exploit

13 (2.2)*

E06 ProSSHD 1.2 remote post-auth

exploit (w/ASLR and DEP by-

pass)

43 2

E07 RM Downloader 3.1.3 Local SEH

Exploit (Win7 ASLR and DEP By-

pass)

49 >2.25

E08 The KMPlayer 3.0.0.1440 .mp3

Buffer Overflow Exploit (Win7 +

ASLR bypass mod)

46 >2.25

E09 UFO: Alien Invasion v2.2.1 BoF

Exploit (Win7 ASLR and DEP By-

pass)

>50 >2.25

E10 Winamp v5.572 Local BoF Ex-

ploit (Win7 ASLR and DEP By-

pass)

>50 2

E11 Adobe Reader 11.0.01 “Number

of the Beast” (ASLR, DEP, Sand-

box bypass, pure ROP)**

>50 -

E12 QQ PLAYER PICT PnSize Buffer

Overflow WIN7 DEP ASLR BY-

PASS

11 (2)*
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A01 Daemon Tools v. 4.47.1.0333 40 4.97

A02 Microsoft Word 2010 v.

14.0.07140.5002

47 4.14

A03 Microsoft Excel 2010 v.

14.0.07140.5002

28 4.1

A04 Microsoft Powerpoint v.

14.0.07140.5002

25 4.14

A05 Adobe Acrobat Pro v. 9.0 29 2.33

A06 Windows Media Player v.

12.0.7601.18150

11 na*

A07 cmd.exe (on Windows 7 Pro SP1

64 bit v. 6.1.7601)

5 na*

A08 calc.exe (on Windows 7 Pro SP1

64 bit v. 6.1.7601)

6 na*

A09 mspaint.exe (on Windows 7 Pro

SP1 64 bit v. 6.1.7601)

13 na*

A10 taskmgr.exe (on Windows 7 Pro

SP1 64 bit v. 6.1.7601)

9 na*

A11 VLC v. 2.0.8 9 na*

A12 Irfanview v. 4.3.3 12 na*

A13 Notepad++ v. 6.1.4 11 na*

A14 Filezilla v. 3.5.3 7 na*

A15 Open Office Writer v. 4.0.1 7 na*

A16 Open Office Impress v. 4.0.1 7 na*

A17 Open Office Calc v. 4.0.1 8 na*

B01 SPEC CPU2006 - 400 4 na*

B02 SPEC CPU2006 - 401 3 na*

B03 SPEC CPU2006 - 403 6 na*

B04 SPEC CPU2006 - 429 3 na*

B05 SPEC CPU2006 - 433 3 na*

B06 SPEC CPU2006 - 444 4 na*

B07 SPEC CPU2006 - 445 5 na*

B08 SPEC CPU2006 - 447 7 na*

B09 SPEC CPU2006 - 450 8 na*

B10 SPEC CPU2006 - 453 6 na*

B11 SPEC CPU2006 - 456 3 na*
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B12 SPEC CPU2006 - 458 3 na*

B13 SPEC CPU2006 - 464 31 4

B14 SPEC CPU2006 - 470 4 na*

B15 SPEC CPU2006 - 471 15 3.91

B16 SPEC CPU2006 - 473 3 na*

B17 SPEC CPU2006 - 482 9 na*

B18 SPEC CPU2006 - 483 17 4

Table 4.2: Analysis of Exploits and Programs. We assigned a unique ID to every exploit

and program we investigated. The last two columns show our metrics for AntiCRA, i.e.,

the highest number of indirect branches taken and the average basic block length. Bold

numbers show that AntiCRA was triggered, due to an exceeded threshold. (*not computed

by AntiCRA due to low number of indirect branches (<15) **data is based on the analysis

by Li and Szor [95])

Evaluation of DEP+ (RQ3)

To test DEP+, we wrote a small vulnerable application, which uses an unbounded strcpy

and was compiled with the NX_COMPAT, and a simple exploit. Since all code injection attacks

store the injected code inside a buffer which, by definition, cannot be in an image, the pro-

gram that contains the vulnerability is of little consequence. The only differences between

our vulnerable application and a real application are mitigation techniques which might be

in place, but which are irrelevant to us, since we assume an attacker is able to bypass them,

and how program flow is transferred to the injected code, which is irrelevant for our eval-

uation as well. Ultimately, all code injection attacks end up calling their injected code, and

this is where DEP+ detects them. Therefore, evaluating DEP+ with this self-written pro-

gram poses no real threat to the validity of this experiment. As expected, DEP+ correctly

detects that the target address of the ret instruction at the end of our vulnerable function is

not in an image, before the instruction is actually executed. Therefore, it can terminate the

program and mitigate an attack, which would have led to arbitrary code execution. As for

the real world exploits, DEP+ detects each one except for the pure ROP exploit for Adobe

Reader, as all the others eventually do execute code from memory outside of images.

Performance (RQ4)

We evaluated the performance of ROPocop using the C and C++ benchmarks in the SPEC

CPU2006 benchmark suite. Note that those are really worst-case benchmarks that exercise
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the dynamic analysis heavily. Any interactive or network-based application would show a

significantly lower overhead. We measured five different runtimes for each benchmark:

• The native runtime, i.e., without PIN.

• The runtime with PIN attached, but without instrumentation, to get the basic overhead

PIN introduces.

• The runtime with AntiCRA.

• The runtime with DEP+.

• The runtime with AntiCRA and DEP+.

Benchmarks were run on Windows 7 SP1 with an Intel Core 2 Duo T9400 clocked at 2.53

GHz and 4 GB RAM using the reference workload.

Figure 4.4 summarizes the results of our performance benchmarks. Running a program

under PIN but without any instrumentation introduces an average overhead4 of 1.36x, i.e.,

programs take, on average, 36% more time to finish, ranging from 1.002x (470.lbm) to 2.24x

(464.h264ref). Programs protected by AntiCRA run, on average, with a total overhead 2.2x.

With DEP+ enabled as well, ROPocop introduces an average overhead of 2.39x, which is

comparable to similar tools such as ROPdefender [50], which gives weaker guarantees.

While overheads in the order of two-fold might sound unacceptable, those overheads

should really only be expected in worst-case situations. Benchmarks like SPEC CPU2006

are designed to stress CPU and memory, but what ultimately counts is the performance on

real-world applications. Their performance can, however, often hardly be measured sys-

tematically, which is why we only report qualitative results on some of the applications in

our sample set. As a general observation we can say that in all cases the GUI had some

slight input lag < 1 second when opening a menu for the first time, however, afterwards

they opened in an instant. File transfers with Filezilla were no slower than without our

tool. VLC plays h.264 encoded HD videos without any jitter. Adobe Reader renders pages

without any noticeable lag. Typing in Microsoft Word has no input lag. We want to empha-

size that ROPocop is not intended to be used with all applications at all times. Instead, our

recommended usage is to enable it only for either very critical systems, or for an applica-

tion which has a vulnerability that is being actively exploited and no vendor patch has been

released yet. Under such circumstances the overhead is, in our opinion, acceptable.

4Average overheads were computed using the geometric mean, which is considered best practice for report-

ing normalized values such as percentages of overhead [61]
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Figure 4.4: Performance of ROPocop

4.2.5 Summary

This chapter presented ROPocop which consists of DEP+ and AntiCRA. DEP+ enforces a

non-executable stack and heap in software. AntiCRA is a set of heuristics designed to detect

program behaviour normally exhibited by ROP exploits. It monitors program execution,

counting the number of consecutive indirect branches and calculating the average num-

ber of instructions in basic blocks. Configurable thresholds allow the user to fine-tune the

thresholds to individual programs, further increasing security. While having a relatively

high overhead, ROPocop is very effective at detecting basic ROP exploits.

Restrictions such as AntiCRA drastically complicate ROP exploit development. An ana-

lyst has to carefully craft a gadget chain that has to contain longer and therefore more com-

plex gadgets. This makes manually keeping track of aliasing, side effects, and preconditions

difficult. Automating this process would provide a great benefit and allow the analyst to

invest more time in other areas of exploit development, such as bypassing mitigations, e.g.,

ASLR or stack canaries. The next chapter discusses possibilities and limits of gadget chain

automation.

4.3 Automated Gadget Chaining

With restrictions imposed by the environment, such as ROPocop, manual exploit develop-

ment gets increasingly difficult. But even without restrictions, as it is currently the case,
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chaining gadgets together manually is a menial task. Many tools which support this process

exist, however, their usefulness is usually limited as their main purpose is gadget discov-

ery. While some employ rudimentary auto-chaining capabilities, they often fail, even when

the necessary, simple gadgets are available. In conclusion, the current state of gadget chain

automation allows for major advancements.

One big issue regarding automation is that the plurality of mitigation techniques, such as

DEP, ASLR, and stack canaries require different techniques to be bypassed. DEP is bypassed

using ROP, which is a universal bypass. However, for bypassing ASLR or stack canaries, a

large number different techniques exist, which apply to different scenarios. This makes full

automation nearly impossible.

Another large challenge automation has to overcome is state explosion: assuming the

exploit developer wants to call a Linux function that takes six arguments, and there are 15

different gadgets for loading each register, this results in 156 × 6! = 8, 201, 250, 000 possi-

ble combinations. This can actually be seen as an example of a good case, as 15 different

gadgets for each register is on the lower side. Clearly, manually evaluating whether the re-

sult of an arbitrary combination is the desired one is not feasible. But even with growing

computational power, analysing billions of complex gadget chains is not realistic.

In the remainder of this chapter we present PSHAPE, a framework that supports ex-

ploit developers in the later steps of exploit development and automates parts of ROP chain

generation.

4.3.1 PSHAPE

PSHAPE assists an analyst during exploit development by offering two distinct features

which set it apart from existing gadget finders or auto-roppers that are publicly available,

namely it (i) provides useful summaries based on gadget semantics, making it straightfor-

ward for an analyst (or tool) to assess and select gadgets, and (ii) chains gadgets together so

that they load registers used to pass parameters to functions with analyst-controlled data.

This allows the invocation of arbitrary functions. PSHAPE also ensures that any precondi-

tions of a gadget (such as that a register has to point to readable memory) are satisfied.

We first define what gadget summaries are and how they are computed in Chapter 4.3.2.

Then, we describe our approach to generate gadget chains in Chapter 4.3.3.

4.3.2 Gadget Summaries

Overview ROP mitigations that (i) monitor program executions and detect short code se-

quences [33, 50, 64, 120] or (ii) require all return operations to return to an instruction fol-

lowing a call instruction [1,120,174,175] force developers into using longer and longer gad-
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gets, or even entire functions [138]. The increasing length of gadgets makes manual analy-

sis and reasoning increasingly difficult. We thus propose gadget summaries, which reflect a

gadget’s semantics in a compact specification that allows analysts to understand a gadget’s

behaviour at a glance. Figure 4.5 shows an example of a gadget summary, with the gadget

on the left, and its summary on the right5. This gadget has two preconditions, because r9

and rsp are dereferenced. The actual effects on the program state are that rsp is increased

by 8, rax receives the value of 1 + [r9 + 4], and rcx is assigned the value of r9.

Method The process of producing summaries is as follows. First, gadgets are identified

by finding return opcodes and backward disassembly. These gadgets are then converted

into an intermediate representation (IR) to simplify analysis. Our current prototype uses VEX

IR, see Chapter 4.3.4.

Based on this IR, PSHAPE propagates all assignments, such as to temporary or real regis-

ters, or memory locations forwards, resulting in a single statement for each real register and

memory location. This single statement (referred to as postcondition) contains all operations

on this register or location, i.e., an abstraction of the new value after a gadget has executed.

This also allows us to readily extract preconditions, such as register or memory dereferences.

Post- and preconditions combined result in a gadget summary, a compact representation of

the state of memory and registers after a gadget has executed along with a list of derefer-

enced registers and offsets. Our syntax for pre- and postconditions is similar to assembler

syntax, and should be intuitive for binary analysts. The current prototype excludes instruc-

tions such as jumps, loops, or bit manipulation in the summaries to reduce the explosion in

state and complexity. We leave more involved search strategies for future work.

As memory is often accessed sequentially using offsets from the same register, one can

compress summaries by merging such accesses into a range. For example, preconditions

[rax], [rax + 8], [rax + 0x10] and [rax + 0x20] can be compressed to:

[rax] <-> [rax + 0x20]

This denotes that all memory between [rax] and [rax + 0x20] has to be read/writeable.

This heuristic sacrifices precision, as not every single byte must be accessed, but helps in

making summaries concise.

Gadget summaries aid the analyst in the process of understanding how a gadget affects

the state of registers and memory and are increasingly helpful, the more instructions and

aliasing a gadget contains. They allow for a more efficient gadget search, as expressing

postconditions when searching for a gadget is much more intuitive and flexible than spec-

ifying a certain instruction. Think, for example, of loading 8 bytes from memory, pointed
5The fact that a reviewer erroneously stated that the summary was wrong actually shows how error-prone

doing this manually is. This reaffirms that our summaries are of great help.
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mov rax , rsp

mov [ rax +20h ] , r9

mov [ rax +18h ] , r8

mov [ rax +10h ] , rdx

mov [ rax +8] , rcx

mov rcx , r9

mov rax , [ rcx ]

inc rax

mov [ rcx +8] , rax

mov rax , [ rcx +4]

inc rax

mov [ rcx +0Ch] , rax

r e t

(a) A candidate gadget.

PRE : [ r9 ] <−> [ r9 + 0xC]

PRE : [ rsp ] <−> [ rsp + 0x20 ]

POST : rsp = rsp + 8

POST : rax = [ r9 + 4] + 1

POST : rcx = r9

(b) Gadget summary for 4.5a.

Figure 4.5: Despite this being a relatively short gadget in mshtml.dll which contains

only 13 instructions (a), analysing it manually is still a cumbersome and error-prone task.

PSHAPE automates this process by creating a simple summary (b). Note that by default

PSHAPE does not display memory write postconditions as they are seldom of interest, and

make the summary harder to read.

to by rsp, into r8. An obvious way of searching for such a gadget is looking for a pop

r8 instruction. However, mov r8, [rsp], or pop rax # mov r8, rax, or pop rax

# xchg rax, r8, and many others work as well. Having to search for all semantically

equivalent instruction sequences is tiresome and error-prone. Using summaries, the analyst

can simply search for the postcondition r8 = [rsp]. This ability is extraordinarily useful

when the analyst needs gadgets that fulfill a specific purpose, for example, a stack pivot

gadget, or a gadget that manipulates memory, such as a write-what-where gadget. Lastly,

gadget summaries are useful for selecting gadgets for automated gadget chain generation,

which we describe in the next chapter.

4.3.3 Gadget Chaining

Our approach aims at finding a valid and short gadget chain which loads analyst-controlled

data, i.e., relative to rsp, into registers. This allows invoking an arbitrary function with

analyst-specified parameters. It consists of three steps, as shown in Figure 4.6. In the first
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Figure 4.6: Overview of our approach to generate gadget chains. In Step 1, we extract

gadgets up to a certain size and create summaries, selecting those that can be used to load m

parameters into registers. In Step 2 we select a set of n gadgets for the individual parameters

to constrain the search space. In Step 3 we search if gadgets can form a chain by permuting

and analysing the available gadgets.

step, PSHAPE extracts gadgets from the target binary and computes summaries. Then,

based on the summaries, it filters the list of gadgets to keep only the ones related to initializ-

ing registers that are used for passing function parameters. The second step combines these

gadgets into chains. For a chain, pre- and postconditions are computed, and if the chain has

the desired postconditions, the third step commences. In this step, PSHAPE analyses the

validity of each chain is and adds gadgets to satisfy any preconditions.

Step 1: Gadget Extraction and Summary Computation. First, PSHAPE extracts gadgets

from a given binary. This step yields a list of gadgets for which we then compute gadget

summaries. The results are stored, making them available for the analyst.

Next, it filters gadgets to keep only the ones related to initializing registers used for

passing parameters to functions. On 64-bit Windows those are rcx, rdx, r8, and r9, in that

order. On 64-bit Linux the registers used for parameter passing to functions are rdi, rsi,

rdx, rcx, r8, and r9, in that order. Additional parameters are passed on the stack in both

cases. Our summaries simplify filtering, as gadgets that do not set the registers stated above

to a value that can be controlled by the analyst are discarded automatically.

We divide these gadgets into two categories, load and mod. Gadgets in the load category

overwrite a given register, e.g., a pop instruction, while gadgets in the mod category modify

it, e.g., an add instruction. Gadgets in the load category are favoured, and within this cate-

gory, gadgets that use rsp-relative memory dereferences are preferred, as rsp needs to be

under the control of the analyst anyway when using ROP. For example, a pop rcx gadget

is preferred over a mov rcx, [rax] gadget. This is because the former gadget uses rsp,

which is analyst-controlled, as opposed to the latter gadget, which uses rax, which may or

may not be analyst-controlled. Based on this ranking and the number and severity of pre-,

and postconditions, the n most suitable gadgets for loading each parameter register with

arbitrary data are selected and passed to Step 2. We present details about gadget selection

in Chapter 4.4.
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Step 2: Combining Gadgets into Chains. In the second step, the gadgets from Step 1 are

combined and all possible permutations are computed. Remember that in Step 1, n gad-

gets are selected for every parameter register. Assuming a function that takes m parameter

registers is invoked, this results in nm×m! possible chains. For each chain, pre- and postcon-

ditions of the whole chain are computed, and if a chain’s postconditions are not the expected

result, i.e., the registers used to pass parameters do not contain user-controlled data, it is dis-

carded. Instead of exhausting the search space, we stop the exploration after the first viable

combination is found. Strategies other than this generate and test approach are certainly

possible, however, our vast reduction of the search space by grading gadgets, allows us to

use this approach and find a solution in a timely fashion.

Step 3: Solving Pre-Conditions. The third step solves preconditions. Indeed, it may hap-

pen that a chain generated in Step 2 contains preconditions such as register dereferences,

meaning that the analyst needs to have the possibility to initialize the dereferenced reg-

isters, so they contain the address of a valid memory area. In Step 3, PSHAPE attempts to

build a gadget chain that allows loading user-controlled data into an arbitrary register. Once

such a gadget is found it is prepended to the incoming chain, forming a new chain. The new

chain is then checked for pre- and postconditions again to make sure it does indeed initialize

dereferenced registers and does not interfere with the original chain. Note that the number

of iterations is limited (four in our prototype), so the chain does not grow forever. This could

happen if a gadget which is added to solve a precondition, itself adds a new precondition.

Our gadget chaining fully automates the process of stitching gadgets together to initial-

ize registers used for passing parameters to functions with data the analyst controls. It also

adds gadgets to the chain to ensure any dereferenced registers are also initialized with data

the analyst controls. This approach simplifies exploit development, especially if functions

taking many parameters are called or if the available gadgets consist of many instructions.

4.3.4 Implementation

PSHAPE uses a standard technique to discover gadgets: first, using pyelftools [11] and

pefile [27], it finds executable sections in an input binary. Afterwards it scans these sec-

tions forwards byte by byte until it finds a return opcode, and stores these offsets in a list.

Then, using several threads, it disassembles backwards from these offsets using the Cap-

stone framework [112]. To limit the number and complexity of gadgets and to speed up the

discovery process, the analyst can specify the minimum and maximum size, i.e., number

of instructions, of a gadget. Please note that we keep disassembling backwards for 5 more

bytes (a configurable heuristic), even when the maximum gadget length has been reached,
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or if, e.g., a ret instruction is encountered. Since the disassembly can change depending on

preceding bytes, this helps us discover more gadgets.

If the disassembly is successful, i.e., yields only legal instructions, we convert, or lift,

this gadget to Valgrind’s VEX IR [111] using PyVEX [146]. Lifting the original assembly

code to VEX has the advantage that it is much simpler to analyse because there are fewer

instructions and side effects are made explicit. After this conversion, VEX assignments are

propagated forward, resulting in a single statement for each real register and memory loca-

tion, which contains all operations on this register or location, i.e., an abstraction of the new

value after a gadget has executed.

In the next chapter, we evaluate PSHAPE, the implementation of our approach, and

discuss three gadget chains that it created fully automatically.

4.3.5 Comparison with Existing Tools

In Table 4.3 we have listed the tools designed to help an analyst to create ROP exploits.

All tools extract gadgets from a given binary (syntactic search, column 1). However, only

half compute semantic information from gadgets (semantic search, column 2), i.e., take into

account what a gadget does, instead of how it does it. About 70% state that they can auto-

mate gadget chain generation (gadget chaining, column 3). Only one is Turing complete,

however, this is not a requirement for ROP development since most actual exploits do not

use branching or loops. About 85% are open-source and/or have a binary version publicly

available. All but one can handle PE binaries, and all but two can handle ELF binaries.

About 70% can handle 64-bit binaries.

OptiROP and Q are not publicly available and also were not made available to us upon

request. We also excluded nrop, as its scope is different from a traditional gadget finder:

given a certain instruction as input, it only finds gadgets that are semantically equivalent.

We managed to compile ROPC although it has been unmaintained for more than three years,

and GitHub issue reports are not answered. Unfortunately, it could not extract gadgets from

any of the binaries we use in the evaluation, which is why we exclude it.

For our evaluation we use a total of nine binaries. We use five Windows binaries: fire-

fox.exe, iexplore.exe, chrome.exe, mshtml.dll, and jfxwebkit.dll and four Linux binaries:

chromium, apache2, openssl, and nginx, representing a total of 147 MiB of executable data.

Detailed information about the binaries as well as PSHAPE itself are available on the com-

panion website 6.

6https://sites.google.com/site/exploitdevpshape/.
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Tool
Syntac-

tic

Search

Seman-

tic

search

Gadget

Chain-

ing

Turing

Com-

plete

Open-

Source

Binary

avail-

able

PE ELF 64-bit

PSHAPE X X X × X X X X X

OptiROP [113] X X X × × × X X X

nrop [167] X X × × × × X X X

Q [140] X X X × × × X X X

ROPC [118] X X X X X X X X X

DEPLib [152] X X X × X X X × ×
Agafi 1.1 [66] X × X × X X X × ×
mona.py 2.0

(rev566) [38]
X × X × X X X × ×

ROPgadget 5.4 [136] X × X × X X X X X

rp++ 0.4 [154] X × × × X X X X X

Ropeme [53] X × × × X X × X ×
ropper 1.8.7 [137] X × X × X X X X X

MSFrop [109] X × × × X X X X ×

Table 4.3: Summary of ROP tools. Note that many tools have limitations regarding gadget

discovery and chaining, which we discuss in Chapter 4.3.5 and Chapter 4.3.5, respectively.

Gadget Discovery

Here we compare the different gadget discovery routines. For a tool to be considered in

these experiments, we require that it can read ELF or PE binaries and is able to find gad-

gets in 64-bit binaries. DEPlib, Agafi, mona.py, Ropeme, and MSFrop do not fulfil these

requirements and were therefore discarded, leaving us with the following tools to compare

to: ROPgadget, rp++ and ropper. We configured them to look for gadgets up to a max-

imum length of 35 instructions. This is a drastic increase compared to gadgets currently

used, which mostly tend to contain only two or three instructions, but at the same time still

allows all evaluated tools to finish within a reasonable time frame. Table 4.4 summarizes the

results.

ROPgadget works out of the box, but its output contains duplicates, i.e., the same gadget

at the same address is listed more than once. We informed the developer about this bug.

ROPgadget does not have an option to define the maximum number of instructions in a

gadget. Only the maximum number of byte per gadget can be set. We ran our experiments

using 110 bytes for the maximum length, leading to an average opcode size of about 3 bytes

per instruction. Originally, we planned to use a much larger number to make sure we do not

miss any gadgets. However, even with a depth of 110 bytes the evaluation of ROPgadget

on Chromium took over 6 hours, consuming 160 GB of RAM. Afterwards, we used a script

to go through the results and remove any gadgets that contained more than 35 instructions.
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Therefore, we miss gadgets that contain 35 or fewer instructions but are longer than 110

bytes.

rp++ originally comes with a fixed maximum gadget length of 20 instructions. We modified

the source code, changing this upper limit to 35 and recompiled it, so it is able to correctly

discover longer gadgets, too.

ropper While running small-scale experiments using ropper, we noticed that it does not

show call and jump instructions in gadgets it finds. This makes it difficult to use for an

analyst, because every gadget would have to be checked for omitted instructions before it

can be used. Furthermore, ropper did not find some simple and short gadgets. We informed

the developer, who acknowledged the bugs. The updated version (1.8.7) does not omit any

instructions in its output. It does, however, still show gadgets containing conditional jumps.

Such gadgets are difficult to use, especially since no information is given about which paths

are taken under which circumstances.

Since all four tools use slightly different filters or sometimes contain bugs, it is diffi-

cult to compare their results. For example, ROPgadget and rp++ keep gadgets that contain

privileged instructions (e.g., in, out, or hlt), which likely terminate the process. ROPgad-

get’s output contains duplicate gadgets, and ropper keeps gadgets that contain conditional

jumps, which the other tools do not. We filter and clean the output of all tools, removing

any duplicates and privileged instructions as well as jumps. As Table 4.4 shows, all tools

find a similar number of gadgets. Next, we look into the tools’ gadget chaining abilities.

Gadget Chaining

Here, we evaluate the tools in regards to their ability to create gadget chains. As before, our

minimum requirements for a tool to be considered in the experiments are that it can build

ROP chains for 64-bit Windows or 64-bit Linux, correctly initializing the registers used for

passing parameters to functions. We use functions that are regularly used in ROP exploits.

For Linux, the goal is to create two chains, one that loads registers with analyst-controlled

data for invoking a function that takes three arguments (e.g., mprotect or execve) and

one chain that loads registers with analyst-controlled data for invoking a function that takes

six arguments (e.g., mmap). For Windows, the goal is to create a chain that loads regis-

ters with analyst-controlled data for invoking a function that takes four arguments (e.g.,

VirtualProtect or VirtualAlloc). From this point on, we refer to these goals by the

function’s names but keep in mind that any function using the same number of parameters

or fewer can be invoked, too.

From the list of available tools, only ROPgadget and ropper satisfy our requirements.

While DEPlib, Agafi, and mona.py, have gadget chaining capabilities, they only work on 32-

bit Windows platforms. Since the gadget discovery routine of ropper is flawed, we manually

87



CHAPTER 4. GADGET CHAINING

make sure that all gadgets in its final ROP chain are in fact correct and usable. The results

of the experiments have been summarized in Table 4.5.

ROPgadget is not able to create chains for Windows platforms, does not offer any targets

for a ROP chain and instead always tries to build a chain to create a shell using execve.

However, this function requires initializing three arguments, allowing us to evaluate at least

one goal for Linux. ROPgadget successfully created a chain for chromium, but it did not

succeed on any of the remaining binaries.

ropper cannot create chains for 64-bit Windows, but offers two targets for ROP chain cre-

ation on 64-bit Linux, mprotect and execve, which both take three arguments. Again,

this allowed us to evaluate at least one of the goals we specified previously. However, for

openssl and nginx, ropper was able to initialize only rdi, despite discovering several useful

and simple gadgets that load the other registers. For apache2, ropper successfully initial-

ized rdi and rdx. Ropper successfully created a ROP chain for chromium, initializing all

three registers used for passing parameters to mprotect or execve. All gadgets used in

the chains are without side-effects and without preconditions. Thus, no additional work to

satisfy preconditions is necessary.

PSHAPE successfully created fully functional chains for both mprotect and mmap for the

following Linux binaries: chromium, apache2, and nginx. We present and discuss the chains

for apache2 and nginx in Chapter 4.3.6. For openssl it was only possible to create a chain

to mprotect. This was due to the fact that no gadget was found to initialize r9, which we

confirmed manually using both PSHAPE and ROPgadget. On Windows binaries, PSHAPE

failed to build chains for firefox.exe and iexplore.exe, and we confirmed, again using both

PSHAPE and ROPgadget, that, in fact, the necessary gadgets are not present in the respec-

tive binaries. For mshtml.dll and jfxwebkit.dll, PSHAPE successfully built a chain. It also

created a chain for chrome.exe, however, it required another gadget to be prepended man-

ually. (details below) Hence, we did not count it towards successful chain creations in Ta-

ble 4.5. We discuss this chain and its shortcomings in Chapter 4.3.6.

In cases where PSHAPE failed to build a chain, we evaluate whether a human analyst

would actually be able to succeed. In other words, we assessed if it was in fact not possible

to build a chain, due to a lack of useful gadgets, or if our tool’s limitations were to blame.

In the case of openssl and iexplore.exe, the former is the case. While there are gadgets that

initialize the registers, they are often initialized to a constant value. Other times we found

a gadget that does initialize a register to an analyst-controlled value, however, unless that

value is a specific constant, a jump is taken in the same gadget, effectively forcing the analyst

to initialize the register with that specific value. For firefox.exe, an analyst can create a ROP

chain. The gadgets that have to be used are complex, requiring initialization of several

gadgets and memory locations to ensure that jumps are not taken. Since PSHAPE cannot
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Binary PSHAPE rp++ ropper ROPgadget

firefox.exeW 6,709 6,182 5,445 6,259

iexplore.exeW 928 888 836 888

chrome.exeW 64,372 58,890 52,991 59,969

mshtml.dllW 1,329,705 1,239,403 1,099,466 1,242,616

jfxwebkit.dllW 1,172,718 1,076,350 960,091 1,086,061

chromiumL 5,358,283 5,159,712 4,579,388 5,130,856

apache2L 24,164 22,722 18,061 22,875

opensslL 6,978 6,829 5,377 6,845

nginxL 26,314 25,700 21,081 25,245

Table 4.4: Number of gadgets found by each tool on the given binaries, as determined by

our evaluation. L denotes Linux and W , Windows.

Function PSHAPE ropper ROPgadget

VirtualProtectW 2/4 n/a n/a

mprotectL 4/4 1/4 1/4

mmapL 3/3 n/a n/a

Table 4.5: It is possible to build chains to mprotect for all four Linux binaries, line mprotect

shows how many of those chains each tool creates. For mmap, only three of the Linux binaries

have the necessary gadgets to build a chain and this line shows how many of those each

tool is able to create. Chains to VirtualProtect exist in four out of the five Windows

binaries, this line shows how many of them each tool creates. n/a indicates that the tool

does not support calling a function that requires the tool to initialize the required number of

arguments. L denotes Linux and W , Windows.

yet handle flags, it filters such gadgets out, as it cannot fulfil the preconditions in order to

guarantee that the correct branch is taken. Therefore, it was unable to automatically generate

a chain in this case.

4.3.6 PSHAPE in Practice

In this chapter, we evaluate three chains that were created fully automatically by PSHAPE.

Note that we assume a realistic, unrestricted environment, i.e., PSHAPE can use arbitrary

gadgets. Later, in Chapter 5, we evaluate PSHAPE under constraints such as CFI and miti-

gations monitoring the program to detect ROP-like behaviour.
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Chain for apache2. The chain is presented in Figure 4.7. Gadgets 2 to 7 are used to initialize

the registers used for passing parameters. After computing permutations of those chains

and their pre- and postconditions, PSHAPE detects that rax is dereferenced by gadget 6 and

before that, aliased with ebp (gadget 4). Therefore, another gadget is added that initializes

rbp, allowing the whole chain to execute correctly. An even shorter chain could have been

created by arranging the gadgets in such a way, that gadgets 7 and 4 execute before gadget 6.

In this case, gadget 7 initializes rbp, gadget 4 copies it to rax, which is then dereferenced by

gadget 6. This would make the first gadget unnecessary. However, PSHAPE does not detect

that, as it uses the first permutation whose postconditions are correct (see Chapter 4.3.3).

G1 0x3ebe8 pop rbp ; ret ;

G2 0x46774 pop rdi ; ret ;

G3 0x57abd pop rsi ; ret ;

G4 0x7800d pop rcx ; mov eax, ebp ; add rsp, 8 ;

pop rbx ; pop rbp ; ret ;

G5 0x41200 pop rdx ; pop rbx ; ret ;

G6 0x4d552 pop r8 ; mov rax, qword ptr [rax] ;

ret ;

G7 0x7800c pop r9 ; mov eax, ebp ; add rsp, 8 ;

pop rbx ; pop rbp ; ret ;

Figure 4.7: Gadget Chain for apache2

Chain for nginx. The chain is presented in Figure 4.8. In the first iteration, the chain con-

sists of gadgets 3 to 8, which are used to initialize the registers used for passing parameters.

Gadget 6 dereferences rax and rbx, which is why PSHAPE initializes these two registers

by adding gadgets 1 and 2 to the chain. Gadget 8 dereferences rbx, which is initialized by

the seventh to last instructions of gadget 6.

Chain for chrome.exe. Originally, PSHAPE could not create a chain. For exemplary pur-

poses we disabled the filter that removes gadgets containing conditional instructions and

present the result in Figure 4.9. Gadgets 2 to 5 initialize the registers used for passing pa-

rameters. PSHAPE correctly detected that there are no better-suited gadgets for initializing

r9 and resorts to using gadget 2, prepended by gadget 1 to make r15 analyst-controlled. As

stated before, PSHAPE currently ignores flags, hence it is not able to automatically satisfy

the precondition of the cmovns instruction, which checks the sign flag. To ensure the chain

executes correctly, the analyst has to prepend, e.g., a simple xor rax, rax ; ret gadget

to the chain. Since this chain is incomplete, we do not count it as successful creation.
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G1 0x412dab pop rax ; add rsp, 8 ; ret ;

G2 0x45d594 pop rbx ; ret ;

G3 0x406c20 pop rdi ; ret ;

G4 0x42892b pop rsi ; ret ;

G5 0x425242 pop rcx ; ret ;

G6 0x444965 pop r8 ; mov qword ptr [rax], rbx ;

mov rax, qword ptr [rsp + 8] ; mov

qword ptr [rbx + 0x28], rax ; mov rax,

qword ptr [rsp + 0x18] ; mov qword ptr

[rbx + 0x18], rax ; mov edx, 0 ; mov

rax, rdx ; add rsp, 0x58 ; pop rbx ;

pop rbp ; pop r12 ; pop r13 ; pop r14

; pop r15 ; ret ;

G7 0x45a8c4 pop rdx ; ret ;

G8 0x424219 mov r9, qword ptr [rsp + 0x28] ; mov

qword ptr [rbx + 0x48], r9 ; mov r10,

qword ptr [rsp + 0x30] ; mov qword ptr

[rbx + 0x50], r10 ; mov r11, qword ptr

[rsp + 0x38] ; mov qword ptr [rbx +

0x58], r11 ; add rsp, 0x48 ; pop rbx ;

pop rbp ; pop r12 ; pop r13 ; pop r14

; pop r15 ; ret ;

Figure 4.8: Gadget Chain for nginx

G1 0x56c63 pop r15 ; ret ;

G2 0x25272 cmovns r9d, dword ptr [r15] ; ret

0x2b48 ;

G3 0x9fec6 pop r8 ; ret ;

G4 0x385da pop rdx ; ret ;

G5 0xa15d3 pop rcx ; ret 0x6e9 ;

Figure 4.9: Gadget Chain for chrome.exe

Note that any padding required between gadgets, e.g., to account for additional pop

instructions or constants added to rsp, is added automatically, but omitted here to increase

readability.
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4.3.7 Summary

This chapter presented PSHAPE, a tool to partially automate ROP chain generation. To

make automation possible, some assumptions are necessary, such as that an attacker wants

to invoke a function as quickly as possible. This assumption is strict but realistic. However,

even then the number of useful gadgets is likely still very large, and iterating through all

possible permutations is not feasible. To reduce the number of gadget candidates further,

a metric to assess the quality of a gadget is required. This allows ranking the available

gadgets which, in turn, allows PSHAPE to use the most suitable gadgets first. The next

chapter introduces such a metric. Once PSHAPE found a valid chain, it automatically adds

gadgets to make all dereferenced registers analyst-controlled.

Furthermore, PSHAPE creates summaries, a concise representation of a gadget’s seman-

tics. This is very valuable for analysts, as trying to understand what gadgets consisting of 20

or more instructions do, is a difficult task. These summaries can then be used to quickly find

gadgets that assist in bypassing other mitigations techniques, for example to find primitives

that allow arbitrary reads.

4.4 Gadget Selection

As the previous chapter shows, the search space grows infeasibly large quickly, restricting

the approach of simple random combination of all gadgets to very small binaries which have

few usable gadgets. A better solution that scales is to pre-select gadgets which have a high

probability to work well in practice. To do this, we propose to order gadgets according to

their quality, which allows us to target the search towards paths that are more likely to suc-

ceed. We achieve this using a tool called GaLity. GaLity is a standalone tool and uses four

metrics to assess the quality of a set of gadgets. This allows comparing binaries with respect

to their usefulness for ROP. In PSHAPE we utilize one of these metrics, which grades indi-

vidual gadgets based on various properties, such as effects on registers and memory, side

effects, preconditions, and changes to rsp. We propose analysts run GaLity on interesting

binaries first to get an overview over which binaries will be the most useful ones in terms of

gadgets and then, in a second step, apply PSHAPE to them. As we discuss in Chapter 5.4,

this can drastically reduce the time it takes to create a ROP chain.

In general, attackers favor simple gadgets that have a minimum of side effects and pre-

conditions. For example, consider a gadget that loads the value that rsp points to into rax.

A clean and effective gadget for achieving this would be: pop rax ; ret. In contrast,

the gadget: pop rax ; push rsp ; pop rbp ; mov [rdi+0x34fa], rsp ; ret

0x2dbf1 will also achieve this goal, but will also have the side-effect of overwriting rbp.

In addition, this gadget has the precondition that rdi+0x34fa has to point to writeable
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memory. Finally, ret 0x2dbf1 not only adds a large offset to rsp (which can be an issue

if attacker-controlled memory is scarce, because it might set rsp to point outside of the al-

located memory), it also misaligns the stack pointer, which is something normal programs

do not do, hinting at a possible exploit execution.

4.4.1 Assessing Gadget Quality

In general, evaluating the quality of a set of gadgets is non-trivial. This originates primar-

ily from the fact that an attacker’s goal is potentially unknown, and that given sufficient

gadgets, one can construct practically any program. In addition, the gadgets required by

an attacker to achieve a goal vary by operating system and architecture. For example, on

Windows x86, parameters to functions are usually passed on the stack, while on Windows

x86-64 and x64, the first four parameters are passed through registers and all remaining

ones are passed on the stack [105], leading to differences in gadget requirements. As a run-

ning example, we consider exploits targeting VirtualProtect, which is an API call that

commonly serves as an avenue to bypassing NX protection on Windows 7 x64 [55, 87, 128].

We stress that our four metrics are not bound to evaluating this specific API call, as they

consider the more general attack setup and execution procedures associated with ROP ex-

ploits. In addition, we perform an in-depth analysis of the various properties of gadgets

with respect to their side effects, preconditions, usability, and usefulness.

Metric 1: Gadget Distribution

The gadget distribution metric is calculated by partitioning a given set of gadgets into twelve

broad categories, with each category representing a class of operations, such as arithmetic

and data move, as shown in Table 4.6. Gadgets are assigned to a category based on the first

instruction of a gadget. For example, the gadget add rax, 0x40 ; pop rcx ; ret

would be assigned to the arithmetic category. We categorize on the basis of the first instruc-

tion because every suffix of a gadget is itself a gadget, and will be categorized separately.

Note that gadgets containing privileged or sensitive instructions [84] are discarded and not

considered in further steps because they trap in user mode, thereby making a gadget unus-

able.

Analysing the frequency distribution of gadgets amongst categories is helpful as it al-

lows comparing whether the distribution of gadgets in a transformed binary is similar to

the one in the original binary, or if the number of gadgets in a category useful for an attacker

has grown. Gadget quality and usefulness, however, are not measured and addressed by

the remaining metrics.

While Table 4.6 does not contain all instructions of the x86-64 instruction set, it covers

99% of the instructions found in gadgets of the binaries we used in the evaluation, i.e., a
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Table 4.6: Gadget Categories

Category Included Instructions

Data move pop, push, mov, xchg, lea, cmov, movabs

Arithmetic add, sub, inc, dec, sbb, adc, mul, div, imul, idiv,

xor, neg, not7

Logic cmp, and, or, test

Control flow call, sysenter, enter, int, jmp, je, jne, jo, jp,

js, lcall, ljmp, jg, jge, ja, jae, jb, jbe, jl,

jle, jno, jnp, jns, loop, jrcxz

Shift & Rotate shl, shr, sar, sal, ror, rol, rcr, rcl

Setting flags xlatb, std, stc, lahf, cwde, cmc, cld, clc, cdq

String stosd, stosb, scas, salc, sahf, lods, movs

Floating point divps, mulps, movups, movaps, addps, rcpss, sqrtss,

maxps, minps, andps, orps, xorps, cmpps, vsubpd,

vpsubsb, vmulss, vminsd, ucomiss, subss, subps,

subsd, divss, addss, addsd, cvtpi2ps, cvtps2pd,

cvtsd2ss, cvtsi2sd, cvtsi2ss, cvtss2sd, mulsd,

mulss, fmul, fdiv, fcomp, fadd

Misc wait, set, leave

MMX pxor, movd, movq

NOP nop

RET ret

total of 20 MiB containing over one million instructions. Due to the large size of the x86-64

instruction set (over 700 instructions [84]), it would be a time-consuming, manual process to

cover all existing instructions. However, the fact that we do not achieve 100% coverage does

not pose a threat to the metric, because all important and common instructions are catego-

rized. The few we we did not include do not have a big impact on the overall distribution.

A manual inspection of uncategorised instructions in other binaries (we used several Win-

dows 7 system libraries) revealed that there were many different instructions but in small

numbers in any of the inspected binaries, which is what we expected.

Metric 1, Gadget Distribution, allows to assess whether a transformed binary contains more

gadgets in categories useful to an attacker.
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Metric 2: Gadget Environment Setup Capabilities

When constructing a ROP chain, an attacker must be able to prepare the environment and

operands for subsequent gadgets in a chain. For example, when attempting to perform a

Windows API call via ROP, an attacker will generally require the ability to specify the call’s

arguments. The degree of ease with which an attacker may manipulate memory will af-

fect the choice of gadgets that she uses. In this metric, we consider the most general case,

whereby an attacker is able to inject arbitrary arguments into a target program’s memory

space at a known location. This could be possible due to, e.g., a browser with Javascript

turned on, allowing heap sprays and Heap Feng Shui [153], and other vulnerabilities like

information leaks [143]. We further assume the vulnerable program is running on a Win-

dows 7 x64 machine, which is a very common platform.

Consider the case whereby an attacker wants to invoke VirtualProtect, which takes

four arguments. On the aforementioned target platform, the first four parameters are passed

through registers (rcx, rdx, r8, r9). In such a scenario, an attacker needs to make sure

that those registers contain the correct values before VirtualProtect can be invoked. To

achieve that, three different kinds of gadgets are required, namely: (i) a stack pivot gadget

which points rsp to the injected data, i.e., function arguments and addresses of gadgets,

(ii) gadgets to load the arguments from memory to the appropriate registers, and (iii) a

gadget that calls VirtualProtect.

This metric looks for gadgets that achieve these goals and distinguishes between gadgets

that achieve only the required task or include other instructions. Of course, our tool reports

gadgets only if the register that receives the argument is preserved, i.e., not overwritten by

another instruction in the same gadget. In case the attacker wants to invoke an API that re-

quires fewer arguments, like VirtualAlloc [104], fewer gadgets that load arguments are

required.

A gadget is only useful in preparing a destination register rd for use within a ROP chain if it

does not destroy its value prior to returning. More concretely, consider a gadget consisting

of a sequence of n instructions i0; i1; . . . in−1; ret. If i0 assigns the value to rd, any subse-

quent instruction ik with k > 0 that has rd as a target operand and falls within the data move,

arithmetic, or shift and rotate categories is tagged as being potentially destructive. A second

refinement step is subsequently carried out, whereby the quirks of the target architecture are

7It might appear peculiar that xor, neg, not are in the arithmetic category - however, this is how exploit

developers often use these instructions. Since using nullbytes is sometimes prohibited by the environment,

writing the negated or xor-ed value in memory, loading it to a register and then using the same operation on it

again is used to bypass this restriction.
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taken into account. For instance, instructions that output to a 32 bit subregister are handled

differently than those that output to 16 or 8 bit subregisters. This is due to the behaviour

that writing to a 32 bit subregister automatically zero-extends the value to fill the entire 64

bit register [84].

In the case of exploits making use of VirtualProtect, one finds that three of the four

arguments that this API call takes (namely lpAddress, the start address of the memory

region whose protection level is to be changed, dsSize, the size address of the memory

region whose protection level is to be changed, and lpflOldProtect, an address where

the old protection level will be stored) do not need to be precise. If lpAddress is a few bytes

off an attacker can take this into account, just like a slightly smaller or larger size argument.

lpflOldProtect is not used by an attacker and can therefore be written to any location.

Therefore, the metric only deems two instructions destructive, namely pop and mov in 64

bit or 32 bit subregisters, as they overwrite the whole register.

Metric 2, Gadget Environment Setup Capabilities, allows one to assess whether a transformed

binary contains gadgets typically required for an attack where the environment gives the attacker

a lot of leeway.

Metric 3: Gadget Environment Setup Capabilities - Restricted

In contrast to the previous metric, this metric considers the case where an attacker is re-

stricted in the ways in which she can inject values into memory. In particular, we consider

the scenario where an attacker may only inject data and hijack the control-flow via strcpy.

This complicates the direct injection of values into memory because many parameters to

API calls often contain null-bytes, which terminate strings, thus requiring that the argu-

ments to be used for correctly invoking a function such as VirtualProtect be calculated

dynamically at runtime. Imagine an attacker wants to indeed invoke VirtualProtect. By

taking a look at the required parameters it becomes clear that many will contain null-bytes:

lpAddress should point to the payload. Depending on the memory layout, this address

may contain null-bytes (e.g., in a classic stack buffer overflow vulnerability on Windows,

stacks are located at very low addresses making it very likely for the address to have its

leftmost bytes set to null). dwSize must not be too large, i.e., lpAddress + dwSize must

include only mapped pages. The value must also not be too small, as it has to cover the

memory area where the payload is injected. Typically, the value is a couple of thousand

bytes or smaller, which is a value that cannot be injected directly. flNewProtect is usually

set to 0x40, which cannot be injected directly because the leftmost bytes are null,and re-

quires to be computed at runtime. lpflOldProtect will receive the old protection value,
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hence must point to writable memory, which may contain null-bytes. This example shows

that in a scenario where the attacker is restricted, she will require various arithmetic and

data-move gadgets in order to dynamically calculate parameters for API calls using gad-

gets.

The metric gauges the presence of gadgets that may be used to assist in evaluating values

dynamically at runtime, specifically gadgets that move data between memory and registers

and compute values: pop, push, add, sub, adc, dec, inc, neg, not, mov, sbb, xchg, xor.

As in the case of Metric 2, a gadget is only considered if rd is preserved.

Metric 3, Gadget Environment Setup Capabilities - Restricted, allows one to assess whether a

transformed binary contains gadgets typically required for an attack where the attacker has to

make many calculations at runtime and cannot inject arbitrary data into a program.

Metric 4: Gadget Quality

The aforementioned metrics do not measure the quality of a gadget per se, rather they pro-

vide an indication whether a specific attack can succeed given a set of gadgets. This metric

focuses on assessing the quality of an individual gadget, whereby a high-quality gadget is

defined as one having no preconditions or side-effects on other registers or memory. An

example of a precondition is that a specific register has to point to writeable memory, e.g., in

the gadget pop rax ; mov [rdi+0x34fa], rsp ; ret. To be usable, rdi+0x34fa

must point to writeable memory. A side-effect is, for example, that data in another register

is overwritten or the stack pointer is manipulated in a way that is difficult to undo, e.g.,

in the gadget pop rax ; mov rcx, 0xb0adffff ; leave ; ret. This gadget over-

writes the values in rcx, rsp, and rbp. To express gadget quality, a score is calculated

for every gadget considered useful (see Metric 3). The score starts at 0 and is increased for

side-effects and preconditions. Therefore, a higher score equals worse gadget quality. In the

following we give a high-level overview of the two criteria we use to calculate the score for

gadget quality.

Scoring Instructions

To measure side-effects and preconditions, the metric inspects every instruction in a gad-

get. It reuses the categories introduced in Chapter 4.4.1 and assigns a score to each category,

which reflects how destructive the instructions in the respective category are. Table 4.7 sum-

marizes the scoring system. Depending on the destination of the instruction, we apply a

modifier to the originally assigned score. The metric recognizes three possible kinds of des-

tinations: rsp, which should ideally not be modified, because it is responsible for the control
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flow and always needs to point to the next gadget. Therefore, modifications of rsp usually

have the largest influence on the overall score of a gadget. The second possible destination

is rd, the destination register in the first instruction of a gadget, for which we assume that

this is also the register an exploit developer is interested in not being modified later on in

the same gadget (in case a memory address is the target there is no active register; in case

of an xchg instruction, both registers are active registers). Modifications of rd are generally

not desirable, but, depending on the modification, can be reversible, e.g., simple arithmetic.

The third possible destination is any other general purpose register, except rsp and rd, the

metric considers all undesirable side effects and preconditions. Even if they do not affect

rsp or rd directly, they still negatively impact the final score.

Table 4.7: Rules for grading instructions. Category describes the category of the instruc-

tion (see Table 4.6). “RSP”, “rd” and “Other” are possible targets for instructions, the stack

pointer, the destination register of the first instruction of a gadget, or any of the other general

purpose registers respectively. Categories not in the table generally do not affect the score,

with some exceptions discussed in Chapter 4.4.1

Category RSP rd Other Notes

Data move 2 1 0.5 As opposed to all other instructions in this category,

push does not affect the score of a gadget, since the

only side effect it has is on rsp, and changes to rsp

are covered by our rsp monitoring.

Arithmetic 2 1 0.5 Arithmetic instructions that modify a register other

than rsp can be taken into account by the exploit

developer. E.g., if r8 should contain 0x40, and

a gadget like pop r9 ; add r8, 0x10 ; ret

has to be executed as the last gadget, the developer

can simply make sure r8 contains the value 0x30

before invoking the last gadget. Arithmetic instruc-

tions modifying rsp are covered by our rsp moni-

toring.

Shift & Rotate 3 2 0.5 These instructions are handled similarly to arith-

metic instructions, however, they are more difficult

to take into account, which is why they increase the

score more than arithmetic instructions.

Because some instructions have side-effects which need to be taken into account, we

require a few exceptions in addition to these rules. Exception #1: Certain instructions that
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modify rsp need to be treated differently. This covers all instructions where we can stat-

ically determine the offset applied to rsp. Depending on how much rsp is changed, we

adjust the overall score of the gadget. The details on this are covered in the next paragraph.

In case it is not possible to statically determine the offset (e.g., leave or pop rsp), the

overall score of the gadget is increased depending on the category of the instruction, as pre-

sented in Table 4.7. Exception #2: The leave instruction does not fall in any of the categories

covered by the rules in Table 4.7 but must be graded as it affects rsp. This is taken care of

through our rsp monitoring. Exception #3: Remember from Chapter 4.4.1 that we do not

cover all of the x86-64 instructions. This means that in very rare cases (less than 0.1%) we

cannot grade a gadget because it contains an instruction which we did not categorize. We

discard these gadgets from the analysis. Exception #4: If an instruction uses a dereferenced

register as destination, its score is increased according to the rules in Table 4.7, because this

poses a precondition - e.g., the gadget pop r8 ; mov [rdx], 0xfffa ; ret has the

precondition that rdx has to point to writable memory before the gadget can be used.

Monitoring rsp Offset

As already alluded to in the previous paragraph, modifications to rsp need to be tracked

for each gadget. A short example will make clear why this is necessary. Assume the fol-

lowing gadget: pop rax ; add rbx, 0x10ff ; push rcx ; ret. In this case, rsp

will point to the value of rcx which was pushed on the stack and jump to it, which is not

the injected address of the next gadget. For keeping track of the rsp offset the metric uses

an SP-Score, SPS, which starts at 0, is increased for pop and decreased for push and ret n

instructions. Of course, also arithmetic instructions on rsp are monitored and the respec-

tive value is added to or subtracted from SPS. When all instructions in a gadget have been

analysed and SPS is not 0 this means that rsp does not point to the next gadget, which

might be problematic. A positive score can be thwarted by adding padding, i.e., arbitrary

data. A negative score, however, means that rsp will point to an address earlier used or

data outside the memory area the attacker can control. Therefore, if SPS is negative, the

overall score of the gadget will be increased by 2. Also, if SPS is large (more than 4 KiB) or

not a multiple of 4 (for 32 bit binaries) or 8 (for 64 bit binaries), the score of the gadget will

be increased by 1, as the former requires an attacker to be able to control more memory and

the latter indicates a misaligned stack pointer, which can be detected easily by exploit mit-

igation tools. If the instruction that operates on rsp takes a register and not an immediate

(e.g., a add rsp, rcx), SPS is not changed but the gadget score will be increased by rules

in Table 4.7.
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Metric 4, Gadget Quality, allows one to assess the overall “quality” of a set of gadgets in respect

to side-effects, preconditions, and usability.

4.4.2 Discussion of the Metrics

We believe that metrics that measure the quality of a set of gadgets should focus on practical

relevance rather than a theoretical concept such as Turing completeness [144]. Furthermore,

they should also reflect whether real-world exploits can be constructed. Since at least Mi-

crosoft has seen a shift from classic, stack-based vulnerabilities to heap-related vulnerabil-

ities [10], we believe that metrics should still consider both of these classes of attacks. Last

but not least, the metrics should not be limited to well-defined and realistic attack scenarios,

but also express overall gadget quality, i.e., side-effects and preconditions. To summarize,

metrics as described above should:

• Be practical, i.e., applicable to real scenarios

• Measure if popular current attacks are possible with a given set of gadgets

• Measure if popular past attacks are possible with a given set of gadgets

• Measure gadget “quality”

The proposed metrics achieve all these goals. We would like to stress that our aim is to assess

whether a binary contains gadgets suitable for today’s ROP attacks. Recently, attacks that

use longer and more complex gadgets have been proposed by researchers [26,49,70,71,139].

Such attacks are designed to bypass specific mitigation techniques, which are not yet used

in the real world. Thus, in current environments, these complex attacks are cumbersome as

they offer no advantage over using regular and simpler ROP gadgets, and we are not aware

of any of these complex attacks being used in the wild.

Because of the lack of practical relevance, we decided not to treat gadgets potentially use-

ful in such complex attacks differently than the other gadgets. Nevertheless, if new mitiga-

tions that limit the gadgets an attacker may use become widespread and attackers are forced

to use more complex and longer gadgets and start using tools that assist in finding gadgets

semantically rather than through simple pattern matching, our metrics should be updated to

reflect this new environment. This is why we also plan to use a more abstract interpretation

of gadgets and look into leveraging synergies created by combining gadgets in the future.

Furthermore, we also leave an extension to jump-oriented programming (JOP) [18, 28] for

future work.
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4.4.3 Evaluation

We have implemented the described metrics in a tool named GaLity, which takes a textfile

describing gadgets as input and outputs the metrics we described in Chapter 4.4.1. We

demonstrate that it is both practical and useful by applying it to binaries that are compiled

to use MPX [132], Intel’s latest mitigation technique against runtime exploits. MPX intro-

duces new registers that contain the lower and upper bound of a pointer, and instructions

that operate on those registers. This enables compilers to emit additional instructions (MPX

and non-MPX) that tracks the sizes of buffers and accesses to those buffers at runtime, which

can prevent buffer overflows. On processors which do not support MPX, MPX instructions

execute as nop, making MPX compatible with older CPUs, but leaving those binaries un-

protected by MPX. Given this observation one thus must wonder if the increased code size

and thus increased availability of gadgets might actually decrease a binary’s security on

such systems. We then compare the results obtained by applying GaLity to binaries com-

piled with MPX support with the results obtained by applying GaLity to the same binaries

compiled without MPX support, and determine which binaries, according to our metrics,

contain more helpful gadgets for an attacker.

To discover gadgets and write them to a file we used ROPgadget 5.4 [136], with a maxi-

mum gadget length of 15 bytes. For this specific case study we decided to consider duplicate

gadgets and not just unique gadgets, because if an important gadget exists in a binary sev-

eral times, this binary is more attractive to an attacker than a binary which contains only one

copy of that gadget. This matters, for example, in a scenario where a patch (security-related

or not) or any other program modification removes said gadget. Furthermore, taking dupli-

cate gadgets into account helps us measure if the additional gadgets introduced by MPX are

copies of useless or useful gadgets.

We compiled programs taken from SPEC CPU2006, using Intel’s latest GCC release with

MPX support at the time of writing (5.0.0) [158]. We decided to use the SPEC suite because

it covers a wide range of application types, and present parts of real programs. MPX is

still new and not integrated too well in build chains, which made compiling any program

a challenge. However, we got the following eight programs to work properly: 401.bzip2,

403.gcc, 435.gromacs, 456.hmmer, 458.sjeng, 464.h264ref, 473.astar, 482.sphinx3. We com-

piled all binaries four times, with and without MPX and with and without optimizations

(-O2). However, for our evaluation we only considered optimized binaries as this reflects

real-world binaries.

First of all, we noticed that MPX has a big influence on file size. With no optimizations,

an MPX binary is, on average, almost 3 times as large as a non-MPX binary. With optimiza-

tion level 2, which we used throughout our experiments, an MPX binary is still, on average,

86% larger compared to a non-MPX binary. We noticed that, while the file size increases by
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Table 4.8: Results for Metrics 2, 3, and 4. Columns rcx, rdx, r8 and r9 denote the number of

gadgets which load a value in the respective register, column pivot denotes the number of

stack pivot gadgets. The first number denotes the number of gadgets without side-effects,

the second number the number of gadgets with side-effects. Column call denotes the num-

ber of gadgets usable for indirect calls. These numbers are required for computing Metric 2.

Column useful denotes the number of useful gadgets, calculated by Metric 3. Column Q

denotes the number of gadgets with a score of 1 or lower, calculated by Metric 4.

Metric 2 Metric 3 Metric 4

Program rcx rdx r8 r9 pivot call useful Q

h264ref 4 / 29 1 / 8 1 / 9 0 / 0 0 / 453 62 6,056 3,749

h264ref MPX 7 / 29 0 / 23 1 / 3 0 / 1 0 / 666 91 7,546 4,906

gromacs 228 / 320 39 / 135 0 / 2 0 / 0 0 / 1071 84 10,823 6,563

gromacs MPX 228 / 418 36 / 141 0 / 7 0 / 1 0 / 1214 155 13,002 8,170

hmmer 6 / 24 3 / 27 0 / 3 0 / 0 0 / 509 33 5,539 3,303

hmmer MPX 8 / 21 4 / 19 0 / 2 0 / 0 0 / 469 39 6,188 3,952

gcc 4 / 71 2 / 219 0 / 14 0 / 8 6 / 5295 588 50,766 32,949

gcc MPX 2 / 52 4 / 71 0 / 9 0 / 4 0 / 4337 763 59,522 39,342

sphinx3 2 / 14 0 / 11 0 / 0 0 / 0 0 / 230 29 3,189 1,964

sphinx3 MPX 1 / 11 0 / 7 0 / 0 0 / 0 1 / 251 52 3,484 2,323

sjeng 1 / 3 0 / 3 0 / 0 0 / 1 0 / 122 72 1,444 983

sjeng MPX 1 / 4 0 / 5 0 / 0 0 / 0 0 / 137 76 1,982 1,414

astar 1 / 4 0 / 4 0 / 0 0 / 0 0 / 122 11 1,009 584

astar MPX 0 / 5 0 / 2 0 / 0 0 / 0 0 / 140 12 1,203 698

bzip2 0 / 1 0 / 1 0 / 0 0 / 0 0 / 99 13 790 466

bzip2 MPX 0 / 1 0 / 1 0 / 0 0 / 0 0 / 112 16 987 605

a factor of almost two, the number of gadgets does not increase in the same way, MPX bi-

naries contain, on average, only 23% more gadgets than non-MPX binaries. This is because

the number of gadgets is directly related to the number of ret instructions in a binary. MPX

does not add many new functions but rather makes existing functions longer, therefore only

few intended new ret instructions appear. Unintended ret instructions [135] might ap-

pear in some cases, however, since the new opcodes introduced by MPX do not contain a

ret opcode, the possibility for this is rather low.

Analysing the increase or decrease of gadgets for each category due to MPX, illustrated

in Figure 4.10, shows that most categories gain gadgets. Arithmetic gadgets, which are

helpful to an attacker, increase in both number and diversity. Data-move gadgets grow in

numbers, but do not change a lot in respect to diversity. An interesting observation is that
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Figure 4.10: This figure shows the average growth of gadgets for each category due to MPX

across all eight applications. The blue bar represents the increase considering only unique

gadgets, while the red bar represents the total increase of gadgets, i.e., also duplicate gad-

gets. We use the information about how the number of unique gadgets changes to infer if

and how gadget variety is affected by a program transformation.

NOP-gadgets increase drastically, which is presumably due to the fact that the new MPX

instructions are interpreted as multi-byte NOPs on hardware that does not support MPX.

The categories flag, string and floating-point have a high standard deviation, indicating

that changes in these categories are very application-specific. Gadgets in the miscellaneous

category decrease both in diversity and number. Despite the large increase of nop gadgets,

the overall distribution of gadgets remains roughly the same, as Figure 4.11 shows. Overall

we conclude that MPX binaries contain more gadgets in categories helpful to an attacker.

Next, we are interested in the two attack scenarios, i.e., Metrics 2 and 3. Regarding Met-

ric 2, there is no big difference in the availability of gadgets. Gadgets that load arguments in

r8 or r9 are rare in both MPX and non-MPX binaries, and sometimes the MPX binary and

sometimes the non-MPX binary contains some. Regarding Metric 3, the number of useful

gadgets increases in every binary and on average by 17%, making MPX binaries a much

more attractive target to attackers. We summarize the results in Table 4.8. Lastly, we deter-

mine overall gadget quality using Metric 4. In all eight binaries, the MPX versions contain
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Figure 4.11: This figure shows the average distribution of gadgets across all eight applica-

tions. The blue bar represents the non-MPX binaries, while the red bar represents the MPX

binaries.
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more gadgets of high quality, i.e., with fewer side-effects and preconditions, as the last col-

umn of Table 4.8 shows.

By taking all four results into consideration we come to the conclusion, that binaries

compiled with MPX support are favourable for an attacker. Metric 1 shows an overall in-

crease of gadgets in useful categories, further confirmed by Metric 3, which also shows that

the additional gadgets in those categories are useful in practice. Metric 2 gives no indication

that MPX or non-MPX binaries contain more of the required gadgets. Metric 4 gives the in-

dication that MPX binaries tend to have more gadgets of higher quality, making them easier

to use for an attacker.

4.4.4 Summary

GaLity allows analysts to determine the quality of a gadget or a set of gadgets. This is

very important for PSHAPE, because attempting ROP chain automation with hundreds of

thousands of gadget candidates is not feasible. The ability to grade gadgets allows PSHAPE

to try the gadgets with the highest probability of working first, instead of combining random

gadgets. It also allows an exploit developer to quickly assess whether a binary contains a set

of gadgets preferable over another binary’s gadgets. This is especially important because the

process of extracting, analysing, and summarizing gadgets takes a lot of time, as we show

in Chapter 5.4. When the exploit developer knows which binaries contain the most useful

gadgets, she can apply PSHAPE to those first. We quantify this potential for reducing the

time it takes to build a ROP chain in Chapter 5.4.

4.5 Summary

In this chapter we showed how ROP is used in practice. Exploit developers want to execute

regular shellcode as soon as possible, because encoding a whole payload using only ROP is

cumbersome and overly complicated. To achieve this, an API that changes the protection

level of a range of memory is usually invoked. This is a straight-forward task where the

attacker has a lot of freedom, because there are no restrictions on what kinds of gadgets an

exploit developer can use.

First, to mitigate this issue, we presented AntiCRA, which is a part of ROPocop, a tool

that places certain restrictions on the attacker and the ROP chain. ROPocop is a dynamic

ROP detector which monitors program execution and picks up on program behaviour that

can be linked to ROP or other code-reuse attacks. It is based on a heuristic that is triggered

by consecutive indirect control-flow transfers and measures the average length of previous

basic blocks. If a certain threshold, that can be set by the user to program-specific levels, is

undershot, an alarm is raised.

105



CHAPTER 4. GADGET CHAINING

Then we introduced PSHAPE, a framework to support exploit developers with the cre-

ation of ROP chains. It providing helpful, concise summaries for gadgets, which help the

developer to determine the effects of a gadget on the program state. It also automatically

chains gadgets together, ensuring preconditions are satisfied. PSHAPE battles the usual

problems of automation by reducing the search space in such a way, that only the most

useful gadgets are considered, greatly reducing the number of gadget candidates.

Lastly, we described GaLity, a set of metrics that determines quality and usefulness of

a gadget or a set of gadgets. PSHAPE uses these results to select the most useful gadgets,

which enables feasible automation.
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Cross System Case Studies

We evaluated our tools throughout this thesis: in Chapter 4.2.4 we evaluated ROPocop and

showed that it is very effective at preventing code-reuse attacks. In Chapter 4.3.6 we eval-

uated PSHAPE, showing ROP chains it created fully automatically for current, realistic sce-

narios. In these scenarios, no restrictions are placed on ROP chains, which reflects the cur-

rent situation. Lastly, in Chapter 4.4.3, we applied GaLity to various binaries and showed

its usefulness in assessing gadget quality.

In this chapter, we evaluate how well PSHAPE works against ROPocop, and, more gen-

eral, how well it works in settings where mitigation techniques restrict the gadgets which

are available to the exploit developer. For this we select a subset of the applications used

in Chapter 4.3.6, using only applications that PSHAPE successfully created a chain for. Our

reasoning for this that if PSHAPE was not able to build a chain before, where no restrictions

were in place, either due to its limitations or because necessary gadgets were not available, it

will not be able to succeed now, under heavy restrictions. To increase the challenge further,

we select the two smallest binaries, which are apache2 and nginx, because smaller binaries

tend to contain fewer gadgets. We use three different attacks against two types of mitiga-

tions. More precisely we show how PSHAPE

• bypasses heuristics such as AntiCRA, which monitor gadget length, by using only

gadgets of a specified minimum length in order not to trigger the heuristic (Chap-

ter 5.1).

• bypasses heuristics such as AntiCRA, which monitor gadget length, by using a heuris-

tic breaker. To achieve this, we extended PSHAPE to find heuristic breaker candidates

(Chapter 5.2).

• bypasses mitigations which enforce that every ret instruction has to return to after a

call instruction, i.e., enforces that all gadgets are call-preceded (e.g., [1,120,174,175]).
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To achieve this, we extended PSHAPE to filter out gadgets that are not call-preceded

(Chapter 5.3).

While the fact that such mitigations can be bypassed is not new [25,26,49,71], our tool is

the first one to automate this process.

5.1 Case Study 1

In this scenario, we investigate the creation of a ROP chain that evades heuristics by avoid-

ing the “typical” ROP gadgets, i.e., gadgets a human analyst opts for. Such gadgets are short,

achieve a simple task, and have no preconditions or side effects. Instead of using those gad-

gets, we force PSHAPE to use longer gadgets. Based on the results from our ROPocop eval-

uation (see Table 4.2), we chose a minimum length of five instructions, which leads to ROP

chains with an average gadget length of 5. This is high enough to bypass even heuristics

with much stricter thresholds than ours.

Figure 5.1 shows a chain PSHAPE created for Apache 2, initializing all six registers used

for passing parameters. Most of them are quite simple, without any aliasing or complex

instructions. Gadget 1 initializes rax, as it is later dereferenced by gadget 3. It also adds a

small constant (5bh) to rax, so the exploit developer has to keep this in mind when injecting

the value that will be loaded into rax. Gadget 2 initializes rdi and r8 and overwrites rbx,

rbp, r12, and r13. This is a common pattern also shown by subsequent gadgets. The

reason is that registers rbx, rbp, and r12-15 must be preserved by the callee, if it uses

them. Therefore, as part of the function prologue, those registers are saved on the stack,

then used by the callee during its execution, and restored upon returning to the caller, as

part of the function epilogue. Gadget 3 initializes rsi and dereferences rax, which gadget 1

initialized. Gadgets 4, 5, and 6 initialize rcx, rdx, and r9, respectively, without any adverse

side-effects.

Figure 5.2 shows a chain PSHAPE created for nginx, initializing all six registers used for

passing parameters. As one can see, the chain is very complex and would have been difficult

to create manually. Gadget 1 initializes rbx, because it is later dereferenced by gadgets 7 and

8. Gadget 2 initializes rax, because it is later dereferenced by gadgets 2, 3, 4, 5, 6, and 8. Note

that while rax is changed slightly by gadgets 3, 4, and 5, the changes only affect its lower

two bytes, which does not cause problems. Gadgets 3, 4, 5, and 6 initialize rdi, rsi, rcx,

and rdx, respectively. They also dereference rax, which has been initialized by gadget 2.

Gadget 7 initializes r9 and dereferences rbx, which has been initialized by gadget 1. It also

initializes rbx again and it is important that the exploit developer makes sure it is initialized

with a legal address, as it is dereferenced again by gadget 8. Gadget 8 also initializes r8 and

dereferences rbx, initialized by gadget 7, and rax, initialized by gadget 2.
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G1 0x4162f pop rax ; add al, 0x5b ; pop rbp ; pop

r12 ; ret ;

G2 0x781c4 pop rdi ; pop r8 ; add rsp, 0x18 ; pop

rbx ; pop rbp ; pop r12 ; pop r13 ;

ret ;

G3 0xe7c1 pop rsi ; add byte ptr [rax], al ; adc

dword ptr [rax], eax ; sbb byte ptr

[rax], al ; ret 0x29 ;

G4 0x7800d pop rcx ; mov eax, ebp ; add rsp, 8 ;

pop rbx ; pop rbp ; ret ;

G5 0x41b13 pop rdx ; pop rbx ; pop rbp ; pop r12

; ret ;

G6 0x7800c pop r9 ; mov eax, ebp ; add rsp, 8 ;

pop rbx ; pop rbp ; ret ;

Figure 5.1: Gadget chain with long gadgets for Apache 2.

5.2 Case Study 2

In this scenario we bypass heuristics, but, as opposed to the previous scenario, by mixing

simple, short gadgets with very long gadgets, thereby artificially increasing the average

length of ROP gadgets. This allows us to use mostly simple gadgets, but still bypass heuris-

tics. We achieve this by incorporating heuristic breakers [26, 49, 71] (see Chapter 2.4.3), into

the gadget chains. We extended PSHAPE to assist in finding such gadgets. Using our sum-

maries PSHAPE calculates a score for each gadget that fulfils the following two require-

ments:

• The gadget does not change rsp by more than x bytes. Changes to rsp are generally

undesired, as they require the exploit developer to control a larger memory area. x can

be set by the user, in our experiments we used 100 bytes.

• The Gadget contains at least y instructions. y can be set by the user, in our experiments

we used 25 instructions.

PSHAPE then calculates a score for each gadget that fulfils these requirements as follows:

score = len− (preconds× 1.2)− (postconds× 0.8)

preconds is the number of registers the exploit developer needs to control because they

are dereferenced by the heuristic breaker. postconds is the number of registers the heuris-

tic breaker affects. We weigh these properties slightly differently, because using a heuristic
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G1 0x40be80 pop rbx ; mov eax, edx ; shr eax, 0xf

; xor eax, edx ; ret ;

G2 0x45f6a6 pop rax ; pop rbp ; cli ; dec dword

ptr [rax - 0x77] ; ret 0xf4b8 ;

G3 0x422383 adc al, ch ; pop rdi ; xor bh, dh ;

dec dword ptr [rax - 0x77] ; ret ;

G4 0x4346ba add al, ch ; pop rsi ; or al, 0xfd ;

dec dword ptr [rax - 0x77] ; ret ;

G5 0x403572 add al, ch ; pop rcx ; adc al, byte

ptr [rax] ; add byte ptr [rax - 0x39],

cl ; ret 0xffff ;

G6 0x41a68a add byte ptr [rax], al ; add byte ptr

[rax - 0x77], cl ; pop rdx ; xor byte

ptr [rax - 0x77], cl ; ret ;

G7 0x424219 mov r9, qword ptr [rsp + 0x28] ; mov

qword ptr [rbx + 0x48], r9 ; mov r10,

qword ptr [rsp + 0x30] ; mov qword ptr

[rbx + 0x50], r10 ; mov r11, qword ptr

[rsp + 0x38] ; mov qword ptr [rbx +

0x58], r11 ; add rsp, 0x48 ; pop rbx ;

pop rbp ; pop r12 ; pop r13 ; pop r14

; pop r15 ; ret ;

G8 0x444965 pop r8 ; mov qword ptr [rax], rbx ;

mov rax, qword ptr [rsp + 8] ; mov

qword ptr [rbx + 0x28], rax ; mov rax,

qword ptr [rsp + 0x18] ; mov qword ptr

[rbx + 0x18], rax ; mov edx, 0 ; mov

rax, rdx ; add rsp, 0x58 ; pop rbx ;

pop rbp ; pop r12 ; pop r13 ; pop r14

; pop r15 ; ret ;

Figure 5.2: Gadget chain with long gadgets for nginx.

breaker as the first gadget can increase the average enough to safely execute short gadgets af-

terwards. At the same time, registers will not contain any important, i.e., analyst-controlled

data yet, so any effects such a gadget has on registers are of no consequence. However, at

the beginning of the chain, the attacker will not have control over many registers, therefore

fewer preconditions are preferred. Of course, all constants can be changed by the user, and
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different scenarios might require different weighing. However, the settings described above

worked very well in our experiments.

Finding heuristic breakers is not a problem in any of the binaries we investigated. List-

ing 5.1 and Listing 5.2 show a good and a bad example of heuristic breakers. While similar in

length (29 and 35 instructions), they greatly differ in regards to their pre- and postconditions.

The first heuristic breaker requires the attacker to control six registers (rax, rsi, rcx, rdi,

rbp, and rbx) and changes rax and rdx. On the other hand, the second heuristic breaker

requires the attacker to control just one register (rax) and changes only the rflags register.

Therefore, this heuristic breaker can easily be inserted at arbitrary points in a ROP chain, if a

sliding window is used to determine average gadget length. Consequently, PSHAPE grades

the two heuristic breakers very differently and assigns the better score to the second one.

PSHAPE makes it very easy to quickly find similar heuristic breakers in all binaries. Us-

ing any of these gadgets, the average can be increased drastically making them very useful

against heuristic-based mitigations. Davi et al. describe how finding such gadgets “was

a non-trivial task that required painstaking analyses and a stroke of luck” [49]. The best

gadget they found consists of 23 instructions, requiring esi and edi to point to writeable

memory, and overwriting esi, edi, eax, ebx, and ebp. Other researchers are more vague

and mention gadgets of length 33 [71] or 22 [26], however, without giving guarantees about

register state. They also do not mention whether they find the gadgets manually or auto-

matically.

We also looked for a “universal” heuristic breaker, i.e., a heuristic breaker that is likely to

be available in many environments. For this scenario we set the minimum length to 25 and

the maximum to 50 and applied PSHAPE to some core Windows libraries. PSHAPE found

one such universal heuristic breaker, shown in Figure 5.3. It is located in ntdll.dll, hence

will be available in any Windows application. It requires the attacker to control two registers

(rdx and rcx) and changes only rax. Depending on the version of Windows and installed

patches this particular gadget might not be available, though. However, the same library

contains plenty of other, similarly well-suited heuristic breakers.

Assuming an exploit developer wants to keep the average length of the ROP chain above

5, and the gadgets she uses always consist of two instructions, approximately every 16th

gadget needs to be a heuristic breaker of length 50. If some gadgets are longer, heuristic

breakers are required less frequently.

This case study also shows how easy it is to extend PSHAPE with new functionality.

Based on our summaries, new features can often be programmed in easily. Expressing a

similar set of rules for finding heuristic breakers directly on assembler code, which is what

other tools output, is a lot more difficult. We discuss the topic of extensibility further in

Chapter 6.
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Listing 5.1: Bad heuristic breaker

add [rax], al

add [rax - 0x77], cl

test [rax + rsi*4], ah

add [rax], al

add [rcx - 0x75], cl

test [rax + rdi*4], ah

add [rax], al

add [rax - 0x77], cl

test [rax + rbp*4], ah

add [rax], al

add [rcx - 0x75], cl

test [rax + rcx*2], ah

add al, [rax]

add [rax - 0x77], cl

test [rax + rcx*8], ah

add [rax], al

add [rcx - 0x75], cl

test [rax + rdx*2], ah

add al, [rax]

add [rax - 0x77], cl

test [rax + rdx*8], ah

add [rax], al

add [rcx + 0xf], al

mov dh, 0x84

and al, 0x58

add al, [rax]

add [rbx - 0x1f3efe20], al

add eax, 0x8908c883

ret 0x41

Listing 5.2: Good heuristic breaker

nop

nop

add [rax], al

add [rax - 0x77], cl

nop

test al, 0

add [rax], al

mov [rax + 0xe8], rdx

mov [rax + 8], rdx

mov [rax + 0x10], rdx

mov [rax + 0x18], rdx

mov [rax + 0x28], rdx

mov [rax + 0x30], rdx

mov [rax + 0x50], rdx

mov [rax + 0x58], rdx

mov [rax + 0x60], rdx

mov [rax + 0x98], rdx

mov [rax + 0xa0], rdx

mov [rax + 0xf0], rdx

mov [rax + 0xf8], rdx

mov [rax + 0x128], rdx

mov [rax + 0x130], rdx

mov [rax + 0x120], rdx

mov [rax + 0x110], rdx

mov [rax + 0x118], rdx

mov [rax + 0xd8], rdx

mov [rax + 0xe0], rdx

mov [rax + 0xb0], rdx

mov [rax + 0xb8], 0

mov [rax + 0x190], rdx

mov [rax + 0x1c0], rdx

mov [rax + 0x150], 7

mov [rax + 0x158], 0x46dd77

add rsp, 8

ret
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nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

mov eax, [rdx]

mov [rcx], eax

mov eax, [rdx + 4]

mov [rcx + 0x54], eax

mov eax, [rdx + 8]

mov [rcx + 0xa8], eax

movzx eax, [rdx + 0xc]

mov [rcx + 0x44], ax

movzx eax, [rdx + 0xe]

mov [rcx + 0x46], ax

movzx eax, [rdx + 0x10]

mov [rcx + 0x52], ax

movzx eax, [rdx + 0x12]

mov [rcx + 0x48], ax

...

...

movzx eax, [rdx + 0x14]

mov [rcx + 0x4a], ax

movzx eax, [rdx + 0x16]

mov [rcx + 0x4c], ax

movzx eax, [rdx + 0x18]

mov [rcx + 0x4e], ax

movzx eax, [rdx + 0x1a]

mov [rcx + 0x50], ax

movzx eax, [rdx + 0x1c]

mov [rcx + 0x98], ax

movzx eax, [rdx + 0x1e]

mov [rcx + 0x9a], ax

movzx eax, [rdx + 0x20]

mov [rcx + 0xa6], ax

movzx eax, [rdx + 0x22]

mov [rcx + 0x9c], ax

movzx eax, [rdx + 0x24]

mov [rcx + 0x9e], ax

movzx eax, [rdx + 0x26]

mov [rcx + 0xa0], ax

movzx eax, [rdx + 0x28]

mov [rcx + 0xa2], ax

movzx eax, [rdx + 0x2a]

mov [rcx + 0xa4], ax

ret

Figure 5.3: Universal heuristic breaker in ntdll.dll.

5.3 Case Study 3

Finally, in our last case study, we use PSHAPE to bypass mitigations that restrict the set of

gadgets to only call-preceded gadgets, like many CFI implementations do [1, 120, 174, 175].

This drastically reduces the number of gadgets, as Figure 5.4 shows1. Usable means without

1Carlini and Wagner [26] found that about 6% of gadgets are call-preceded, while according to our experi-

ments, it is only about 3.3%
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instructions PSHAPE cannot handle, i.e., no calls, jumps, etc. Therefore, these are gadgets

PSHAPE can use for automatically constructing gadget chains. However, keep in mind, that

we only look at one isolated binary. Even small programs usually load several OS libraries,

and a varying number of program libraries. For larger programs, such as browsers, it is

common to have tens of MiB of code to use for ROP.

Binary Usable

Gadgets

Call-preceded

Gadgets

Usable call-

preceded Gadgets

firefox.exeW 6,709 834 202

iexplore.exeW 928 103 20

chrome.exeW 64,372 7,942 2,271

mshtml.dllW 1,329,705 206,097 60,757

jfxwebkit.dllW 1,172,718 150,456 46,730

chromiumL 5,358,283 751,190 189,334

apache2L 24,164 2,141 395

opensslL 6,978 1,022 158

nginxL 26,314 2,046 462

Figure 5.4: Call-preceded gadgets

Figure 5.5 shows a chain PSHAPE generated for nginx. Thanks to a very useful gadget

in nginx, it is possible to initialize all registers using just one gadget, which also happens

to be call-preceded. Of course, this gadget could also have been used in the evaluation of

PSHAPE in Chapter 4.3.6, however, GaLity assigned this gadget a bad score because it is

very long and has lots of side effects. We discuss this behaviour in Chapter 5.5. Figure 5.6

shows the original output of gdb for this gadget.

Figure 5.7 shows a chain PSHAPE created for Apache 2, which initializes all six registers

used for passing parameters using only call-preceded gadgets. The gadgets are very simple

and contain no register dereferences, other than rsp, making them very easy to use. Gadget

1 initializes rdi and r8. Gadget 2 initializes rcx and rsi and, like Gadget 1, overwrites

some callee-saved registers. Gadget 3 initializes rdx. Lastly, gadget 4 initializes r8 again,

but, more importantly, r9.

5.4 Performance

5.4.1 Gadget Summaries

Keep in mind that PSHAPE does a lot of work that goes beyond simple gadget discovery.

In addition to finding and extracting gadgets, it lifts gadgets to VEX IR, analyses them, and
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G1 0x40f4c7 pop rbx ; ret ;

G2 0x4241de mov qword ptr [rbx], r15 ; mov qword

ptr [rbx + 8], r14 ; mov qword ptr

[rbx + 0x10], r13 ; mov qword ptr

[rbx + 0x18], r12 ; mov rcx, qword ptr

[rsp] ; mov qword ptr [rbx + 0x20],

rcx ; mov rsi, qword ptr [rsp + 8]

; mov qword ptr [rbx + 0x28], rsi ;

mov rdx, qword ptr [rsp + 0x10] ; mov

qword ptr [rbx + 0x30], rdx ; mov rdi,

qword ptr [rsp + 0x18] ; mov qword ptr

[rbx + 0x38], rdi ; mov r8, qword ptr

[rsp + 0x20] ; mov qword ptr [rbx +

0x40], r8 ; mov r9, qword ptr [rsp +

0x28] ; mov qword ptr [rbx + 0x48],

r9 ; mov r10, qword ptr [rsp + 0x30]

; mov qword ptr [rbx + 0x50], r10 ;

mov r11, qword ptr [rsp + 0x38] ; mov

qword ptr [rbx + 0x58], r11 ; add rsp,

0x48 ; pop rbx ; pop rbp ; pop r12 ;

pop r13 ; pop r14 ; pop r15 ; ret ;

Figure 5.5: Gadget Chain for nginx setting up six parameters using only call-preceded gad-

gets.

creates semantic summaries. We ran our experiments with a maximum gadget length of 35

on a server with 40 Intel Xeon E5-4640 CPUs, clocked at 2.4 Ghz each, and 224 GB of RAM.

Extraction and analysis of all gadgets up to a maximum length of 35 instructions in our

sample set (approximately 147 MiB of code in 9 real-world binaries) takes about 31 hours.

This leads to an average throughput of about 4.7 MiB/hour, or 1.3 KiB/s. However, we

are dealing with a lot of data: over all binaries PSHAPE finds about 33.5 million gadgets.

This leads to a gadget density of roughly 220,000 gadgets/MiB or 215 gadgets/KiB. Hence

PSHAPE extracts, lifts, analyses, and summarizes an average of 290 gadgets per second

using 40 threads.

PSHAPE periodically dumps its results to the disk, therefore, RAM use is relatively low

(about 800 MiB). This allows PSHAPE to run on regular, consumer-grade hardware. While

it might take about a day to analyse a binary of 10 MiB using a quad-core CPU, it is certainly

possible. Other tools we have evaluated are not able to achieve this in a similar manner.
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Figure 5.6: gdb output of gadget shown in Figure 5.5

.

G1 0x781c4 pop rdi ; pop r8 ; add rsp, 0x18 ; pop

rbx ; pop rbp ; pop r12 ; pop r13 ;

ret ;

G2 0x7820f pop rcx ; pop rsi ; add rsp, 0x18 ;

pop rbx ; pop rbp ; pop r12 ; pop r13

; ret ;

G3 0x58c9c pop rax ; pop rdx ; add rsp, 8 ; pop

rbx ; pop rbp ; ret ;

G4 0x7800a pop r8 ; pop r9 ; mov eax, ebp ; add

rsp, 8 ; pop rbx ; pop rbp ; ret ;

Figure 5.7: Gadget Chain for Apache 2 setting up six parameters using only call-preceded

gadgets.

Furthermore, the step of extracting and analysing gadgets has to be done only once, because

results generated by PSHAPE can be stored and loaded from the disk.

Our current prototype is not optimized and analyses all gadgets. We want to offer sum-

maries even for gadgets that PSHAPE cannot use (e.g., jumps) or that would, under normal
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circumstances, crash the program (e.g., due to privileged instructions). This is probably not

required in most cases, and would allow us to, for example, filter out gadgets that contain

certain instructions before lifting. As our evaluation of PSHAPE in Table 4.4 in Chapter 4.3.5

shows, after filtering unusable gadget a total of 8 million gadgets remains, i.e., about a quar-

ter. In small-scale experiments this translates directly into performance, speeding up the

process by a factor of 4x.

5.4.2 Gadget Chaining

Creation of gadget chains consists of permuting the gadget candidates and then analysing

whether a generated chain is valid. Creating permutations takes less than a second, which

is why we concentrate on the analysis of the resulting chains in this chapter.

In essence, a gadget chain is simply a series of gadgets. After removing the ret instruc-

tions, a gadget chain is basically just one long gadget and can be treated as such. Therefore,

the analysis of gadget chains in PSHAPE uses the same algorithms it uses for gadget sum-

maries and is therefore comparable in performance. However, since the number of gadgets

to analyse is much smaller, it takes less time to run. Assume the same scenario as in Chap-

ter 4.3.5, i.e., creating chains to functions that take four / six parameters and using only the

most suitable gadget. This results in 24 / 720 chains or gadgets that PSHAPE needs to anal-

yse. While those gadget chains are more complex than individual gadgets, PSHAPE is still

able to do analyse hundreds of chains in a matter of seconds.

5.4.3 Time Savings due to GaLity

We now describe how running GaLity before PSHAPE to grade binaries has the potential

to save a large amount of time. GaLity analyses about 17,000 gadgets/s or roughly one

million gadgets per minute using only one single thread. Considering a gadget density

of 220,000 gadgets/MiB, this translates to almost 5 MiB/min. Let us assume an arbitrary

program consists of 20 binaries of varying sizes with a total of 40 MiB of code. Without

GaLity, PSHAPE has to be applied to every binary until it succeeds. In the best case, the

first binary contains all necessary gadgets. In this case, running GaLity provides no benefit

and increases runtime by about eight minutes. On the other hand, in the worst case, where

the last binary contains all necessary gadgets, PSHAPE takes about eight hours to finish2.

This worst case scenario, however, can be prevented by running GaLity first. Unfortunately,

it is not easily possible to quantify how precise GaLity’s recommendations are, as this would

require us to manually assess millions of gadgets, which is not feasible. However, our case

study in Chapter 4.4.3 showed that GaLity produces useful results in realistic scenarios.

2Keep in mind that this number is based on our original benchmarks, using a server with 40 CPUs.
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Furthermore, even in the unlikely case that GaLity completely fails and suggests using the

binary which contains the necessary gadgets last, the total runtime increases by only eight

minutes, which is negligible considering PSHAPE’s runtime.

5.5 Discussion

In Chapter 4.3.6, where we evaluated PSHAPE, we used current, realistic scenarios. In this

chapter, we took into account mitigation techniques that are not widely deployed yet and

really stress the algorithms PSHAPE uses. Our three case studies showed that PSHAPE is

able to automatically generate ROP chains capable of bypassing real mitigation techniques.

By using gadgets a human exploit developer or analyst would shy away from and avoid

due to their length and complexity, PSHAPE is able to create ROP chains which initialize

registers used for passing parameters to functions. While it is not impossible to do this

manually, PSHAPE saves a lot of time the exploit developer can spend on other tasks, such

as bypassing mitigation techniques. Even in cases where it does not succeed, the summaries

it provides are still very helpful in finding useful gadgets.

In case studies 1 and 2, we found that using heuristic breakers are the preferred way

of bypassing heuristics-based mitigations. With PSHAPE they are easy to find and present

in many binaries. Relying on only very long gadgets on the other hand is more challenging

because usable long gadgets may not always exist. The universal heuristic breaker we found

in ntdll.dll can be used with ease in all ROP chains targeting Windows, and ensures the

average length of the ROP chain is high enough to evade even very strict thresholds. The

ability to find suitable heuristic breakers is especially important, if pure ROP exploits are

used. Short, two-staged exploits using only five gadgets might go unnoticed, however,

pure ROP exploits contain hundreds or thousands of gadgets [95]. These gadgets might

trigger heuristics, therefore the exploit developer has to incorporate heuristic breakers to

artificially increase the average in certain intervals. Case study 2 also shows the importance

of our summaries. They allowed us to easily extend PSHAPE and enabled it to find heuristic

breakers, which would otherwise have been a complicated process.

In case studies 2 and 3 we came across gadgets that load several or even all registers used

for passing parameters. PSHAPE does not use these under normal circumstances, because,

due to their length and side effects, GaLity assigns them a bad score. It is debatable whether,

when creating a ROP chain, using one or two gadgets that load all registers are preferable

over using several short and simple gadgets. An advantage of using just one gadget is that

the chance of being detected by a heuristic is very low. On the other hand, such gadgets

may have preconditions, simple gadgets often do not have. We believe that in practice

both options are equal. In some scenarios, one might be advantageous, for example, when

118



CHAPTER 5. CROSS SYSTEM CASE STUDIES

mitigations prevent either approach. In this case, the environment dictates which option

needs to be taken.

We are not aware of other work that discusses gadgets used by PSHAPE in case study

3, i.e., gadgets which initialize all registers used for passing parameters. We suspect this

is likely due to the fact that not much research has been done on ROP automation and the

other tools we know of are not made to handle gadgets this long. The exemplary gadget we

show in Figure 5.5 consists of 29 instructions. Loading important registers starts with the

fifth instruction, hence the useful part of the gadget is 25 instructions long3. The existence of

such gadgets warrants further research regarding their availability. We leave this to future

work.

3Remember that in case study 3 we were using only call-preceded gadgets, hence the whole gadget had to

be used. If call-precedence is not required, the first four instructions can be skipped.
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Future Directions

This chapter discusses directions for future research. As the whole dissertation, its focus

is the topic of ROP chain generation. With promising research on mitigations that greatly

reduce the number of available gadgets, forcing exploit developers to use longer and more

complex gadgets, automation will become essential. Future tools will need the ability to

analyse even very long and complex gadgets which contain control-flow transfers and com-

plex logical and arithmetical instructions.

We divide our ideas for improvement in short-term, which could be implemented in

our current set of tools with relative ease, and long-term, where large portions of the code

require rewriting. More specifically, we consider it likely that a different IR would have to

be used for these extensions, due to the way VEX handles flags.

6.1 Short-term

Dynamic Parameter Generation

Due to restrictions of the environment it might not be possible to use certain characters,

perhaps preventing the injection of parameters. In such a case, fully dynamic parameter

generation at runtime is required. This can be achieved by combining arithmetic gadgets

until the desired target value is reached. However, with potentially millions of gadgets,

a strategy to filter out the most useful ones first and then combine the remaining ones in

a smart way is required. A widely used alternative is to inject a parameter that has been

transformed to remove illegal characters, but whose transformation can be easily reversed.

For example, instead of injecting 1000h, which contains null bytes, an exploit developer can

inject ffffffffffffefffh, load this value into the target register, and then use a gadget

that nots this register.
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More Gadget Types

Many attacks we introduced in Chapter 3.2 rely on the existence of specific gadgets in the

target binary. Adding routines to PSHAPE that help finding such gadgets would increase

its usefulness even further. For example, JOP relies on a dispatcher gadget. Many attacks

require a stack pivot gadget. Finding stack pivot candidates is easy using our summaries:

any gadget whose postconditions ensure that a) rsp is changed by a user-specified number

of bytes or b) rsp is set to another register. Similarly, support for whole attack techniques,

such as COOP [138], could be added.

Side-Effect Calculation

When longer gadgets have to be used, the chance increases that a gadget, as a side effect,

changes the value of a register used later on. Imagine a gadget that loads 11223344h into

a register and the next gadget has the side effect of adding 10h to this register. The analyst

will have to keep this in mind, hence, to ensure the register contains the correct target value,

will have to inject 11223344h − 10h, i.e., 11223334h. While this is a very simple example

where the side effect is a basic mathematical operation, imagine side effects such as shifts,

rotates, or logic instructions, such as neg. In a scenario like that it would be helpful if

PSHAPE had the ability to suggest the value the exploit developer has to inject in order to

end up with the correct target value after all transformations have been applied.

Load-All Gadgets

PSHAPE found interesting gadgets that load all registers used for passing parameters. While

we have not found them being used in real exploits, it would be interesting to know how

common such gadgets are. Using PSHAPE and its summaries it is simple to find them:

any gadget with postconditions where all registers used for passing parameters are initial-

ized with data relative to an exploit developer-controlled register are such candidates. This

shows yet another advantage of our summaries, as they allow easy expansion of PSHAPE’s

features. Based on the summaries it was simple to extend PSHAPE to allow it to find the

heuristic breakers we used in Chapter 5.2.

6.2 Long-term

Flag Handling

In Chapter 4.3.5 we showed that PSHAPE works very effectively in current, realistic envi-

ronments, despite its restrictions. As we showed in Chapter 5, it can even be used to bypass

real mitigation techniques. However, we are certain that CFI will become widely adopted
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in the future. We are already seeing first steps taken with its integration in major compil-

ers [36,101]. It will, however, suffer from early problems similar to ASLR, i.e., programs will

use both CFI-aware and CFI-unaware libraries, allowing attackers to use arbitrary gadgets

from CFI-unaware libraries. Over time, with increasing adoption, programs will be pro-

tected by CFI throughout, drastically limiting the attacker’s choices of gadgets. In such an

environment it will be vital for tools to be able to correctly analyse all gadgets. This requires

them to be able to handle flags correctly. One way of achieving this is to treat a gadget with

conditional instructions as several gadgets.

Consider the simple gadget cmovne rax, rbx ; ret. This gadget can be considered

as two gadgets: one gadget copies rbx to rax and then returns, the other one just returns.

Therefore, this gadget results in the two summaries shown in Figure 6.1.

PRE : ZF = 0

POST : rax = rbx

POST : rsp = rsp−8

PRE : ZF = 1

POST : rsp=rsp−8

Figure 6.1: Summaries of a cmovne rax, rbx ; ret gadget.

More Code-Reuse Techniques

Incorporating more code-reuse techniques such as JOP will be necessary in the future. Intel

recently introduced a mitigation against ROP in hardware [85], which uses a shadow stack,

effectively eliminating ROP, and limiting the legal targets of indirect jumps and calls, making

JOP and other forms of code-reuse difficult. Taking JOP as a starting point, we plan to extend

PSHAPE to be able to use techniques beyond ROP.
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Conclusion

With DEP preventing the execution of injected code, ROP has become a vital part of mod-

ern memory corruption exploits. Promising mitigations against ROP, such as a hardware

shadow stack or SafeStack, are not merely confined to academia anymore, rather they are

gradually being deployed and applied in real-world systems. This process, however, is

slow, and until these mitigations find wide adoption, ROP remains a big threat. Researchers

create attacks almost as quickly as mitigations, turning the topic of ROP into an arms race.

At the same time, despite ROP’s importance, tools supporting the process of developing

ROP exploits are lacking in practical features, even though this is a task regularly attempted

for non-malicious purposes like evaluating mitigation techniques, penetration testing, or

whitehat hacking competitions. Many mitigations against ROP attacks drastically reduce

the number of available gadgets and force exploit developers to use longer, more complex

gadgets. However, even in current environments, where such mitigations are not present

yet, existing tools do not work as expected and are mostly limited to gadget extraction.

This makes ROP exploit development a predominantly manual task, which is both time-

consuming and error-prone.

In this dissertation, we presented novel techniques to ROP exploit mitigation as well as

support for ROP exploit development.

7.1 Summary and contributions

As noted in the thesis statement in Chapter 1.2, this dissertation combines various tech-

niques to make automated ROP chain generation feasible.

We presented the following contributions:

• ROPocop, an environment restriction which detects abnormal program behaviour that

can be linked to code-reuse attacks. It detects real-world ROP exploits, but we also
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used it to show that heuristic-based mitigations can be bypassed in a fully automated

manner by PSHAPE.

• PSHAPE, a framework geared towards practical support for ROP exploit develop-

ment. It creates semantic summaries of gadgets and assembles them to a ROP chain

which initializes all registers used for passing parameters to functions and ensures the

gadgets are safe to use. It works in realistic, current scenarios but also under con-

straints imposed by mitigations such as ROPocop.

• GaLity, a set of metrics that measure gadget quality. It allows sorting gadgets by their

usefulness and therefore results in a vast reduction of the search space.

ROPocop reliably detects ROP exploits and works best when the attacker is not aware of

ROPocop’s presence. Since it is a heuristic, however, an aware attacker can use long gadgets,

or incorporate heuristic breakers into the ROP chain to bypass it. While this is not trivial to

do manually, we show how such a process can be automated. To this end, we developed

PSHAPE.

PSHAPE’s ability to create functioning gadget chains fully automatically, even when

mitigations are deployed, greatly improves on the current state of the art. Our evaluations

and case studies showed its effectiveness and versatility. Apart from evaluating it against

a regular, unprotected system, we also applied it to three use cases, where realistic mitiga-

tions put certain restrictions on the gadgets PSHAPE could use: i) We used PSHAPE to build

ROP chains using only gadgets of length five or more to evade heuristics-based systems. ii)

We used PSHAPE to find heuristic breakers, again, bypassing heuristic-based systems in a

fully automated way. iii) We used PSHAPE to create ROP chains using only call-preceded

gadgets, bypassing mitigations that enforce that every ret has to return to after a call in-

struction. In use case iii), PSHAPE also discovered gadgets that load all registers used for

passing parameters. Such gadgets are interesting because they can reduce the number of

gadgets required in an exploit to one, which warrants further research about their preva-

lence. Furthermore, PSHAPE offers semantic gadget summaries, a concise description of

how a gadget affects memory and registers. These summaries are much easier and quicker

to understand for analysts and simplify finding gadgets that achieve certain tasks. This

makes them a great help to exploit developers in stages preceding ROP chain generation.

While PSHAPE, at this point, cannot use gadgets that contain instructions which change

behaviour depending on flags, we have proposed a solution on how to handle these cases in

future work. This change would allow PSHAPE to find and use even more gadgets, which

will be important when mitigations that reduce the number of available gadgets are widely

deployed. However, as our evaluation and case studies showed, for current and certain

future scenarios this is rarely required and provides little benefit.

126



Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In

ACM Conference on Computer and Communication Security (CCS), pages 340–353, Alexandria,

VA, November 2005.

[2] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds checking:

An efficient and backwards-compatible defense against out-of-bounds errors. In 18th USENIX

Security Symposium, Montreal, Canada, August 10-14, 2009, Proceedings, pages 51–66, 2009.

[3] Aleph One. Smashing the stack for fun and profit. Phrack, 7, 1996.

[4] Starr Andersen and Vincent Abella. Changes to functionality in windows xp service pack 2 -

part 3: Memory protection technologies, August 2004.

[5] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios Portokalidis,

and Sotiris Ioannidis. The devil is in the constants: Bypassing defenses in browser JIT engines.

In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, Cal-

ifornia, USA, February 8-11, 2014, 2015.

[6] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger, and

Jannik Pewny. You can run but you can’t read: Preventing disclosure exploits in executable

code. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Secu-

rity, Scottsdale, AZ, USA, November 3-7, 2014, pages 1342–1353, 2014.

[7] Michael Backes and Stefan Nürnberger. Oxymoron: Making fine-grained memory randomiza-

tion practical by allowing code sharing. In 23rd USENIX Security Symposium (USENIX Security

14), pages 433–447, San Diego, CA, August 2014. USENIX Association.

[8] Arash Baratloo, Navjot Singh, and Timothy K. Tsai. Transparent run-time defense against

stack-smashing attacks. In Proceedings of the General Track: 2000 USENIX Annual Technical Con-

ference, June 18-23, 2000, San Diego, CA, USA, pages 251–262, 2000.

[9] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross. CAIN: silently breaking

ASLR in the cloud. In 9th USENIX Workshop on Offensive Technologies, WOOT ’15, Washington,

DC, USA, August 10-11, 2014., 2015.

[10] Dennis Batchelder, Joe Blackbird, David Felstead, Paul Henry, Jeff Jones, Aneesh Kulkarni,

John Lambert, Marc Lauricella, Ken Malcolmson, Matt Miller, Nam Ng, Daryl Pecelj, Tim

Rains, Vidya Sekhar, Holly Stewart, Todd Thompson, David Weston, and Terry Zink. Mi-

crosoft security intelligence report volume 16, 2013.

127



BIBLIOGRAPHY

[11] Eli Bendersky. pyelftools. https://github.com/eliben/pyelftools.

[12] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for unsafe

languages. In Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design

and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, pages 158–168, 2006.

[13] Andrew R. Bernat and Barton P. Miller. Anywhere, any-time binary instrumentation. In Pro-

ceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools,

PASTE ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[14] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: An efficient ap-

proach to combat a broad range of memory error exploits. In Proceedings of the 12th USENIX

Security Symposium, Washington, D.C., USA, August 4-8, 2003, 2003.

[15] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for comprehensive

protection from memory error exploits. In Proceedings of the 14th Conference on USENIX Security

Symposium - Volume 14, SSYM’05, pages 17–17, Berkeley, CA, USA, 2005. USENIX Association.

[16] David Bigelow, Thomas Hobson, Robert Rudd, William W. Streilein, and Hamed Okhravi.

Timely rerandomization for mitigating memory disclosures. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-6,

2015, pages 268–279, 2015.

[17] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. Hacking blind.

In Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages 227–242, Wash-

ington, DC, USA, 2014. IEEE Computer Society.

[18] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented program-

ming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’11, pages 30–40, New York, NY, USA, 2011.

ACM.

[19] Erik Bosman and Herbert Bos. Framing signals - a return to portable shellcode. In Proceedings

of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages 243–258, Washington, DC,

USA, 2014. IEEE Computer Society.

[20] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. Protecting C++ dynamic dispatch

through vtable interleaving. In 23nd Annual Network and Distributed System Security Sympo-

sium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

[21] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen Crane,

Michael Franz, and Per Larsen. Leakage-resilient layout randomization for mobile devices.

In 23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, Cal-

ifornia, USA, February 21-24, 2016, 2016.

[22] Mark Brand and Chris Evans. Significant flash exploit mitigations are live in

v18.0.0.209. https://googleprojectzero.blogspot.de/2015/07/significant-

flash-exploit-mitigations_16.html.

128

https://github.com/eliben/pyelftools
https://googleprojectzero.blogspot.de/2015/07/significant-flash-exploit-mitigations_16.html
https://googleprojectzero.blogspot.de/2015/07/significant-flash-exploit-mitigations_16.html


BIBLIOGRAPHY

[23] Brandon Bray. Compiler security checks in depth. http://msdn.microsoft.com/en-

us/library/aa290051(v=vs.71).aspx, February 2002.

[24] Nathan Burow, Scott A. Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per Larsen,

and Michael Franz. Control-flow integrity: Precision, security, and performance. CoRR,

abs/1602.04056, 2016.

[25] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross.

Control-flow bending: On the effectiveness of control-flow integrity. In 24th USENIX Secu-

rity Symposium (USENIX Security 15), pages 161–176, Washington, D.C., August 2015. USENIX

Association.

[26] Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern defenses. In

23rd USENIX Security Symposium (USENIX Security 14), pages 385–399, San Diego, CA, August

2014. USENIX Association.

[27] Ero Carrera. pyelftools. https://github.com/erocarrera/pefile.

[28] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav

Shacham, and Marcel Winandy. Return-oriented programming without returns. In Proceedings

of the 17th ACM Conference on Computer and communications security, CCS ’10, pages 559–572,

New York, NY, USA, 2010. ACM.

[29] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. Drop: Detecting

return-oriented programming malicious code. In Proceedings of the 5th international Conference

on Information Systems Security, ICISS ’09, pages 163–177, Berlin, Heidelberg, 2009. Springer-

Verlag.

[30] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-control-data

attacks are realistic threats. In Proceedings of the 14th Conference on USENIX Security Symposium

- Volume 14, SSYM’05, pages 12–12, Berkeley, CA, USA, 2005. USENIX Association.

[31] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida. Stackarmor:

Comprehensive protection from stack-based memory error vulnerabilities for binaries. In 22nd

Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California,

USA, February 8-11, 2015, 2015.

[32] Xiaobo Chen. Aslr bypass apocalypse in recent zero-day exploits. https://www.fireeye.

com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-

zero-day-exploits.html.

[33] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H. Deng. Ropecker: A

generic and practical approach for defending against ROP attacks. In 21st Annual Network and

Distributed System Security Symposium, NDSS 2014, San Diego, California, USA, February 23-26,

2014, 2014.

[34] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer overflow attacks.

In Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS 2001),

Phoenix, Arizona, USA, April 16-19, 2001, pages 409–417, 2001.

129

http://msdn.microsoft.com/en-us/library/aa290051(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa290051(v=vs.71).aspx
https://github.com/erocarrera/pefile
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html


BIBLIOGRAPHY

[35] Clang Team. Clang 4.0 documentation: Safestack. http://clang.llvm.org/docs/

SafeStack.html.

[36] Clang Team. Control flow integrity design documentation. http://clang.llvm.org/

docs/ControlFlowIntegrityDesign.html.

[37] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro, Christo-

pher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing control: On the effec-

tiveness of control-flow integrity under stack attacks. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, pages 952–963, New York, NY,

USA, 2015. ACM.

[38] corelanc0d3r. mona.py. https://github.com/corelan/mona.

[39] corelanc0d3r. Universal dep/aslr bypass with msvcr71.dll and mona.py. https:

//www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-

msvcr71-dll-and-mona-py/, July 2011.

[40] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. Using DISE to protect return addresses

from attack. SIGARCH Computer Architecture News, 33(1):65–72, 2005.

[41] Crispan Cowan. Stackguard: Automatic adaptive detection and prevention of buffer-overflow

attacks. In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, USA, January

26-29, 1998, 1998.

[42] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza

Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical code randomization re-

silient to memory disclosure. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,

CA, USA, May 17-21, 2015, pages 763–780, 2015.

[43] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas Davi,

Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. It’s a trap: Table

randomization and protection against function-reuse attacks. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-6,

2015, pages 243–255, 2015.

[44] Stefano Cristalli, Mattia Pagnozzi, Mariano Graziano, Andrea Lanzi, and Davide Balzarotti.

Micro-virtualization memory tracing to detect and prevent spraying attacks. In 25th USENIX

Security Symposium (USENIX Security 16), pages 431–446, Austin, TX, August 2016. USENIX

Association.

[45] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. The performance cost of shadow

stacks and stack canaries. In Proceedings of the 10th ACM Symposium on Information, Computer

and Communications Security, ASIA CCS ’15, pages 555–566, New York, NY, USA, 2015. ACM.

[46] Roman Danyliw. Ms-sql server worm. http://www.cert.org/historical/

advisories/CA-2003-04.cfm.

[47] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koeberl, Dean

Sullivan, Orlando Arias, and Yier Jin. HAFIX: hardware-assisted flow integrity extension. In

130

http://clang.llvm.org/docs/SafeStack.html
http://clang.llvm.org/docs/SafeStack.html
http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://github.com/corelan/mona
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
http://www.cert.org/historical/advisories/CA-2003-04.cfm
http://www.cert.org/historical/advisories/CA-2003-04.cfm


BIBLIOGRAPHY

Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, June 7-11,

2015, pages 74:1–74:6, 2015.

[48] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and Fabian Mon-

rose. Isomeron: Code randomization resilient to (just-in-time) return-oriented programming.

In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, Cal-

ifornia, USA, February 8-11, 2015, 2015.

[49] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching the gad-

gets: On the ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings

of the 23rd USENIX Conference on Security, SEC’14, pages 401–416, Berkeley, CA, USA, 2014.

USENIX Association.

[50] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender: a detection tool to

defend against return-oriented programming attacks. In Proceedings of the 6th ACM Symposium

on Information, Computer and Communications Security, ASIACCS ’11, pages 40–51, New York,

NY, USA, 2011. ACM.

[51] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nurnberger, and Ahmad-Reza Sadeghi.

Gadge me if you can: secure and efficient ad-hoc instruction-level randomization for x86 and

arm. In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communica-

tions security, ASIA CCS ’13, pages 299–310, New York, NY, USA, 2013. ACM.

[52] Theo de Raadt. Exploit mitigation techniques. http://www.openbsd.org/papers/

ven05-deraadt/index.html, 2005.

[53] Long Le Dinh. Ropeme - rop exploit made easy. https://github.com/packz/ropeme.

[54] Chad Dougherty, Jeffrey Havrilla, Shawn Hernan, and Marty Lindner. W32/blaster worm.

http://www.cert.org/historical/advisories/CA-2003-20.cfm.

[55] Paul Ducklin. Anatomy of an exploit - inside the cve-2013-3893 internet explorer zero-day

- part 2. https://nakedsecurity.sophos.com/2013/10/25/anatomy-of-an-

exploit-inside-the-cve-2013-3893-internet-explorer-zero-day-part-2/,

October 2013.

[56] Thomas Dullien, Tim Kornau, and Ralf-Philipp Weinmann. A framework for automated

architecture-independent gadget search. In Proceedings of the 4th USENIX Conference on Of-

fensive Technologies, WOOT’10, pages 1–, Berkeley, CA, USA, 2010. USENIX Association.

[57] Andrew Edwards, Hoi Vo, Amitabh Srivastava, and Amitabh Srivastava. Vulcan: Binary trans-

formation in a distributed environment. Technical report, Microsoft, 2001.

[58] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang, Howard

Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Missing the

point(er): On the effectiveness of code pointer integrity. In 2015 IEEE Symposium on Security

and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 781–796, 2015.

[59] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin C. Rinard, Hamed

Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-grained

131

http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
https://github.com/packz/ropeme
http://www.cert.org/historical/advisories/CA-2003-20.cfm
https://nakedsecurity.sophos.com/2013/10/25/anatomy-of-an-exploit-inside-the-cve-2013-3893-internet-explorer-zero-day-part-2/
https://nakedsecurity.sophos.com/2013/10/25/anatomy-of-an-exploit-inside-the-cve-2013-3893-internet-explorer-zero-day-part-2/


BIBLIOGRAPHY

control flow integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-

munications Security, Denver, CO, USA, October 12-6, 2015, pages 901–913, 2015.

[60] Alessandro Di Federico, Amat Cama, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni

Vigna. How the elf ruined christmas. In 24th USENIX Security Symposium (USENIX Security

15), pages 643–658, Washington, D.C., August 2015. USENIX Association.

[61] Philip J. Fleming and John J. Wallace. How not to lie with statistics: the correct way to summa-

rize benchmark results. Commun. ACM, 29(3):218–221, March 1986.

[62] Andreas Follner, Alexandre Bartel, and Eric Bodden. Analyzing the gadgets - towards a metric

to measure gadget quality. In Engineering Secure Software and Systems - 8th International Sympo-

sium, ESSoS 2016, London, UK, April 6-8, 2016. Proceedings, pages 155–172, 2016.

[63] Andreas Follner, Alexandre Bartel, Hui Peng, Yu-Chen Chang, Kyriakos K. Ispoglou, Mathias

Payer, and Eric Bodden. PSHAPE: automatically combining gadgets for arbitrary method ex-

ecution. In Security and Trust Management - 12th International Workshop, STM 2016, Heraklion,

Crete, Greece, September 26-27, 2016, Proceedings, pages 212–228, 2016.

[64] Andreas Follner and Eric Bodden. ROPocop - Dynamic mitigation of code-reuse attacks. Jour-

nal of Information Security and Applications, 29:16 – 26, 2016.

[65] Michael Frantzen and Michael Shuey. Stackghost: Hardware facilitated stack protection. In

10th USENIX Security Symposium, August 13-17, 2001, Washington, D.C., USA, 2001.

[66] Martin Gallo. Agafi. https://github.com/CoreSecurity/Agafi.

[67] Robert Gawlik and Thorsten Holz. Towards automated integrity protection of C++ virtual

function tables in binary programs. In Proceedings of the 30th Annual Computer Security Appli-

cations Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, pages 396–405,

2014.

[68] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and Thorsten Holz. En-

abling client-side crash-resistance to overcome diversification and information hiding. In 23nd

Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California,

USA, February 21-24, 2016, 2016.

[69] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced operating system

security through efficient and fine-grained address space randomization. In Presented as part of

the 21st USENIX Security Symposium (USENIX Security 12), pages 475–490, Bellevue, WA, 2012.

USENIX.
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