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Abstract

Side and covert channels (referred to collectively as illicit channels) are an insidious affliction

of high security systems brought about by the unwanted and unregulated sharing of state

amongst processes.

Illicit channels can be effectively broken through isolation, which limits the degree by

which processes can interact. The drawback of using isolation as a general mitigation against

illicit channels is that it can be very wasteful when employed naïvely. In particular, per-

manently isolating every tenant of a public cloud service to its own separate machine would

completely undermine the economics of cloud computing, as it would remove the advantages

of consolidation.

On closer inspection, it transpires that only a subset of a tenant’s activities are sufficiently

security sensitive to merit strong isolation. Moreover, it is not generally necessary to maintain

isolation indefinitely, nor is it given that isolation must always be procured at the machine

level.

This work builds on these observations by exploring a fine-grained and hierarchical model

of isolation, where fractions of a machine can be isolated dynamically using migration. Using

different units of isolation allows a system to isolate processes from each other with a min-

imum of over-allocated resources, and having a dynamic and reconfigurable model enables

isolation to be procured on-demand. The model is then realised as an implemented frame-

work that allows the fine-grained provisioning of units of computation, managing migrations

at the core, virtual CPU, process group, process/container and virtual machine level. Use of

this framework is demonstrated in detecting and mitigating a machine-wide covert channel,

and in implementing a multi-level moving target defence.

Finally, this work describes the extension of post-copy live migration mechanisms to allow

temporary virtual machine migration. This adds the ability to isolate a virtual machine on a

short term basis, which subsequently allows migrations to happen at a higher frequency and

with fewer redundant memory transfers, and also creates the opportunity of time-sharing a

particular physical machine’s features amongst a set of tenants’ virtual machines.
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Zusammenfassung

Seitenkanäle und versteckte Kanäle stellen insbesonders für sicherheitssensible Systeme ein

großes Problem dar. Sie entstehen, da Prozesse unbeabsichtigt Informationen über ihren Zu-

stand teilen.

Solche Kanäle kann man mittels Isolation vermeiden, da dadurch der Grad, mit dem

Prozesse interagieren können, eingeschränkt wird. Der Nachteil der Isolation ist allerdings,

dass sie äußerst ressourcenintensiv ist. Dies gilt besonders dann, wenn man jeden Anwender

einer Cloud permanent von allen anderen Anwendern isoliert, seine Anwendungen also auf

einer getrennten Maschine ausführt.

Bei genauerer Betrachtung zeigt sich, dass nur ein Teil der Prozesse eines Anwenders so

sicherheitssensibel sind, dass eine totale Isolation sinnvoll ist. Außerdem ist es nur selten

nötig, Anwendungen zu jedem Zeitpunkt zu isolieren.

Die vorliegende Dissertation baut auf diesen Beobachtungen auf und stellt ein feingra-

nulares, hierarchisches Modell für die Isolation vor. Das Modell ist in der Lage, Teile einer

Maschine mittels Migration dynamisch zu isolieren. Dies erlaubt die Isolation unterschiedli-

cher Prozesse voneinander, ohne dass Ressourcen verschwendet werden, sowie das Starten

des Migrationsprozesses auf Abruf. Das Modell wurde in einem Rahmenwerk implementiert,

das die Migration von Prozessorkernen, virtuellen Prozessoren, Prozessgruppen, Containern

sowie kompletten virtuellen Maschinen erlaubt. Der Nutzen des Rahmenwerks wird anhand

der Erkennung und Beseitigung eines systemweiten versteckten Kanals sowie der Implemen-

tierung einer mehrstufigen Verteidigung gegen solche Kanäle gezeigt.

Abschließend beschreibt diese Dissertation eine Erweiterung zu Post-Copy Live Migration,

welche das temporäre Migrieren virtueller Maschinen zum Ziel hat. Dies erlaubt es, virtuelle

Maschinen kurzzeitig zu isolieren, wodurch eine höhere Frequenz von Migrationsvorgängen

bei gleichzeitig geringerer Speicherauslastung erzielt wird. Dadurch wird ermöglicht, dass

spezielle Funktionen einer physischen Maschine von allen Anwendern beliebig genutzt wer-

den.
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CHAPTER 1

INTRODUCTION

SECURITY IS THE PRODUCT OF MANY FACTORS. A fundamental determinant of a

process’ security is the location and environment in which it runs. This has

become increasingly evident with the advent of cloud computing, where consolida-

tion is rampant, and tenants may unwittingly share hardware with hostile processes.

New models and mechanisms must be developed to efficiently manage the scarce

luxury of isolation and prevent attacks on processes through their environment.

1.1 Introduction

The security of a process is strongly affected by the environment within which it executes,

as many of the security guarantees offered by an application depend on the validity of as-

sumptions on the underlying infrastructure. For example, while the ciphertext produced

by an encryption algorithm may be proven resilient to an attack carried out by an external

observer, the same cannot always be said when faced with an attacker that can see the en-

cryption operation’s internal and intermediate states. More generally, a process’ security may

be subverted if its internal state can be directly observed or indirectly inferred by an attacker.

The question of how one may limit the visibility of an entity’s internal state from an out-

side observer has historically been referred to as the confinement problem [Lam73]. Typically,

attempts at confining processes to their environment are conducted through a combination

of hardware and the operating system, which enforces strict partitions through many mech-

anisms, including memory protection and CPU scheduling policies.

1.1.1 Problem Definition

In simple terms, the problem with confinements is that they can leak. Many confinements are

either intrinsically imperfect or can be sabotaged to reveal their internal state. For example,

an attacker may exploit a memory leak to learn the memory contents of a victim process,

or to escape a virtual machine confinement. Alternatively, an attacker may compromise a

virtual machine monitor to intercept commands as they are issued by processes to their un-

derlying hardware. The latter is difficult for a common attacker to carry out, as it would
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require integral and systematic changes to the virtualisation platform, which would be tricky

to perform without the direct assistance of the infrastructure’s owner. Beyond the difficulty of

their execution, such brazen attempts at infiltration carry several drawbacks for an attacker.

For instance, they lack an element of plausible deniability, being unambiguous in their pur-

pose. Similarly, a noisy or high-profile attack calls attention to itself more readily, and can

lead to the creation of patches that neutralise it. This places the durability of the exploit into

question, and potentially bounds the period of time over which data can be acquired.

In the previous attack scenarios, the underlying assumption is that confinements are im-

penetrable and opaque, necessitating the creation of explicit mechanisms for publicising their

internal state. Yet when considering real-world systems, one quickly finds that the confine-

ment problem has never been truly and comprehensively solved. The actions performed by a

process will often produce a deluge of non-functional side-effects, which may be observable

by other processes that share the same infrastructure. In some cases, these side-effects can

be correlated, with a high degree of certainty, to the internal operations being carried out by

the process. For instance, rather than install a key logger, a process may attempt to record a

user’s input indirectly by correlating keystrokes to measurable CPU activity bursts, and com-

paring the durations between bursts to models of people’s typing behaviours and patterns.

While this approach may appear tortuous and error-prone, it carries one distinct advantage

over a key logger, namely that it only uses innate characteristics of the system as it executes

within its normal parameters. This foregoes the need to directly interfere with the system

being attacked.

In general, one can learn the internal state of a confinement in two ways. The first is by

forming an overt channel with a process in the outside world, this being any of the stand-

ard communication channels such as sockets, files or shared memory. The second and more

underhanded option is through a side-channel. To slightly paraphrase Lampson [Lam73],

a side-channel is formed when information is sent over a medium that was not designed

for communication. This includes a wide range of phenomena. For example, side-channels

that infer a target process’ instruction stream by measuring the variation of a system’s power

consumption over time have been demonstrated, with different instructions having differ-

ent signatures on power consumption. Side-channels are more than mere curiosities, and

in some instances present the best-known method for subverting a system’s security. For

example, side-channels have allowed the deduction of secret keys in otherwise opaque em-

bedded systems performing encryptions, as well as keys used by remote servers.

Related to side-channels are covert channels, where one process intentionally forms a

side-channel with another process in an effort to transfer data through an unmonitored in-

terface [Tir07]. For example, two processes may exchange a stream of bits by modulating

accesses to a hard disk, encoding information in the disk’s observable seek time. Unlike
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side-channels, covert channels imply a degree of conspiracy, as both endpoints are actively

trying to communicate with each other. This makes covert channels simpler to implement

than side-channels, as processes can modulate an agreed-upon shared resource using a pre-

determined transfer protocol. The difference between covert channels and side-channels lies

primarily in their intent, rather than mechanism. Throughout this document, covert channels

and side-channels will be collectively referred to as illicit channels.

1.1.1.1 Co-Location and Isolation

In its simplest interpretation, location affects security in that running a process within a com-

promised execution environment places it in jeopardy. In the case of illicit channels, location

takes on a more literal meaning, with the physical location at which a process executes being

a critical factor in the viability of a channel.

Imperfections in confinements are the root causes of illicit channels, yet they only mani-

fest into a security concern when coupled with co-location. Consider, for example, the key

logging attack described earlier. While the process may be leaking information through the

CPU utilisation rates, this is of no consequence if the attacker exists outside of that machine,

as it cannot observe the phenomenon. Thus, the attacker must be co-located with the victim

process though the medium over which the confinement leaks.

More precisely, illicit channels are contingent on the relative position of the victim and

attacker processes within an infrastructure. For example, a side-channel that measures the

CPU activity of a victim process by observing its own scheduling behaviour must necessarily

share the same scheduler, and by association, the same pool of CPU cores. This channel

cannot be formed across processes executing on different machines, as their schedulers are

disjoint, and the scope of the scheduler’s effects at the victim do not carry over onto those

of the second machine. Instead, one would have to extend the side-channel to correlate CPU

usage with effects that can be observed remotely. For instance, if the victim process is a server,

an attacker on a different machine may infer the victim’s CPU usage by generating requests

and measuring their response times, yet even such an attack would require co-location at the

network level.

1.1.2 Risk

Illicit channels have a number of features that can make them particularly dangerous in the

context of security, which can be summarised as follows.

Ubiquity The potential for forming illicit channels within a system is high, given that a

typical system will leak in different ways. This becomes a problem when coupled with
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modern computer systems, which co-locate many processes with different origins over

shared infrastructures.

Stealth Illicit channels are often built using effects that are abstracted away during the secur-

ity analysis of a system, and are not properly encompassed by systems’ security policies.

For example, program analysis techniques may attempt to prove a program’s absence of

data leaks by focusing on its data structures and language-level program flow, whereas

a holistic approach would also demand attention to secondary effects such as power

consumption and instructions’ running times.

The subtlety by which certain leaks occur, coupled with the lack of adequate safeguards

against an attack, gives an attacker an edge over conventional attacks, which, while

often effective, are well-characterised, conspicuous, and actively guarded against. This

element of stealth can also allow attacks to execute over a long period of time before it

is discovered, facilitating longitudinal data collection.

Versatility Illicit channels have the ability to expose elements of a process’ internal state that

could not be retrieved through more traditional attacks.

One area that carries the threat of illicit channels is cloud computing. At its heart, a public

cloud service is an assembly of processes belonging to mutually-distrusting tenants executing

over a shared physical infrastructure. Various mechanisms, notably virtualisation, attempt to

confine tenants’ behaviours, restricting the degree to which they can interfere with other co-

located tenants. Nevertheless, virtual machine confinements are not always perfect, and may

admit the creation of illicit channels. This is not to say that the problem of illicit channels is

unique to the cloud or other large infrastructures. Smart phones, for example, are excellent

candidates for illicit channel attacks, and covert channels can subvert the information flow

policies of a phone’s operating system to leak private information [Cha+15; CQM14].

1.2 State of the Art of Mitigations

Mitigations focus on removing the information content of the phenomenon with which the

channel is being formed, effectively isolating the communicating parties. Isolation can either

be procured synthetically by adding noise to the channel or regularising a system’s behaviour

(soft isolation), or by eliminating the pre-requisite co-location between the parties (hard

isolation) [VRS14].

1.2.1 Limits of Isolation

Soft isolation often incurs an ongoing performance overhead, with some fraction of the ma-

chine’s capacity committed to maintaining the isolation. Hard isolation is an appealing ap-
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proach to mitigating illicit channels, as it can comprehensively eliminate entire classes of

attacks. The problem with hard isolation is that it can leave hardware underutilised by limit-

ing multiprogramming, as it places restrictions on co-location.

The cloud computing scenario is one of the most compelling examples of a system that

would benefit from strong isolation guarantees, yet the aims of the stakeholders in a public

cloud are at odds with each other. This is because a cloud provider aims to maximise profits

by consolidating as many tenants as possible on a minimum of machines, whereas a security-

conscious tenant would ideally execute in isolation. Clouds also present individual tenants

with a limited view of their surroundings, making it harder for a given tenant to identify a

co-resident attacker.

1.3 Proposed Solution

Permanently isolating tenants within a cloud would wreak havoc on the economics of cloud

computing, yet in general, only a subset of a tenant’s activities in the cloud are sufficiently

security sensitive to warrant complete isolation. Similarly, partial isolation is sufficient for

eliminating certain illicit channels, and isolating tenants to their own private machine may be

unnecessary. Moreover, machine-level isolation would not necessarily suffice for mitigating

channels internal to a tenant’s own virtual machine. One would thus benefit from a more

nuanced and fine-grained approach to isolation and co-location elimination. To illustrate,

consider the following scenario:

Example 1. A virtual machine A is suspected to contain a process that launches a cache-

timing attack during the execution of a specific section of code in process PV in virtual ma-

chine V. Such an attack can be foiled at different granularities. For instance, starting from

the coarsest level, one may break co-location

i) at the machine level, by placing A and V on separate physical machines,

ii) at the virtualisation level, by forbidding A and V from being co-scheduled on the same

core, or

iii) at the process and virtualisation level, by forbidding the execution of PV alongside any

process in A.

1.3.1 Objective

The objective of this work is twofold. First, this work will study the decomposition and

modelling of confinements into finer-grained hierarchies of co-located confinements. For

example, several physical machines may exist on a network, thus acting as confinements
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within the network confinement layer. These machines may, in turn, contain sets of virtual

machine confinements existing at the virtualisation layer, which could be further decomposed

into cores, processes and threads.

The second aspect of this work is to investigate the elimination of co-location by recon-

figuring, or migrating, confinements at different levels of the hierarchy. The effectiveness

of a migration in procuring isolation depends on three characteristics, or traits, by which a

migration’s destination differs from its source. These are passive, active, and context traits,

defined as follows.

Passive traits are architectural properties inherent to a system that are functionally transpar-

ent to processes, yet produce an observable phenomenon. For example, while programs

can be written independently of a processor’s cache inclusivity model (Section 2.5.1),

certain attacks will only work on inclusive caches [Liu+15].

Active traits are machine capabilities that a program must make use of explicitly. These in-

clude special-purpose hardware confinements and CPU instruction-set extensions, such

as AES-NI [Gue10], or, more recently, the MPX [Int15b] and SGX [BPH14] extensions.

A system may also have software-based active traits, such as cache-conscious memory

allocators [KPMR12].

Context traits are aspects of a machine that vary depending on its runtime configuration

and its state in relation to its environment. For example, a machine hosting a single

virtual machine will have a temporary context trait of isolation, guaranteeing that the

tenant is executing alone.

A dynamic and migration-based solution to illicit channels is based on migrating a vulner-

able confinement to a target whose traits disallow the channel in question. Such an approach

to co-location elimination becomes even more relevant when one considers that typical cloud

infrastructures have multitudes of confinements with different traits, and isolation can be pro-

cured on-demand through reconfiguration. By combining a finer-grained model of computer

systems with methods for migrating confinements at various granularities, one can compre-

hensively reason about and efficiently manage spatial and temporal isolation. In this context,

spatial isolation refers to the separation of entities that exist at the same time using phys-

ical boundaries, such as through partitioning. Temporal isolation concerns the separation of

entities in time, or equivalently, the use of time-sharing. As will be seen, temporal isolation

can go beyond simply forbidding the simultaneous scheduling of entities. For example, it

can require the modification of scheduling policies to change the order of scheduling, or the

introduction of minimum quanta sizes.
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1.3.2 Advantages of a Dynamic Approach

Given that a cloud consists of a network of machines with varying traits, one can foil illicit

channels by executing tenants’ tasks on machines whose traits guarantee a corresponding

level of security. This requires some form of distributed computing. One option is to pre-

partition a program [Cho+09; Pat+14; Zhe+03] and map the resulting fragments onto dif-

ferent machines. Similarly, a program can be designed to outsource computations [Qia+15].

Pre-partitioning carries a number of drawbacks, foremost of which is that one must know

in advance both when isolation will be required, as well as the location at which the task

should execute. This could potentially leave the designated target underutilised, as it must

preserve the traits required by the security-sensitive task for as long as the task may require

isolation. Alternatively, a system would have to employ a high degree of replication in order

to guarantee that a suitable destination is available at all times.

Contrast this with a migration-based approach to distributed computing. Migration, as

opposed to pre-partitioning programs or using replication, avoids the substantial complexities

brought about by the introduction of multiple program counters, as there will only be a single

definitive live version of each confinement. In addition, a migration target can be chosen

dynamically at runtime without the need of elaborate initialisation and coordination routines.

This also greatly reduces the need to reserve destination confinements in anticipation of an

isolation requirement, and leads to a higher degree of multiplexing of traits (where a machine

with a given trait can be time-shared amongst multiple entities).

Migration can often be applied transparently to arbitrary workloads without having to

modify the tenants’ applications, which are not always simple to decompose. It also avoids

the complexities of aggregating results, as there will only be a single active instance of the

confinement in question. Moreover, a dynamic approach can react to any context trait, and

a migration can be triggered at any time, whereas partitioning can only transfer control

to a remote server at pre-defined points. This is particularly useful in the case of cloud

infrastructures, where workloads are not generally known in advance, and vary dynamically.

The main criticism of migration lies in its associated overhead, yet as will be seen during

this work, localised migrations of small confinements can be performed at high frequencies

and with very low costs. Similarly, this work investigates methods of reducing the cost of

migrating large confinements, particularly virtual machines, to the minimum required by a

mitigation.

1.3.3 Claims

In summary, this work presents and supports the following claims.

Claim 1 The problem of illicit channels is fundamentally one of co-location, and can be
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modelled as such.

Claim 2 Containments can be modified efficiently through scheduling and migration at vari-

ous granularities.

Claim 3 The impact of migrating large confinements such as virtual machines can be reduced

using partial or temporary migrations.

1.4 Document Structure

The following is a brief description of this document’s structure and the major themes and

aims of each chapter.

Chapter 2 is an inquiry into existing attacks and mitigations at each level. Currently, se-

curity is provided through several piecemeal mechanisms that typically guard against very

specific instances of attacks, and cannot always be scaled or adapted to cover complete

classes of attacks. Knowledge of attack vectors and mitigation techniques aids in deriving

a more general approach to managing each confinement’s locality, as well as in extracting the

hierarchical structure of confinements.

Chapter 3 describes a formal model for defining the hierarchical nature of confinements

and their movement. The model supports a unified representation and treatment of co-

location and migration at each level of the hierarchy, allowing attacks and mitigations to

be modelled uniformly. Use of the model is demonstrated using several examples of known

attacks and mitigations.

Chapter 4 details the creation and implementation of a framework, dubbed SAFEHAVEN,

that allows the creation, management and deployment of mitigations throughout the confine-

ment hierarchy. The framework is applied to two case studies, namely in coordinating virtual

machine migration to eliminate a covert channel, and in developing a multi-level moving

target defence. The results of the case studies also form the basis of comparisons between

the performance of migration mechanisms at the different levels of the hierarchy.

Chapter 5 builds on the migration mechanisms explored in the previous chapter, and de-

scribes the extension of post-copy virtual machine live migration to support the temporary

relocation of virtual machines. This allows tasks to be isolated for a period that is shorter

than the duration of a full migration whilst retaining the convenience of operating at the

granularity of virtual machines.
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Chapter 6 reviews the results obtained throughout the course of this work, discusses related

and future work, and ends the document with concluding remarks.
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CHAPTER 2

BACKGROUND

WHILE EACH ILLICIT CHANNEL may at first appear to have its own unique mech-

anism of action, further investigation reveals that one may still classify chan-

nels on the basis of their scope, or medium through which they communicate. Know-

ing the scope of an illicit channel is crucial when adopting a partitioning-based

mitigation strategy, as it defines the conditions for isolation with respect to that

channel.

2.1 Introduction

The genealogy of modern illicit channels can be traced back many decades [Gli93; Lam73],

with illicit channels being a persistent and pervasive threat to computer systems. Initially

confined to high-security or military settings, the study of illicit channels has been drawn into

the limelight due to a number of technological [Ris+09] and political [Nsa] developments.

In the former case, the paradigm of cloud computing has led users of computer systems to,

at least partially, relinquish direct control over their activities by moving their computations

from self-owned machines to shared public infrastructures. While the scale and business

model may be different, the cloud topology harks back to the days of big iron and main-

frames, with a dose of replication and other mechanisms designed to improve resilience. The

fundamental problem remains the same, namely that a user’s tasks are submitted to the great

beyond, with limited assurances on the behaviour and intent of those that are sharing the

user’s infrastructure, as well as an implied trust in the cloud provider (the latter problem

meriting its own investigation outside of this work).

On the smaller end of the spectrum lies another technological development, namely the

rise of smart phones and their rampant and widespread adoption. While not directly ad-

dressed in this work, illicit channels afflict smart phones in ways similar to the cloud scenario.

The fundamental difference is that rather than having multiple adversarial tenants sharing an

infrastructure, smart phones have multiple apps with different origins sharing a device. This

opens the avenue for collusion between apps in an effort to subvert the operating system’s

access control policies and leak sensitive information [Cha+15].
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Politics has served as a driving force in illicit channel research and development due to

channels’ ability to capture and transfer information that could otherwise not be obtained, as

well as their capacity for stealth. This makes them a lucrative apparatus for espionage.

These drivers have led to the emergence of many different types of illicit channels, at-

tacking different elements of programs and hardware. Unlike overt communication channels

such as sockets and IPCs, illicit channels lack a well-defined and auditable interface, and must

be identified and regulated using additional security mechanisms. To better understand illicit

channels and how they operate, this chapter analyses the many types and forms of channels,

and attempts to identify and extract their commonalities. These are then used to construct a

comprehensive strategy to counteracting illicit channels.

Chapter Outline

This chapter is structured as follows:

Section 2.2 demonstrates the core elements of illicit channels through an experiment, where

the mapping of hardware threads to cores is deduced via an illicit channel.

Section 2.3 identifies the primary stakeholders and scenarios where illicit channels consti-

tute a threat.

Section 2.4 broadly describes the common classes of attacks and mitigations.

Section 2.5 is an in-depth investigation into specific known instances of attacks, and their

mitigations, ordered by the medium through which the channels concerned are formed.

Section 2.6 concludes this chapter.

2.2 A Simple Side-Channel

To better motivate the discussion, the following section describes the construction of a simple,

yet complete, side-channel attack. The side-channel under consideration is designed to infer

the cache hierarchy of a given CPU. Knowing the cache structure of a system is the first step

in carrying out subsequent cache-level attacks [OST06; Per05].

2.2.1 Scenario

Modern multi-core CPUs generally have a hierarchical cache structure, with multiple cache

levels. Cores within a CPU package will often share specific cache levels.

Consider the Intel i7-2640M CPU (INTEL-MT in Table 4.2), which consists of a two-core

package, with two hardware threads (HT, or hyperthreads [Int16b]) to each core, as illus-

trated in Figure 2.1. In the case of this particular architecture, each core has its own L1
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HT:0 HT:1 HT:2 HT:3

L1:0 L1:1

L2:0 L2:1

L3:0

Figure 2.1: Cache hierarchy for CPU with simultaneous multithreading.

and L2 caches, and both cores share a unified L3 cache. This cache structure intertwines

the hardware threads of each core into pairs that operate within a shared L1 and L2 local-

ity, meaning that processes assigned to the same core may perform cache-level side-channel

attacks over these levels, in addition to the package-wide L3 cache.

Knowledge of the mapping between hardware threads and caches (or by implication,

cores) aids an attacker in determining the viability of an attack at the L1 and L2 cache

levels, yet the mapping varies between architectures. Furthermore, operating systems com-

monly represent hardware threads as full-blown cores, hiding the groupings of hardware

threads into physical cores. In addition, the introduction of virtualisation, with its abstrac-

tion of virtual CPUs, can further obfuscate the relation between computational cores and

caches. Thus, an attacker would benefit from a dynamic method of deducing core-to-cache

assignments.

Outside of the context of security, Klug et al. [Klu+11] proposed a system to automat-

ically optimise the distribution of processes to cores. Within their work, they identified a

phenomenon that enables one to discern the topology of a CPU package, namely the prin-

ciple that cache contention leads to an observable delay in the servicing of memory modific-

ation operations, and that the delay varies depending on the cache level at which contention

occurs. Since on-chip coherency updates are faster than off-chip updates, one can deduce

whether threads are running over a shared cache by timing repeated memory operations on

a shared variable.

2.2.2 Experiment

The observation of different timing behaviours for identical operations on different cache-

levels is conducive to the formation of a side-channel for determining core-to-cache pinnings,

the results of which can then be used for subsequent illicit-channel attacks.

This side-channel was confirmed by the author of this document through the design and

implementation of an experiment, which was carried out as follows. To determine the effects
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of cache contention, two pthreads were started, with each pthread executing an identical

workload: incrementing and retrieving a shared counter in a tight loop for a large and fixed

number of iterations. The total time taken for both threads to execute was recorded. If the

hypothesis were true, then one would expect the experiment to have taken longer when the

threads were executing on different cores, due to the off-core cache invalidations incurred.

2.2.3 Result

Table 2.1 presents the total time observed when running the aforementioned workloads using

different thread-to-processor pinnings. As mentioned previously, the operating system rep-

resents each hardware thread as a core. Consequently, the CPU was abstracted as a four-core

package.

THREAD 0

Core 0 1 2 3

T
H

R
E

A
D

1 0 1.15 1.00 2.52 2.52

1 1.00 1.15 2.51 2.52

2 2.51 2.52 1.16 1.00

3 2.52 2.52 1.03 1.15

Table 2.1: Total time (normalised) for both threads to complete, expressed as a multiple of

the shortest observed time.

Total execution times are represented as multiples of the minimum observed running

time, which was obtained when the threads were placed onto core pairs 〈0, 1〉 and 〈2, 3〉.
Conversely, the worst execution times were observed when mapping to one core from each

of the previous pairs, that is, when mapping to 〈0, 2〉, 〈0, 3〉, 〈1, 2〉 or 〈1, 3〉. These timings

strongly suggested that cores {0, 1} are actually hardware threads within the same core,

as are cores {2, 3}. This hypothesis was verified by using the operating system’s official

reporting mechanisms (as will be discussed in Chapter 4), as well as by comparing with the

CPU topology generated using hwloc [Bro+10].

As an aside, perhaps paradoxically, one finds that it is quicker to schedule two threads to

the same single hardware thread than it is to place each workload on a different hardware

thread in a different core. This is because the time spent performing the actual increment

operation is far shorter than the time spent resolving cache invalidations. Consequently,

scheduling to the same hardware thread is only ≈ 1.15 times slower than the optimum run-

ning time, as opposed to ≈ 2.52 times when running on different cores.
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2.3 Attacker Model

The side-channel presented in Section 2.2 illustrates the fundamental characteristics and

components of effective illicit channels.

The first is that an effective channel has a defined purpose, meaning that useful conclu-

sions can be drawn by observing the respective phenomenon.

Next is that a channel has two or more endpoints, typically an attacker and a victim in the

case of a side-channel, and that channels have a range (or scope) within which the endpoints

must exist. In the described example, the endpoints are the incrementing threads, both of

which had access to the same observations. Since the threads were co-operating, the example

could be classified as a covert channel. Co-operation generally leads to covert channels being

simpler to construct than side-channels.

The range, or scope, of a channel depends on the architectural element being attacked,

and the mechanism of attack used. As will be seen in Section 2.5, confinements can be broken

at different levels of a system architecture, such as the cache level (L1 [OST06], L2 [Xu+11]

and L3 [YF14]), virtual machine level [Ris+09], system level [AKS07; WXW12], or network

level [CBS04], through various forms of attack.

Finally, an illicit channel has a mechanism of action, the choice of which depends on the

purpose of the attack and the location of the attacker relative to its victim (the scope).

2.3.1 Attack Orchestration

The origins of an illicit channel attack will vary depending on the actors involved. These,

in turn, depend on the infrastructure being considered, and who controls the individual

elements of the infrastructure.

Figure 2.2 summarises the relationship between the number of separate execution envir-

onments and the number of owners (or tenants) that have a stake within the environments,

describing the common forms of deployments that result from combining the two variables.

These topologies, and the threat of illicit channels to them, are described as follows.

One environment, one owner is a typical workstation or smart phone whereby there is a

single operating system environment running over a machine owned by a single ten-

ant. The primary attack vector arises from compromised processes or installed mal-

ware. Apart from the risk of side-channels, smart phones carry the risk of collusion

between apps, which may form covert channels to circumvent the limitations imposed

by permission systems, thereby leaking sensitive data [Cha+14; Mar+12].

Many environments, one owner refers to a network of machines owned by the same entity,

such as an organisation. In this case, the primary risk originates from the use of illicit
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Figure 2.2: Common system topologies and their relation to the number of distinct owners

and environments under their control.

channels to bypass data protection policies.

One environment, many owners as in the case of Software-as-a-Service or Platform-as-a-

Service clouds. These carry the risk of espionage [Zha+14], and the methods available

to an attacker vary depending on the control afforded by the cloud service.

Many environments, many owners as in the case of Infrastructure-as-a-Service clouds. Ch-

annels are again focused on espionage, yet the set of mechanisms at an attacker’s dis-

posal are different than the previous scenario. For example, side-channels in the cloud

have enabled the inference of tenants’ infrastructure and activity [Her+13; Ris+09],

and memory contents.

While the principles explored in this work can be applied to all four scenarios, the in-

vestigation will focus on the mitigation of illicit channels in the latter. This is because it is

effectively a superset, being susceptible to all of the attacks in the previous scenarios, in ad-

dition to attacks that can originate from outside of the victim’s environment. Furthermore,

the cloud infrastructures associated with IaaS are often large, and consequently lend them-

selves to the use of isolation and partitioning as a general mitigation strategy. In contrast,

while partitioning can be applied to single-environment scenarios, these lack the wealth of

distinct locations to which attackers can be banished, or within which potential victims can

be isolated.

This work assumes a benign cloud provider that, at a minimum, will not actively try to

sabotage a tenant’s security, and would at best assist in the process of procuring isolation. A

cloud provider is practically omnipotent, and can effectively mislead or deceive its tenants
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in a multitude of ways, especially by intercepting instruction streams and providing false

assurances of isolation to tenants. Conversely, a cloud provider can help a tenant procure

isolation faster and with less waste if it can guarantee or enforce conditions on its hardware.

For example, if a cloud provider can assure a tenant that it has sole ownership over its cores,

then the tenant can procure core-level isolation for its processes without having to migrate

to a different machine. A higher degree of co-operation between tenants and their cloud

provider thus corresponds to more efficient and secure mitigations.

2.4 General Attack and Mitigation Strategies

The task of addressing illicit channels may at first seem daunting when one considers the

sheer number of physical side-effects that processes have on their environment during their

execution, and that each of these side-effects can potentially be correlated with the process’

internal state. This problem is further elaborated when compounded with concerns of im-

plicit data and control flows, where an observable system effect can be directly related to a

program’s data or execution.

On further analysis, one finds that not all channels are created equal, as they vary in their

resilience, robustness, bitrate, practicality, and ultimately, utility. For example, an attacker

may find that a side-channel that detects the presence of co-resident virtual machines on a

public cloud [Ris+09] without distinguishing between tenants is of limited use, given that

co-residency can effectively be assumed. Similarly, the cache-hierarchy distinguishing side-

channel described in Section 2.2 may prove useless for an attack on a system whose virtual

CPU cores are partitioned over disjoint caches. Thus, out of the set of potential phenomena

that leak state, only a subset can be used to form viable illicit channels.

Finally, while the set of observable phenomena may be large, the techniques used to build

the known illicit channels can be grouped into families of general strategies. The following

section provides an overview of the general classes of attacks that have been observed, and

the general forms of the defences that can be employed against them.

2.4.1 Attack Types

Attacks are characterised by type (side or covert), scope, bandwidth and feasibility. In terms

of mechanism, illicit channels can be broadly categorised into three [VRS14] attack classes,

as follows:

Time-driven attacks rely on measuring variations in the aggregate execution time of opera-

tions. These can be categorised into two types of attacks [KPMR12], namely:
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• passive attacks, where the attacker cannot execute its code in the victim’s environ-

ment, and

• active attacks, where the attacker can invoke or direct routines on the victim’s

machine.

Trace-driven attacks are based on analysing the transformation of the system’s state as it

evolves over a series of operations. This can be further subdivided into two attack

classes [KPMR12], namely:

• synchronous attacks that allow for some degree of direct interaction with the victim

process, such as the external triggering encryption operations, and

• asynchronous attacks that are carried out over shared hardware without directly

exercising control over the victim process.

Access-driven attacks are possible when an attacker is co-located with a victim, and can

detect and correlate the effects of a system’s internal state to that of the victim.

Control flow can affect a program’s timing characteristics, making possible attacks on

mechanisms such as branch prediction [AKS07]. Similarly, data flow dependencies may ex-

pose timing channels through several avenues, including short-circuit expression evaluation,

thread contention, and load bypassing [Cop+09].

2.4.2 Defences

Mitigations can broadly be categorised as being passive, reactive or architectural.

Passive countermeasures attempt to break locality sharing through an indiscriminate pro-

cess. For example, disallowing multiple hardware threads from executing concurrently will

eliminate a class of attacks [OST06] at the cost of performance. Alternatively, one can use

a scheduling policy that only co-schedules processes belonging to the same entity [KPMR12;

WL06] or coalition of virtual machines [Sai+05]. Scheduling policies can also be altered to

limit their preemption rate, restricting the granularity of cache-level attacks [VRS14]. Other

countermeasures include periodically flushing lower-level caches [ZR13], changing event re-

lease rates [AZM10a], and intercepting potentially dangerous operations (such as atomic

instructions) through the hypervisor [SXZ13].

Reactive countermeasures attempt to detect and mitigate attacks as they emerge. Frame-

works for distributed event monitoring [Mdh+13] can be fed events generated via introspec-

tion [DG+13], or can ensure that communication complies with a defined information flow
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policy [Sai+05], possibly with notions of risk [JSS07]. Event-driven frameworks using profil-

ing from different system levels to direct virtual machine migration have also been employed

in the context of load-balancing [Woo+07].

Architectural mitigations may either refer to changes in hardware or to the way in which

it is used. A notable example is Intel’s introduction of specialised AES instructions, which

insulate the operations’ internal state from external caches. The problem with relying on

hardware solutions is that it takes time for them to permeate into the mainstream, and

that it would be unrealistic to expect every confinement-sensitive algorithm to be implemen-

ted in hardware [KPMR12]. Other solutions include randomly permuting memory place-

ment [WL06], using oblivious data structures to hide memory accesses [GO96], rewriting

programs to remove timing variations [Aga00; Cop+09], reducing the precision of system

clocks [Hu91; OST06] or normalising timings [LGR13], locking regions of cache to specific

processes by avoiding shared cache indices [KPMR12] and by partitioning virtual machines

entirely through hardware [Kel+10].

2.4.2.1 Confinement Types

Illicit channels occur either at the software or hardware level [Hu91], the former being a

product of the algorithms used, and the latter emerging from the characteristics of a system’s

hardware. When reviewing the body of known attacks and mitigations, it becomes apparent

that there are variations in the efficacy and generality of the established countermeasures

combating attacks. In the case of hardware-based channels, these factors are strongly affected

by the class of mitigation used, specifically, whether an approach uses a soft or hard isolation

technique [VRS14] to separate an attacker from its victim.

Hard isolation entails that co-locations are broken by placing the parties involved at distinct

and separate physical hardware locations, whereas

Soft isolation mimics the existence of a plurality of distinct hardware locations by arbit-

rating access to resources, hiding their hardware characteristics and reducing a given

channel’s information content.

Hard isolation places a strong physical boundary between an attacker and a victim,

through what are generally passive elements of a system. For example, the effects of a process

on a cache’s access times may be hidden from an attacker by placing the latter on a different

core that makes use of a different cache hierarchy [OST06]. Conversely, a soft isolation tech-

nique allows hardware to be shared between the attacker and victim processes, but will try

to extinguish the effect over which a given channel hinges. For example, to counteract the
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aforementioned cache-based timing channel using soft isolation, a victim process could at-

tempt to flush its caches using a linear scan prior to its descheduling [OST06], thus masking

the access pattern.

Soft isolations are typically only guaranteed with respect to one defined system attribute,

and are upheld through active and ongoing processes, or through changes in policy. To

elaborate on the previous example, a linear scan may be effective in breaking a cache-based

side-channel, but may leave other core-level illicit channels intact. In contrast, migrating a

process to a different core will automatically break all subsequent core-level attacks, bar any

channels that can be formed using residual effects at the origin produced by its execution

prior to migration. In this regard, hard isolation is more comprehensive, but is limited by

capacity [LGR13].

Other than their generally narrow scope, soft isolations may require an upkeep, that is

they can incur an overhead or lead to lower performance. In the case of the cache-timing ob-

fuscation process, these overheads manifest themselves in the running time of the cleansing

process itself, as well as the negation of the advantages of caching due to the forced eviction

of memory.

In some cases, soft isolations have been improved or superseded by extensions to hard-

ware, which serve to reduce the methods’ speeds or strengthen the degree of isolation offered.

For example, early implementations of x86 virtualisation incurred an ongoing and signific-

ant overhead due to dynamic binary rewriting [AA06], which has nowadays been drastically

reduced through the adoption of hardware-assisted virtualisation. Similarly, software-based

approaches to securing AES introduced overheads [OST06] that have been largely elimin-

ated through the implementation of the cryptographic operations as a special hardware-level

confinement [Gue10].

2.4.2.2 The Soft/Hard Isolation Trade-off

In the absence of special hardware-level confinements, one must choose between using a

(potentially) inefficient soft isolation or dedicating computational capacity to a task, the size

of which depends on the scope of the attack. Consider the case of the clflush instruction,

which flushes all cached versions of a given cache line. This instruction has been demon-

strated to be an effective enabler of several cache-level side-channel attacks [YF14; Zha+14],

due to its ability to flush all instances of a given cacheline from within a cache hierarchy

whilst also avoiding many of the complications of mapping memory addresses to cachelines

that an attacker would otherwise face.

Disabling the instruction would be a crude, yet effective, method for impeding such

attacks. While clflush is an unprivileged instruction that does not generate a hardware

trap [Zha+14], closer inspection of its semantics shows that its execution depends upon a
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clflush flag within the machine’s cpuid register being asserted [Int15a]. This register is

normally immutable, yet a virtual machine would, at least in principle, be able to assign

any arbitrary value to its virtualised counterpart [Lib]. Unfortunately, hardware-assisted vir-

tualisation, such as that used by KVM [Kvma], bypasses the virtualised cpuid register, and

QEMU will only consult the register when using a translation-based virtualisation method that

foregoes hardware acceleration. While this was empirically proven by the author of this

document to be effective in disabling clflush (an invalid opcode exception was thrown on

invoking it during a test), a translation-based VCPU is substantially slower than its KVM equi-

valent, leading to a continuous overhead.

Given that a special-purpose CPU confinement that limits the use of clflush does not

momentarily exist, and that the L3 cache can lead to a machine-wide attack, an approach

based on hard isolation would have to commission an entire machine to the process in ques-

tion. As will be seen in Section 3.4, the notion of an upkeep cannot be directly carried over

into the realm of hard isolation, as the ongoing computational cost of maintaining passive

structural elements such as caches and cores is low. Instead, the primary concern is one of

utilisation, where overhead is considered in terms of the computational capacity that is left

unused during the fulfilment of an isolation requirement.

2.5 A Scope-Based Taxonomy

It is instructive to analyse specific instances of illicit channels and attempt to extract their

commonalities. Consider the side-channel described in Section 2.2. The channel involves a

set of participating parties (the attacker and victim thread), a mechanism (the timing chan-

nel), and scope (core or package-level visibility of timing effects).

The received wisdom is to categorise channels on the basis of their mechanism of action,

yet this is of limited use when considering a partitioning approach to dissolving channels. In-

stead, the following exposition attempts to group channels by their scope, that is the medium

through which the channel is formed.

2.5.1 Caches

Caches are a pragmatic solution to reducing the average time taken to perform memory oper-

ations. They exploit the common observation that real-world data often exhibits temporal and

spatial locality [Ken86], where related data elements often appear close to each other within

memory (for example, in the case of consecutive elements in an array), and are typically

accessed within similar time frames.

When a processor attempts to access a memory location, it first checks for the element’s

presence in cache (a cache hit), with absence (a cache miss) triggering a fetch operation
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from main memory, which is slower to service. This idiosyncrasy forms the fundamental

principle with which many cache-level illicit channel attacks operate. For the purposes of

understanding cache-based illicit channel attacks, one must grasp a few additional concepts,

namely:

Cache lines The aforementioned principle of locality of reference, coupled with the bus

widths of modern architectures, have led to the adoption of cache lines as minimum data

transfer units. Thus, when requesting a byte of data from main memory, the system loads

a block of N consecutive bytes into cache with a single fetch operation (N is determined by

the architecture. For example, an Intel i7-4790 CPU uses 64-byte cache lines). This places a

practical limit on the resolution with which an access-based side-channel can deduce memory

access patterns, as adjacent addresses will produce the same side-effect on memory access

times [MKS12].

Hierarchy Modern CPUs commonly employ a hierarchical cache architecture with multiple

cache levels [Int16b], such as the one illustrated in Figure 2.1. Cache levels are typically

denoted as Ln, n being the level in question, and lower values of n denoting smaller but

faster caches. The level of a cache can be seen as indicating its proximity to a core, with

data to be used by a core filtering down the hierarchy. Certain cache levels may be shared

by multiple cores or hardware threads [URv03]. For example, the aforementioned CPU has

a per-core L1 and L2 cache, and an L3 cache common to all cores [Int16b]. The cache level

affects the scope of an attack [Xu+11], and determines whether an illicit channel is confined

to the same core, or can be formed amongst processes running on separate cores.

Inclusivity A cache hierarchy can be inclusive or exclusive. In the former case, the presence

of a data element in a lower cache level implies that it is also cached within the higher levels.

Thus, for example, if data is contained in L1, then it must also exist in L2. Conversely, an

exclusive cache guarantees that a given data element will always be in at most one cache.

Several cache-level attacks can only be carried out reliably on inclusive architectures. Inclus-

ivity varies by hardware vendor and architecture, with most recent CPU architectures from

Intel being inclusive, and AMD’s offerings being exclusive [Ore+15].

Eviction and associativity As caches are smaller than main memory, it follows from the

pigeon-hole principle that multiple cache lines in main memory are competing for room in

cache. The system is thus faced with the problem of deciding which cache line should be

evicted in favour of any new data that is being requested.

Caches typically exhibit cache inertia, meaning that a cache line is only evicted when an

attempt is made to load a new line into it. Often, the policy for choosing between lines in a
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cache line set is a variant of the least recently used (LRU) policy [AR14], where the first line

to be removed is that which has not been accessed the longest [KPMR12].

A related concept is that of associativity, which refers to the number of separate locations

within a cache to which a given block of main memory can be mapped. The degree of

associativity can vary between caching levels [Int16b]. Associativity can increase the noise of

an illicit channel by introducing collisions between elements in main memory and obfuscating

the memory eviction patterns [MKS12].

Prefetching Contemporary architectures may employ additional optimisations such as pre-

fetching [Int16b], which attempts to pre-load multiple cache lines based on the predicted

memory access patterns. Prefetching may inadvertently hinder the establishment of illicit

channels due to the additional noise and loss in accuracy when deriving a memory access

map [MKS12].

2.5.1.1 Attacks

Interest in the field of illicit channels has been recently rekindled though a seminal work

that detailed a series of methods designed to infer AES encryption keys through cache-level

attacks [OST06]. The methods described the exploitation of a feature of many implementa-

tions of AES algorithms, namely that they use lookup tables, with elements of the key being

used as an index value for the initial round. By triggering an encryption via a known plain-

text and observing the algorithm’s memory access patterns, one could subsequently derive

the key being applied.

Although much of the research in cache-level illicit channels is focused on their use

in breaking cryptographic algorithms and stealing keys, in general, any algorithm whose

memory access pattern depends on confidential information is at risk of leaking sensitive

information through cache-based side channels [KPMR12; Zha+14].

A defining feature of cache-level channels is that they can achieve high bandwidths due to

the speed of memory operations and the frequency at which they can be performed [Xu+11].

This can be contrasted with communication via hard-disk access modulation [LMS14], which

is inherently slower. Fast channels may be facilitated further with the presence of accur-

ate real-time counters, although timing information can also be acquired through alternate

means [OST06].

Cache-level attacks are intimately related to the architecture being attacked. For example,

certain synchronous attacks may only be viable on chip multiprocessors [OST06; Per05].

Passive timing attacks are difficult in the context of cache-level illicit channels due to an

inability to control the victim process’ cache evictions directly. A lack of probes further com-

plicates the formation of an illicit channel due to the lack of local timing information. These
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result in increased noise, which may in certain cases be reduced through statistical meth-

ods and multiple sampling techniques. In contrast, active attacks afford a greater degree of

control over cache evictions, and result in heightened bitrates.

Trace-driven cache attacks analyse memory access patterns [KPMR12; NS07]. Attacks

such as PRIME+PROBE [OST06] are also active, as they require the direct manipulation, or

priming, of the victim’s cache. Synchronous trace-driven attacks allow for some degree of

direct interaction with the victim process, such as by triggering encryption operations. Con-

versely, asynchronous attacks are performed on shared hardware without relying on control

over the victim process [OST06]. Such attacks often rely on an attacker’s ability to execute

code during a sensitive process, recovering information on the process’ intermediate stages.

Asynchronous attacks on single-threaded systems have been demonstrated, with attackers

relying on knowledge of the underlying process scheduling algorithm to execute their code

at the appropriate stages [KPMR12].

2.5.1.2 Mitigations

The following is an overview of the several soft and hard isolation-based mitigations that

have been proposed for combating cache-level illicit channels.

Data Structures and Memory Layouts An elementary mitigation against cache-based at-

tacks would be to not use the cache, that is, to remove operations on main memory, ren-

dering attacks through cache profiling irrelevant. In the case of securing AES, accesses to

cache may be removed by replacing table lookups with computations, at the cost of perform-

ance [OST06]. A slightly more permissive approach is to use registers as caches, keeping

values local to the core, yet registers tend to be very finite, and their number and width var-

ies by architecture. Similarly, attacks may be partly mitigated by compressing lookup tables

and shrinking their memory footprint. This increases the odds that memory segment will

be accessed completely, rendering traces less informative. This approach is based on prob-

ability, and would merely slow down an attack. In addition, it is not very effective against

asynchronous attacks [OST06].

Rather than modify the underlying data structures, one may opt to change (or fuzz) the

access method. For example, modifying every table lookup operation to always scan lin-

early through the entire table would obfuscate the relevant element’s index [Pag02]. As an

optimisation, one can read a single element from each cache-line block, reducing the num-

ber of reads that must be performed to normalise the entire cache. This must be employed

with some caution, as certain architectures exhibit timing differences when accessing values

within the same block [Cop+09]. Fuzzing can also be used to add random delays to sensit-

ive operations, or to normalise operations to some maximal value, although this would slow
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down the process to its worst-case execution time. Reducing the resolution of the system’s

clock can also hinder tracing [LGR13], yet an attacking process may acquire similar timing

information through alternative means, such as by executing a separate timer thread with an

internal counter [OST06].

Hardware A simple method of hindering several fast attacks is to disable simultaneous

multithreading (SMT), disallowing multiple hardware threads from executing concurrently

over the same low-level cache and limiting the resolution of synchronous attacks [OST06].

Hardware threads typically share a great degree of state, including caches. By removing

concurrency, one removes the risk of having an attacker’s thread executing in parallel with

the sensitive process on the same core. This comes at the cost of computing capacity, and

thus, performance.1

On certain architectures, there exists the option of disabling caches entirely, with reads

and writes being committed directly to memory. This drastic course of action would negate

the benefits of caching. A less aggressive alternative, available on some architectures, is to

place caches in a no-fill mode, where reads are performed from cache, but subsequent cache

evictions are disabled. Thus, in the context of AES, one could load the lookup tables into

cache and enter no-fill mode, preserving the speed-up associated with caching during reads

whilst stopping external processes from forcing cache evictions. This would require support

from the kernel, as well as a way of marking privileged processes. [OST06]

Finally, extensions to a machine’s active traits (Section 1.3.1), such as the AES-NI [Gue10]

extensions, can counteract algorithm-specific illicit-channels by creating special-purpose ha-

rdware confinements.

Operating System Support Rather than permanently disabling SMT, a security-sensitive

process may opt to temporarily disable SMT at runtime. This would require support at the

machine level. Alternatively, an operating system may leave the hardware thread active, yet

opt to never schedule processes to it, effectively achieving an equivalent result (a similar

concept will be explored in Section 4.2.3). The problem with such an approach is that it

could lead to the enabling of denial-of-service attacks, especially if processes are able to

disable SMT directly through system calls [OST06].

A more relaxed and less debilitating alternative is gang scheduling, where only threads

from the same originating process are ever co-scheduled [KPMR12], allowing processes to

make use of multithreading. Under the assumption that a process will not attempt to attack

itself, such a policy would not present a higher risk to the process.

1Disabling hyperthreading was once common amongst cloud providers [WXW12] for a variety of reasons,

chiefly related to power efficiency and bean counting, although Amazon EC2 has recently foregone this prac-

tice [Ama15].
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Rather than addressing the problem as one of scheduling, one can also attempt to tackle

the root cause of the attacks, namely the cache behaviour itself. Operating systems can be

extended to partition memory into non-interfering sets using page colouring [Erl07]. This

service can be offered by the operating system in the form of a dynamic call that allocates

regions of stealth memory dynamically using page table alerts, automatically flushing cache-

lines between context switches amongst processes owned by different entities.

2.5.2 Operating System Environments and Machines

Operating systems and physical machines necessarily carry within them an abundance of

state. A core activity of operating systems is to limit any given process’ view of this global

state, yet some sharing will invariably remain.

2.5.2.1 Attacks

Modern operating systems provide processes with many facilities, including memory mapped

I/O and hardware access, as well as metrics such as a process’ CPU or memory consump-

tion. These are all potentially subject to illicit channel attacks. For example, meta-data

attacks [Smi+06] can be used to conduct industrial espionage using tools as basic as ps. The

types of meta-data attacks available vary based on the operating system’s process-facing in-

terface. Thus, for example, an attack with which one can infer a process’ GUI state may only

work on certain mobile devices [CQM14], as desktop-class operating systems may lack the

analogous metric or process behaviour.

Beyond meta-data attacks, a process can have measurable and observable effects on a ma-

chine’s subsystems. For example, a program’s control flow directly affects mechanisms such

as branch prediction, which in turn affects computation times. Consequently, branch predic-

tion has been used to extract bits of a private cryptographic key within a single encryption by

observing the timing effects of the instruction pipeline [AKS07].

Similarly, a program’s data flow can influence timing by creating data dependencies

between instructions, or by changing a program’s execution time in the case of instructions

whose execution varies based on its operands’ values (such as certain implementations of DIV

on Intel processors that use early exit). Data flow dependencies also arise between registers

and memory. For example, storing and loading values to the same location would cause an

out-of-order processor to assume the existence of a data dependency between the elements.

Load bypassing, especially implementations which only consider parts of the address of the

location being loaded, induce further irregularities in memory operation times. Contention

between threads also leads to inter-thread timing dependencies. [Cop+09]
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2.5.2.2 Mitigations

Sandboxing Sandboxing, in its most general sense, refers to the encapsulation of a process

within some form of restricted or seemingly isolated environment. Process containers [Lxc]

have emerged as a robust mechanism for isolation, being particularly effective in the elimin-

ation of meta-data attacks through their use of namespaces. The applicability of containers

depends on how a deployment is structured, and for maximum effect requires the processes

being contained to be decoupled from each other. Note that moving a process to a completely

different operating system and machine and letting it execute on its own could be seen as an

extreme form of sandboxing.

Combined operating system and hardware support may also allow a process to efficiently

move regions of memory to different addresses. As trace-driven attacks profile specific re-

gions in memory, the system would complicate data acquisition by migrating the sensitive

region on each access. Migration could, for example, be implemented through dynamic page

tables, or by using multiple copies of pages and alternating accesses. Alternatively, the sys-

tem may permute memory elements within the sensitive section itself. Unfortunately, these

approaches require a significant degree of hardware support, and tend to be very application-

specific. [OST06].

Program Transformation Control-flow illicit channel attacks can be neutralised by elimin-

ating the unbalances brought about by program branching. One option is to transformation

a program and to render it compliant with the program counter security model [Cop+09].

The program counter security model considers an attack where the only information

leaked is the program counter’s values during execution [Mol+06], from which an attacker

can then determine which branches were taken, and consequently how conditional expres-

sions were evaluated. If the branches of a conditional statement took different times to

execute, and the condition depends on a secret key, then one may be able to infer knowledge

about the key through a timing attack. Conversely, a timing attack will not work if the pro-

gram’s control flow does not depend on a secret key and if execution time is only dependent

on control flow.

Coppens et al. [Cop+09] achieve this through if-conversions, where the branches of a key-

dependent if are modified so as to reduce the variance in the execution times of branches,

as well as in branch prediction. The core of the construction relies on predicating each

instruction in a branch. A fully predicated instruction set, such as that of the EPIC architec-

ture [SRM00], readily accommodates such transformations. However, the x86 architecture

only has predicated MOV instructions, making the transformation less straightforward. The ap-

proach should only be applied to secret keys, which are delineated using pragma directives,

so as to minimise unnecessary overheads [Cop+09]. Their approach used LLVM to ensure
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that the transformation happened beyond the optimisation stage, which would undermine

the conversion.

Beyond the complication of having to tag the security sensitive elements of a program, the

method has a drawback in that it must be revised with each processor generation, as micro-

architectures, and consequently timing behaviours, can change [Cop+09]. Performance can

also be impacted, particularly in the case of loops with terminating conditions that depend

on a secret value, as these necessitate iterating up to the loops’ upperbounds.

Other application-specific program transformations exist. For example, with algorithmic

masking, one may obfuscate data-dependent operations by applying random transformations

to sensitive data. An alternative heuristic is to add noise via spurious memory accesses, such

as by running several dummy encryptions in parallel with the true encryption. [OST06]

2.5.3 Virtual Machines and Mixed-Level Attacks

Cloud computing presents a somewhat curious security landscape, as it potentially places

rivals on a shared platform, as opposed to the comparative safety of an enterprise’s internal

network. This creates an atypical attack surface, with attacks being launched horizontally

across environments, rather than from within a victim’s server environment.

Virtualisation is very commonly used to confine the activities of individual tenants and

limit interference. While the coarse-grained nature of virtualisation and developments in

computer architecture (such as per-core caches, complex memory prefetching protocols and

hardware-implemented AES instructions) have complicated the task of reliably forming cer-

tain types of side-channels across virtualised platforms [MKS12], breaches are still repor-

ted [Ira+14; YF14; Zha+12a]. In addition, virtualisation can enable new classes of illicit

channels that act directly on the virtualisation platform itself.

2.5.3.1 Attacks

Cloud providers generally provide tenants with an abstracted view of the infrastructure over

which they are executing. Thus, while data centres may correspond to broad geographical

locations, tenants are not given the precise location at which their virtual machines execute.

Nevertheless, certain indicators may allow a virtual machine to extract information about

its underlying infrastructure. For example, attacks have managed to co-locate specific vir-

tual machine instances within the Amazon EC2 cloud via a series of heuristics and side-

channels [Ris+09]. As EC2 is based on Xen [Bar+03b], co-location was verified by com-

paring the dom0 IP address visible to each machine, and further reaffirmed using hard-disk

based covert channels. Additional methods for confirming co-location were also identified,

including the use of network-based side-channels and by timing the response times of com-
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munication over external interfaces. The risk introduced by being able to reliably co-locate

virtual machines with targets is that it enables the deployment of subsequent attacks.

Other attacks may be used to detect the rate of web traffic on an adversary’s machine, aid-

ing espionage [Ris+09]. By probing the virtual machine’s load whilst subjecting the victim

to input, one may infer a correlation between computational load and traffic. Load meas-

urements can also potentially be used to record keystroke timings from interactive secure

shell sessions. Combined with keyboard usage models, one could determine the input with

varying degrees of uncertainty based on the fingers’ travel times. Admittedly, this attack was

demonstrated under laboratory conditions, and may not necessarily be feasible in a cloud

setting due to the associated noise [Ris+09].

Covert channels in the cloud can be used to clandestinely export data from one tenant’s

machine to another’s [WXW12]. Knowledge of the underling scheduling algorithm can used

to form a channel by modulating the time for which a machine [OO10] or process [Hu92] is

scheduled. For example, two co-located virtual machines may communicate via load-based

channels, such as through the Covert Channels using CPU loads between Virtual machines

(CCCV) scheme [OO10]. CCCV games the Xen scheduler by encoding a message through the

modulation of a process’ CPU load. A second process executing at the corresponding target

can infer the message based on the length of the scheduling quantum allocated to it. For

multi-core architectures, the sender and receiver endpoints may deploy multiple communic-

ating processes, in an attempt to land a pair of sending and receiving processes on the same

core, relaying a message between groups.

A similar covert channel can be formed by having the sender process invalidate cache

lines, making a measurable impact on the receiver’s memory access times [Xu+11]. The

magnitude of the performance impact can be directly controlled by the number of cache lines

that the sender invalidates, allowing more complex encodings. Other covert channels may

attempt to attack the system’s data bus to modulate memory access times [WXW12].

An advantage of load-based side channels is that they do not require any elevated priv-

ileges on the system, as load can be modulated by changing the volume of computations. In

addition, loads can be very easily and finely controlled, with synchronisation being simpler to

achieve, especially when compared to side-channels formed through other mechanisms such

as page-fault rates [OO10].

Finally, one potential source of illicit channels endemic to virtualisation is memory de-

duplication [HPSP10]. Since tenants often have significant portions of their environment in

common, deduplication can tangibly reduce memory consumption, yet it also enables attack-

ers to infer memory contents of their co-located tenants by checking for collisions.
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2.5.3.2 Mitigations

Isolation The most direct way of combating attacks crossing virtual machines is to isolate

each tenant to its own physical machine [LGR13; MSR15; Ris+09]. The principal criticism

against such an approach is that it is, in the general case, wasteful.

As a compromise, a mitigation may opt to periodically isolate different tenants on a tem-

porary basis, yet one must decide when isolation should be employed. For example, a virtual

machine may be temporarily migrated in response to a perceived attack, such as on detecting

suspicious cache activity [Zha+11].

The approach becomes harder to apply when adversarial behaviours are either inad-

equately characterised, or cannot be efficiently detected. One option is to periodically migrate

virtual machines indiscriminately as part of a moving target defence [MSR15]. Using virtual

machine migration and game theory, a fair scheme was developed that denies malicious vir-

tual machines enough time to conduct an attack through continuous migration [Zha+12b].

This scheme considers the scenario where a secret value is split amongst a set of M virtual

machines, each of which privately stores its part of the secret. The original secret value can-

not be inferred from a single virtual machine’s private store, and can only be reconstructed

by combining k machines’ values, k being a constant chosen when the secret was split. Given

that the secret has been split amongstM virtual machines, a malicious virtual machine would

have to compromise k machines2.

To offset the penalty of virtual machine migration, the scheme uses game theory to de-

termine an incentive that is given to tenants that opt into performing a migration. The scheme

relies on a number of assumptions, namely that the migration operations are secure and in-

cur a constant cost, and that the cloud provider has the capacity to hand out the promised

rewards. [Zha+12b]

While periodic migration may obfuscate attacks, a malicious virtual machine may still

be able to predict tenant placement given enough time. From a performance perspective,

migrations should ideally occur infrequently, yet the longer a virtual machine lingers at a

single location, the greater the chances of information leakage. Thus, the system must be

able to determine an optimal interval for migrations which is shorter than the attacker’s

setup time.

Finally, certain high-frequency and high-resolution attacks can be foiled by simply setting

a lower-bound on the minimum scheduling quanta’s size [VRS14]. While this soft isolation

2Secrets are split using Shamir’s secret sharing [Sha79] technique (a threshold scheme). A polynomial f(x) of

degree k − 1 is first defined with random coefficients with the secret to be shared appearing in the polynomial

as the constant term. The polynomial is then evaluated for each integer i ∈ [1, M ], with each virtual machine

i being given the point (i, f(i)). Given k points, one can then reconstruct the polynomial f(x), recovering the

constant term.
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approach does not completely nullify illicit channels, it can greatly diminish the information

content of many incarnations of cross-VM cache attacks.

Hardware partitioning One approach to reducing potential avenues of attack on the virtu-

alisation platform is to make it smaller and use strict hardware partitioning. NoHype [Kel+10]

is an extreme expression of this principle, whereby virtualisation is performed entirely in

hardware, bar the use of a cloud manager to handle administrative tasks for cloud deploy-

ments.

Mediation to resources in NoHype must be done entirely through hardware. For a user

in a cloud setting, hardware is typically limited to cores, main memory, permanent storage

and a network interface. Under NoHype, cores are pinned to virtual machines on initial

bootup, and regions in memory are allocated to virtual machines through partitioning using

hardware assisted paging (such as Extended Page Tables for Intel VT architectures). Devices

such as a network card may be used through virtualised device support, which exposes the

device through multiple, virtual interfaces, or generally via IOMMU support.

NoHype eliminates several classes of cache-level attacks by never allocating fractions of

a CPU to a virtual machine. This is justified by asserting that one core is an insignificant

unit of computational capacity in modern architectures, moreso fractions of a core. A distinct

advantage of this allocation policy is that active attacks on L1 cache are avoided entirely.

The architecture also fends against memory access violations through paging, and page

tables can only be compromised by subverting the cloud manager. Registers are also hidden

as there is no underlying hypervisor executing throughout the virtual machine’s lifetime,

avoiding cross-VM leakages. Side-channel bandwidth is also reduced through private L1

caches, I/O rate limiting and fair access to memory. [Kel+10]

Resource partitioning and limiting communication between virtual machines in a struc-

tured manner is non-trivial. sHype [Sai+05] extends the Xen hypervisor by allowing the

regulation of explicit data flow and limiting covert channel capacity by simplifying resource

management, allowing administrators to define security policies dictating sharing using a

variety of property languages.

Policies in sHype can be defined in terms of individual virtual machines, or named groups

(coalitions) of virtual machines executing at the same security and access levels. These al-

low the definition of Mandatory Access Control (MAC) policies that are translated into refer-

ence monitors, which mediate security-critical operations which may leak information across

virtual machines. For example, MAC can be used to regulate Xen’s inter-machine commu-

nication mechanisms, namely event channels and shared pages. Apart from mediating all

security-critical operations, reference monitors should also be tamper-proof as well as min-

imal, the latter rendering them more amenable to verification. Verification is paramount, as
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MAC domains form part of the Trusted Computing Base (TCB), and constitute a security risk.

Security-critical operations are defined by inserting security enforcement hooks that delin-

eate regions within the hypervisor that allow cross-VM sharing. The use of hooks is guarded

by MAC policies. Hooks are functionally transparent, executing if legal, and failing with an

error code otherwise. In sHype, security enforcement hooks are defined for overt commu-

nication channels [JSS07], namely domain management operations (such as suspending and

migrating virtual machines), inter-domain event channel communication and shared memory

pages.

MAC for sHype may still admit covert channels, as they remain hard to identify and pre-

vent. Thus, policies are extended to include notions of risk with risk flow policies [JSS07].

Assuming that covert communication may only be carried out between concurrently execut-

ing virtual machines, risk flow analysis ensures that virtual machines are never scheduled in

such a way that information may leak. First, one defines the possible overt flows between

entities, followed by potential covert flows. Risk flows are consequently defined as the union

of such flows. Information may cross between flows transitively, restricting schedules based

on which flows have already occurred. Flows may be restricted by labelling conflict sets which

partition virtual machines.

MAC and risk flow allow the definition of various policies. For example, the Chinese wall

security model was formulated as a policy [JSS07], stating that an object can only be read if a

prior object in its permission group has already been read, or if nothing has been read to this

point. This implemented freedom of choice, as the system locks into parts of the policy based

on the initial state chosen. The basic Chinese wall policy does not support unidirectional

flows, and may thus be reformulated as the Aggressive Chinese wall policy, defining conflict

sets for each machine.

In general, Chinese wall policies were found to be too restrictive [JSS07]. An alternative

approach to defining policies that was analysed was the use of the Bell-LaPadua model, which

can be used to define lattice structures allowing information from low-security zones to leak

into higher-security zones, but not vice versa. A shortcoming of this approach is that one

is only able to specify the most limited level of risk. A similar lattice-based policy that was

analysed was the Caernarvon policy, which allows subjects flows within a range of labels

defining lower and upperbounds on segments within a lattice.

The work concluded with three primary observations [JSS07]. Firstly, as risk flow may

span across systems, MAC has to be coordinated between the different participants. Next is

that strict partitioning may hinder a system’s execution by denying applications legitimate

access to resources, an issue which may further be aggravated by the choice and restrictions

of the policy language used. Finally, risk flow policies for a system cannot intersect, as this

would signify that information may leak transitively between partitions.
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Memory partitioning The abundance of attacks that attempt to subvert virtual machine

confinements by targeting memory have led to the development of a number of tailored coun-

termeasures. For example, StealthMem [KPMR12] provides virtual machines with private

memory pages that map uniquely to lines in last level caches (L2/3), thus eliminating the

ability for attackers to force cache collisions. This is achieved by locking a stealth page of

a virtual machine into shared cache, forbidding other virtual machines from paging it out.

Given the principle of cache inertia and predictable cache associativity, modifications to a

cache set can be regulated by restricting access to each index’s pre-image set. A virtual

machine, or a coalition of machines, may then be allocated sole access to colliding pages.

Reserving lines in cache contracts the cache’s size, which will affect performance, and limits

its applicability to L1 caches.

Internally, StealthMem binds physical page tables to cores rather than virtual machines.

Thus, StealthMem must also save and restore stealth pages during vCPU switches, copying

the contents of a stealth page and ensuring that the pinned stealth page’s contents are flushed

out from cache before the next virtual machine is scheduled. Another consequence of hav-

ing stealth pages pinned to cores is that processes will see different stealth page contents

depending on which vCPU they are running. While this may be inconsequential for lookup

tables (for example, AES tables would remain identical to all processes), migration will be

hindered in cases where processes write to the stealth page.

The approach of StealthMem is similar to page colouring [Raj+09], yet the overheads of

the former are significantly smaller than those of the latter, which grow with the number of

virtual machines [KPMR12].

2.5.4 Networks

Most machines form part of a local or a wide-area network, which can serve as a medium

over which illicit channels can be formed. Networks enable remote attacks, whereby a process

on one machine can form a channel with a second on a different machine.

2.5.4.1 Attacks

Illicit network-level channels broadly fall under the category of storage or timing chan-

nels [CBS04]. For example, covert storage channels may hide information in unused packet

header fields or as steganographically obscured data encoded in the payload [HS96]. Chan-

nels based on unused header fields are of questionable reliability, both because they are an

established avenue of attack, as well as the fact that the handling of such fields varies across

routers and network interfaces.

Network timing channels are far more insidious, as they are formed through measuring or
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modulating the order, frequency and timing of packets as they are transmitted [CBS04]. For

example, timing side-channels have been used to infer secret encryption keys [BB03; Ber05].

More recent attacks are also capable of inferring a connection’s internal state and sequence

numbers, and whether a given pair of hosts is communicating over a TCP channel [Cao+16].

Covert channels can also leverage timing information. For example, a packet sorting channel

encodes messages into the order in which packets arrive (the true packet order is defined

by the sequence number in packet headers). The arrival of out-of-order packets is not an

unexpected occurrence under normal operation, thus complicating the detection of such a

side-channel. Similarly, a general timing channel operates by alternating between sending

bursts of traffic (such as a succession of ping operations) and no traffic, and must be detected

through traffic analysis [CBS04].

2.5.4.2 Mitigations

Illicit channels at the network level, while considered dangerous, are susceptible to noise

via traffic congestion and poor quality of service guarantees [CBS04]. Intermediate packet

processing and congestion control procedures, such as batching and caching, alter the timing

properties of a transmission, and degrade a channel. The principle of batching can also be

pursued as an active countermeasure to normalise transmission times [AZM10b; Gor+12].

Note that this will not completely eliminate timing attacks, rather it can be used to lower any

potential channels’ bitrates and render them impractical. Conversely, a traffic normaliser that

sanitises traffic and standardises all unused or redundant fields in headers would completely

eliminate a class of storage channels [CBS04]. Packet sanitisers may also be employed to

remove sensitive data which crosses from high to low security levels.

Network jitter can cause bits to arrive outside of their expected sampling window, intro-

ducing errors and breaking synchronisation. Ultimately, a transmitter must also be able to

communicate the interval times being used, although these may be decided through different

channels. Countermeasures to synchronisation loss include start-of-frame synchronisation

packets sent by the transmitter prior to transmission, and silent intervals with no packet

transfer (particularly during periods of heavy network load). Receivers may apply interval

adjusting by modelling the network conditions under ideal conditions and comparing them

with actual reception times, deriving time offset values and applying them as necessary. Al-

ternatively, the transmitter may attempt to monitor incremental changes in the network and

adjust its speeds based on the feedback loop formed. [CBS04]
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2.6 Conclusion

The key observation of this chapter is that illicit channels are formed between entities through

a shared medium. The position of two entities relative to each other determines the type

of illicit channels that can be formed between them. For example, two processes sharing a

physical core may form a channel over the memory subsystem, whereas processes on separate

machines may form a network-based illicit channel. This leads to the notion of co-location,

where entities are said to be co-located within a medium if they can leverage it to form illicit

channels. A general countermeasure against illicit channels is thus to break co-location, or

isolate the given endpoints from each other. In this regard, isolation means that the endpoints

should no longer share their communication medium.

Isolation within a cloud infrastructure is a scarce commodity due to the cloud’s incentive

for consolidation. Thus, the heavy-handed approach of isolating every tenant to its own ded-

icated machine would be wasteful and uneconomical. Instead, a more nuanced approach to

isolation should be adopted, whereby every medium is addressed using its own interpretation

of isolation. This culminates into the concept of fine-grained isolation, which forms the focus

of the upcoming chapter.

35



CHAPTER 2. BACKGROUND

36



CHAPTER 3

MODELLING LOCALITY AND MIGRATION

COMPUTATIONS ARE NOT PERFORMED IN THIN AIR, much as though the cloud

tries to hide it, and the increased sharing of computational resources elev-

ates the risk of illicit channels. This creates a demand for efficient mechanisms

that can effectively isolate particular computations. Modelling serves to capture the

intricacies of sharing within complex infrastructures, and provides the basis over

which subsequent mitigation strategies can be built.

3.1 Introduction

To devise a comprehensive strategy against illicit channels, one must first derive order and

structure from within the zoo of seemingly disjoint attack and defence techniques.

While the channels’ mechanism of action is perhaps, at first glance, the most obvious

characteristic on which to base a taxonomy of exploits, it is not necessarily the most useful

in the context of attack mitigation. Specifically, grouping by mechanism of action limits the

capacity for abstraction and uniform reasoning. For example, by grouping all timing channels

into a single class of attacks, one is limited in the number of comprehensive mitigations

that can be applied effectively to each member of that class, as each timing channel has its

own intricacies and will generally require its own mitigation. In addition, such a grouping

eliminates all sense of scope, that is it hides the range of the illicit channels, and gives no

indication as to which processes can communicate with which. Conversely, fracturing the

class into an agglomeration of individual illicit channels removes any advantage of grouping,

as each channel will have to be counteracted using a tailored mitigation.

It becomes apparent that an approach based on partitioning and isolation would benefit

from a characterisation of illicit channels that captures scope. This is because hard isolation

will affect all illicit channels at the granularity or medium at which the isolation operation

is procured. To illustrate, while fuzzing a timing channel on a machine may leave a cache-

based attack intact, isolating the offending process to a different machine will break every

machine-wide illicit channel that can be formed with other processes at the origin. This is

not to say that a better understanding of an illicit channel’s behaviour would somehow be
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a detriment. On the contrary, a fuller understanding of the attack surfaces and vectors that

afflict a system enables the directed use of soft isolation, which can serve as an effective, if

less comprehensive, mitigation against specific illicit channels.

As evidenced by Chapter 2, illicit channels can be formed at various granularities and

scopes. More interestingly, the hierarchical nature of modern computer systems and infra-

structures is mirrored by illicit channels, where the scopes of channels appear to be delimited

by common system boundaries. Thus, for example, one finds attacks that can form channels

amongst entities sharing the same core, cache, physical machine or network, amongst other

confinements.

Classifying illicit channels into a hierarchy of scopes is not simply an exercise in taxonomy,

rather it allows the application of two principles during dynamic isolation and reconfigura-

tion, which in this document are termed cascading and reconfiguration minimisation.

Cascading is the notion that isolating a process to break a channel with a wide scope can

also have a knock-down effect and destroy channels with a narrower scope. For ex-

ample, consider the scenario where two virtual machines are sharing a physical ma-

chine. Migrating one of the VMs to a different machine would prevent the formation of

machine-wide illicit channels, and would also remove the risk of cross-VM cache-level

attacks.

Reconfiguration minimisation is a related concept, whereby a mitigation attempts to pro-

vision the smallest amount of isolation necessary in order to break a given channel.

With reference to the previous example, if a system only needs to be protected against

cache-level attacks, then one may opt to only isolate at the cache-level, rather than

attempt to isolate entities at the coarser-grained VM-level and relying on cascading.

Both principles are based on more general concepts of locality. For instance, when procur-

ing isolation at runtime using migration, one finds that the performance impact of migration

grows with the size of the structure being migrated, as well as the distance between the source

and destination. The full effects of this phenomenon will be quantified in Chapter 4, yet even

intuitively, one would for example expect a virtual machine migration from one machine to

another to take longer than repinning a process to a different core on the same machine, as

this would require a larger state transfer over a greater distance. In this regard, the principle

of reconfiguration minimisation would be to keep migrations as local as possible. Note that

minimisation must be taken within the context of the entire system. Specifically, it may tran-

spire that several locally-scoped reconfigurations can be subsumed by a single migration at a

higher level with cascaded effects, and that the latter will have a lower performance impact

on the system than executing each of the former reconfigurations individually. As will be

seen in this chapter, not all isolation operations have a cascading effect, as this depends on
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the relative positions of the endpoints of the channel in question. Thus, for example, isolat-

ing a virtual machine will still preserve the internal process structure, meaning that an illicit

channel formed between processes within the virtual machine cam be reconstructed at the

destination if the channel’s medium lies within the machine.

Reasoning about isolation and dynamic reconfiguration is non-trivial, particularly when

considering modern systems of networked machines. This chapter explores the development

of a holistic model of locality and isolation that describes the movement and isolation of

computations within hierarchical systems. This model serves to rigorously define co-location,

which is a pre-requisite for the construction of illicit channels defined by the channels’ scope,

as well as formalise the use of migration to reconfigure systems dynamically in order to

provide a requested level of isolation.

Several additional demands must be fulfilled by the model for it to be considered holistic

with respect to its ability to represent the attacks and mitigations explored in the previous

chapter. First, it must be able to express the fundamental notions of confinement and locality

sharing, which serve to define whether or not a given computation is isolated relative to

other entities within the system. This must allow both soft and hard isolations to be handled

uniformly. In addition, so as to correctly reflect the hierarchical nature of modern systems, it

must also be capable of expressing nested confinements.

As scheduling and placement play a central role in co-location, the model must be able to

describe both temporal as well as spatial aspects of a system. Another aspect addressed by

the model is the notion of partial specification, where entities within a system (such as tenants

on a cloud) only have a partial view of their environment, and must be able to delegate their

isolation requirements to external entities.

The ability to simultaneously model different parts of a system using different granular-

ities can lead to an improvement in hardware utilisation, as fewer resources are committed

to providing isolation guarantees. Being able to compare the cost of maintaining different

isolation levels also allows resource allocation to be optimised dynamically, further improv-

ing utilisation. Apart from being quantifiable, the cost of maintaining isolations must be

attributable, particularly in the case of cloud computing.

Chapter Outline

This chapter is structured as follows:

Section 3.2 defines the fundamental notions of confinement, containment and co-location,

with which illicit channels can be described.

Section 3.3 describes how agents can be used to dynamically manipulate a system model,

reconfiguring a system using local and global migration operations.
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Section 3.4 explores different ways in which a model of a system can be analysed and eval-

uated.

Section 3.5 defines the considerations that must be made when choosing the subjects and

targets of migration operations.

Section 3.6 demonstrates the model’s application to the modelling of several illicit channels

and channel mitigations.

Section 3.7 concludes this chapter.

3.2 A Hierarchy of Isolation

Modern computer architectures consist of a multitude of logical and physical environments.

For example, an operating system is an environment which controls the physical resources

that have been assigned to it. The resources comprising an environment may be further

sub-divided into constituent groups of finer-grained environments, forming a hierarchy. Ex-

panding on the previous example, an operating system generally contains several process

environments that it manages and schedules.

A fundamental task in security is to enforce boundaries on environments, regulating ac-

cess to their underlying resources. This is done through a variety of mechanisms, such as

memory protection and context switching. Thus, environments also serve as confinements,

with different environments placing restrictions on access to their internals. Alternatively,

they can be seen as isolations, with the effects occurring in one being invisible to the other.

3.2.1 Confinement and Containment

The fundamental unit of computation and boundary delineation in this work is the confine-

ment, defined as follows.

Definition 1 (Confinement). A confinement (equivalently, isolation or locality) denotes a

boundary within which a number of sub-confinements exist. A confinement of type Γ with a

name N and capability set C containing a set of sub-confinements SB is denoted as Γ:N(C) [SB].

A confinement’s name is typically dictated by its type, and serves to identify it from

amongst its siblings. It is assumed that confinements can be uniquely identified by their

name. In the case of conflicts and duplicate names, one can either associate a generated

unique identifier to the confinements through an additional preprocessing step, or differenti-

ate between confinements using the prefix of containments leading to them.

Capabilities are used to limit how confinements can interact and modify each other, as

will be seen in Section 3.3.1. The capability set can be omitted when it is empty.
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The notion of confinement automatically entails one of containment, where a confinement

X contains Y when Y is a sub-confinement of X. Since Y is itself a confinement, this enables

the representation of hierarchical containment. For example, processes execute within the

confines of a CPU, and multiple CPUs are confined to a single machine, which can itself form

part of a network.

Definition 2 (Containment). A confinement X is contained within a confinement Γ:D(C) [SB]
if X ∈ SB. This is denoted as X∈D.

Illicit channels exploit the fact that certain confinements are imperfect, and do not keep

their sub-confinements completely isolated from each other. An illicit channel is thus formed

when members of a confinement can communicate with each other over an unregulated me-

dium. Thus, imperfect confinements can be seen as introducing locality, where confinements

that should theoretically be disjoint are connected through a channel exploiting some char-

acteristic of their parent confinement. The principle of containment can thus be extended to

express co-location, which is defined as follows.

Definition 3 (Co-Location). X is said to be co-located with Y through D, written as X D←→ Y, if

X∈D ∧ Y∈D.

The state leaked within a confinement can potentially be observed both by its direct sub-

confinements as well as their members. For example, a thread confinement running within a

process confinement may communicate with another thread via the process’ parent operating

system. This is expressed through an extension of the basic co-location and containment

predicates, in the form of the nested containment and nested co-location predicates, which are

defined as follows.

Definition 4 (Nested Containment). A confinement X is recursively contained, or nested,

within a confinement D (denoted as X∈+ D) if it is contained within any of its sub-members,

that is, X∈+ D def= X∈D ∨ ∃D′ ∈D. X∈+ D′.

Definition 5 (Nested Co-Location). A confinement X is recursively co-located with Y via a

confinement D (denoted by X D⇐⇒ Y) if they share a common ancestor. This can be expressed

formally as X D⇐⇒ Y def= X∈+ D ∧ Y∈+ D.

Together, these predicates can be used to model various architectures and attack scen-

arios. The following is a simple example of how one can model a cache hierarchy, and how

co-location would manifest itself in such a model.

Example 2 (Parallel Execution). Consider a CPU package with two cores (C) sharing an

L3 cache, with each core having its own L1 and L2 cache. Moreover, each core employs

simultaneous multithreading (SMT) (or hyperthreading, in the case of Intel machines) and
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exposes two hardware threads, which share a given core’s L1 and L2 caches. This can be

modelled as:

CPU def= L3:0 [L2:0 [L1:0 [C:0 [] ,C:1 []]] ,L2:1 [L1:0 [C:2 [] ,C:3 []]]]

Figure 2.1 illustrates the nesting of confinements specified by CPU. Two processes X and

Y can be susceptible to an attack via an L1 cache [OST06] if

∃L1:L∈+ CPU. X L⇐⇒ Y

or via the L3 cache [Zha+14] if

∃L3:L∈+ CPU. X L⇐⇒ Y

For the given hierarchy, the latter will hold whenever processes execute simultaneously.

Note that while the physical proximity between an attacker and victim (or equivalently,

the depth at which the two entities appear within the model) can determine the feasibility

of a channel [Gur+14; Gur+15], it does not necessarily imply that an illicit channel’s useful

bandwidth will be higher. That is, while processes that are closer to each other can generally

communicate at a faster rate or perform more events per unit time than others that are further

away (for example, processes sharing a cache interact with their shared resource at a higher

frequency than if they were co-located through a network) [Gli93], not every interaction

carries information relevant to the channel.

3.2.1.1 Modelling Soft and Hard Isolation

Soft and hard isolation are represented within the model in an identical fashion, namely as

a confinement following the specification given in Definition 2. The nature of the isolation

provided by a confinement is indicated by the confinement’s type, with no explicit mention

as to whether the confinement implements soft or hard isolation. Instead, the distinction

appears when considering a confinement’s semantics and behaviour during a hierarchy’s life-

time.

Table 3.1 lists a number of confinement types that can be used to provide hard isolation at

various system granularities, along with their common unique identifiers. The confinement

model places no restrictions on the types of sub-confinements, which allows the description

of partial specifications and incomplete system hierarchies. In practice, it follows that certain

containment patterns do not occur, and that the presence of certain confinements imply the

existence of a parent of a specific type. For example, a virtual CPU (vC) confinement would

imply the existence of a VM to which it belongs. To that end, the table also lists the common

types of sub-confinements that each confinement type can typically accept in a fully-specified
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Type Description Identifier Can Contain

Net Network Network ID Net, M
M Machine IP/Hostname L3, OS
L3 L3 Cache Index L2
L2 L2 Cache Index L1
L1 L1 Cache Index C
C Physical core Index vC, PE, Con, VM

Table 3.1: Examples of hard isolations, and their containments.

Type Description Identifier Can Contain

VM Virtual machine VM name/UUID vC, OS
vC Virtual CPU VCPU ID vC, PE, Con, VM
Con Container Container name/UUID P
PE Control group Group name Con, P
P Process Process ID (PID) -

OS Operating System Hostname PE, Con, VM

Table 3.2: Examples of soft isolations, and their containments.

hierarchy. Note that M and C also admit the containment of several types of soft isolation

confinements, such as processes and virtual machines.

Table 3.2 tabulates the set of soft isolation confinements with which this work is primarily

concerned. These types, in combination with the hard isolation types defined in Table 3.1,

form the core components of the systems for which the overall mitigation approach is de-

signed, and serve as the fundamental building blocks for a cloud-based deployment scenario.

Note that hardware can be partitioned into finer granularities. For example, as will be seen

in Section 3.6.2, one can further decompose monolithic cache confinements into their finer

constituent cache sets. Nevertheless, the hierarchy as described is sufficient to model the

principal actors within a network of machines, and additional confinement layers and parti-

tionings such as software-defined networks or subnets can easily be incorporated by extend-

ing the type hierarchy. Conversely, the hierarchy can be simplified by restricting analysis to

the coarser-grained virtual machine level, reverting to the more traditional and less nuanced

approaches to isolation.

Predictably, the hard isolation confinements listed in Table 3.1 are predominantly rigid

architectural elements such as caches and networks, which, while offering some degree of

configuration, exist at fixed locations in relation to each other. Conversely, the soft isolations

described in Table 3.2 are dynamic, and can be created, destroyed, or in some cases, moved.
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3.3 Migration and Reconfiguration

The ultimate aim of the model is to be able to model the dynamic elimination of co-location

between confined entities. This requires the ability to model the modification of containment

hierarchies through operations enabling the creation, destruction and migration of confine-

ments. The latter is modelled as moving an isolation from one containment to another. The

implementation of these operations varies based on the isolations involved, and may require

a series of compound actions that incur multiple changes at different parts of the hierarchy.

3.3.1 Agents

Changes to the hierarchy are effected by agent processes. Agents represent scheduling com-

ponents that manage confinements. For example, an operating system’s process scheduler

can be modelled as an agent confinement that regulates movements between an idle queue

and core confinements. Agents are represented within the model as extended confinements,

and are defined as follows.

Definition 6 (Agent). An agent is a confinement A:N(CAG)→T [Q], where A denotes an agent

type, N is the agent’s name, T is a set of confinements visible to the agent, CAG is its cap-

ability set, → ⊆ T × T is a mapping defining legal containments, and Q is a queue of idle

confinements.

Agent confinements serve to make the scheduling aspects of a system explicit. While

agents are given the abstract agent type A, they can be implemented in a variety of ways.

For example, as will be seen in Section 4.4, an agent can be implemented as a user-level

process that issues scheduling commands to the underlying operating system environment.

Similarly, an agent can be an externalised representation of a scheduling procedure that is

embedded within a larger system. For example, an agent can serve to expose the behaviour

of an operating system’s scheduler, allowing its semantics to be incorporated into the model.

Agents may also be embedded at different levels of a hierarchy. For example, a network

domain controller or router can be modelled as an agent embedded within the network’s

hardware layer.

The set of confinements T contains a subset of the confinements that constitute the hier-

archy being modelled. While this could theoretically be fixed as the universal set of possible

confinements, it is assumed that T is the set of legal confinements with which an agent can

interact.

An agent’s control over its set of known confinements T is limited through a system of

capabilities. An agent can create, destroy or migrate a confinement if it shares a capability

with the confinements involved. This gives rise to the following notion of capability checking.
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Definition 7 (Capability set comparison). Two confinements with capability sets A and B can

interact if their capability sets intersect, that is, if A e B is true, where A e B def= A ∩ B 6= ∅.

Capabilities serve to describe the extent of an agent’s influence, being restricted to the

capabilities denoted by CAG. The task of checking capabilities is intentionally kept abstract,

as the actual authorisation operation varies depending on the confinements involved. For

example, within a single operating system, a root password can serve as a single capability

that allows all of its sub-confinements to be managed. Other mechanisms include certificates,

user groups, and policies defined via polkit (as is done in the case of virtual-machine man-

agement using libvirt [Lib]). The concept of a capability set is used, rather than simply

using the confinement name as a capability (as in the case of mobile ambients [CG98]), as it

separates the identification aspect of a confinement from its control and policy mechanisms.

In addition, the use of a set more closely reflects the principle that there are multiple and

different control mechanisms present in a complex system. Mutability is not modelled as an

intrinsic property of a confinement, rather it is determined by the availability of a confine-

ment’s capability to agents.

The relation → specifies the containments that are allowed by the agent’s scheduling

policy. This is used during analysis when determining potential co-locations between con-

finements. Pairs in the mapping are of the form 〈X,D〉, which represents that a confinement

X can be contained by a parent confinement D.

Finally, the idle queue Q is a set of confinements that are controlled by the agent, and

that have been temporarily removed from the active parts of a hierarchy during the system’s

execution. The idle queue effectively functions as a limbo, or holding area, for confinements

that are not executing. For example, an agent representing a process scheduler would transfer

processes between C confinements and its idle queue, placing the active processes within the

former and confining the idle processes in the latter.

3.3.1.1 Probes

A probe is an abstraction of an event source. This is modelled as a confinement, and is

effectively an agent that lacks migration capabilities.

3.3.2 Communication and Scoping

For any non-trivial hierarchy of confinements, it is generally the case that no one confinement

will have complete knowledge of the topology of which it forms part. Consequently, an agent

will only have a partial view of a system.

Consider the simplified cloud infrastructure illustrated in Figure 3.1, which consists of

a minimal model of a single node MACHINE with two cores, over which two tenant virtual
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VM:1

vC:V1

A:TA1

M:MACHINE

C:C1

vC:V0A:HYP

C:C0

vC:V1

VM:0

vC:V0

A:TA0

Figure 3.1: Partial model showing agent scopes and boundaries.

machines are executing. In this model, each VM has an agent TA0 and TA1 running within

it, while the infrastructure provider has an agent HYP running on the base system.

The virtualisation confinements within MACHINE prevent the tenants’ agents from enu-

merating their parent confinements through standard operating system interfaces. In addi-

tion, even if the details of the parent confinements can somehow be inferred (for instance,

through illicit channels), the tenants’ agents would not have the necessary capabilities to

alter them directly. For instance, mere knowledge of the existence of additional co-located

tenants would not automatically grant a tenant’s agents control over them.

Thus, in this scenario, the constituents of each virtual machine are hidden from the en-

tities, or agents, outside of their boundaries. For a given agent to have full knowledge and

control over the entire hierarchy, it would have to collude with the other agents. Unanimous

collaboration between rational agents would be unreasonable in the case of a public cloud,

since

i) tenants are adversaries (or at the very least, mutually-distrusting neighbours) that will

not willingly disclose their internal state,

ii) the cloud provider will not advertise details regarding its infrastructure due to the as-

sociated security risks, as well as a general lack of incentive, and

iii) tenants would not willingly expose their internal state to a cloud, and suspicions that

a cloud provider is performing introspection [DG+13] will quickly lead to the tenants’

confidence in the platform being undermined.

Collusion would thus be limited to cases where multiple virtual machines are owned by

the same tenant, or when a virtual machine is compromised and is intentionally attempting

to leak data to an outside entity.

While a tenant agent may be unaware of its parent environment’s confinements, the con-

verse does not hold. Containment relationships crossing a boundary still require that the
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sub-confinement be exposed to its parent. For example, while tenants in Figure 3.1 might

not know the number of physical cores that are available on the machine, the hypervisor

must have a handle to the tenants’ vC structures in order to manage their core pinnings.

Furthermore, the agent’s position within a hierarchy also determines its view of a confine-

ment, and can alter its observed type, particularly in the case of confinements on the fringes

of an agent’s scope. For example, vC confinements managed by HYP are seen as Cs by pro-

cesses within the tenants’ VMs. Thus, isolation requests across scopes must be accompanied

by a mechanism to rename confinements. Confinement renaming is not always straightfor-

ward, as evidenced by the migration of processes, which have a significant amount of state

dispersed within their parent OS confinement that has to be translated on migration. For in-

stance, a process’ PID may have to be changed on migrating to a new OS environment [Cri],

which would alter its internal system view. A prevalent workaround is to employ namespace

mechanisms, commonly in conjunction with containers [Lib], to encapsulate structures such

as PIDs and network interfaces and separate them from the common namespace of the base

OS. This ensures that a migrated process’ structures remain internally consistent.

When migrating a confinement, an agent must be able to access both the source and

destination confinement. Scoping complicates migration, as these confinements may lie out-

side of the original agent’s control. For example, consider the case where an agent on one

machine is attempting to migrate a virtual machine onto another physical machine. In this

scenario, the agent would require control over the target. One option would be to tempor-

arily transfer a capability over the destination to the agent performing the migration, yet

this would pose a security risk. Instead, to exert influence on locations outside its scope, an

agent must proxy its requests through an external agent that controls the target scope. Using

the previous example, rather than allowing the initiating agent to directly control the virtual

machine’s receiving endpoint at the destination, the agent forwards a migration request to

the destination’s controlling agent. The receiving agent then proceeds in creating the des-

tination’s virtual machine process whilst retaining control over the new virtual machine. By

approaching the problem of migration in terms of provisioning isolation and regulating mi-

grations crossing control boundaries at the agent level, one simplifies the secure and reliable

management of capabilities and allows for the modelling of restrictive sharing policies.

3.3.3 Scheduling

Agents are scheduling manifest, modelling the execution and placement of confinements. An

agent may perform two fundamental forms of scheduling, namely it can

i) transfer confinements directly between confinements that it controls and its idle queue,

giving rise to local scheduling, and
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L-SC

A:AG(CAG)→T [Q ∪ {X}]
Γ:N(C) [SB] AG ≡ X y N.AG’ CAG e C CAG e cap(X) (X,N) ∈→

A:AG’(CAG)→T [Q] Γ:N(C) [SB ∪ {X}]

L-DS

A:AG(CAG)→T [Q]
Γ:N(C) [SB ∪ {X}] AG ≡ X y AG.AG’ CAG e C CAG e cap(X)

A:AG’(CAG)→T [Q ∪ {X}] Γ:N(C) [SB]

Figure 3.2: Local migration rules.

ii) migrate a confinement to a different part of the containment hierarchy that is managed

by another agent, leading to global scheduling.

Local migration limits the pool of targets to which an agent can schedule a confinement

to its set of known confinements, assuming that it also owns the corresponding capabilities.

On migrating a confinement globally, one changes the set of potential parent confinements

to those that are owned by the destination’s agent and allowed by its containment mapping

→.

The following is a description of the two forms of scheduling, as well as a definition of a

hierarchy’s configuration, or state at a given point in time.

3.3.3.1 Local Scheduling

Local scheduling moves a confinement between an agent’s idle queue and a target confine-

ment via the local-schedule (L-SC) and local-deschedule (L-DS) rules, the general forms of

which are defined in Figure 3.2.

The local-schedule rule describes the movement of a confinement X from within an agent

AG’s idle queue to a confinement N, triggered on the issue of a migration instruction (X y N)

that moves X from its idle queue to the target locality N. For the local-schedule to execute,

the agent must share capabilities with the target confinement, as well as the confinement

being moved. This is represented using the capability comparison operator (Definition 7)

on CAG and the capability set C, as well as the capability set of X. The latter is represented

using the helper function cap() that returns a given confinement’s capability set, that is,

cap(Γ:N(C) [Sb]) → C. Finally, the rule checks that the allocation is permitted (as defined

by →). Given that all the conditions have been met, the confinement X becomes a sub-

confinement of N.

The local-deschedule operation is similar, with the key difference that the confinement in

question (X) is moved from a confinement within the locally-scoped containment hierarchy
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back into the agent’s idle queue.

Confinement creation and destruction can be modelled as the addition and removal of

confinements from an agent’s idle queue, respectively. The destruction of non-idle confine-

ments would thus have to be preceded by a local-deschedule operation. Modelling destruc-

tion in this manner avoids having to assign a different set of semantics for rendering a con-

finement inactive due to destruction or suspension.

Creation and destruction would generally be reserved for soft isolations, as hard isolations

are normally fixed confinements dictated by hardware. While hardware confinements such

as caches are not typically disabled at runtime, an agent may nevertheless want to delete

their representation from the model if it is certain that the threat of a channel through that

confinement has been neutralised.

In theory, one could model the deployment of soft isolation techniques for separating

a given set of confinements as the destruction of the parent confinement through which

they are co-located. In reality, soft isolation techniques are generally imperfect, and can

themselves introduce information leaks. For example, a work-conserving scheduling policy

may reveal details such as the number of processes co-located with an attacker. Instead, soft

isolations should be modelled as the creation of a new confinement, the existence of which

depends on a separate set of conditions holding, as will be seen shortly.

Example 3 (Round Robin Scheduler). Consider the CPU hierarchy defined in Example 2.

An agent implementing a simple round-robin scheduler with a shared run queue can be

defined as A:RR(CAG)→T [Q], where Q contains an ordered list of processes, and→ defines the

allowed mapping of processes to physical cores. The default behaviour is to map all processes

to all available cores, giving → def=
{
(X, Y) | X ∈ Q ∧ Y = C:N(C) [SB] ∧ Y∈+ CPU

}
. Given

that ↑()→ is a function that returns the allowed parent containments within which a given

confinement can be placed, that is, ↑(X)→ def= {Y | (X, Y) ∈→}, the scheduler can be defined

as a CSP-like process as follows:

RRQ([P | PS] , CA, CF) ≡
C:X∈↑(P)→∩CFu P y X.RRQ(PS, CA, CF \ {X}) u
P:P’∈C:Y∈ CAu P’ y rr.RRQ(PS | [P’] , CA, CF ∪ {Y})

where CA is the set of all cores being managed by the scheduler, [P | PS] is an ordered list of

processes with P as its head and PS as its tail, and CF is the set of idle cores. The process

would thus be initialised as RRQ(Q, CS, CS), where CS =
{

X | C:X∈+ CPU
}
.

Next, consider the scenario where a security-sensitive process S is added to Q. If the

process is susceptible to a cache-level synchronous attack [OST06], then one must avoid

co-locating S with other processes during its execution. As formulated, the scheduler will

execute processes in the order specified by the idle queue, but processes can be descheduled
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pre-emptively at will, meaning that every other process can potentially execute in parallel

with S. Forcing processes to execute for an equal and fixed time-slice will cause S to poten-

tially be co-scheduled with the |CS| − 1 processes that appear before and after it in the idle

queue. Finally, changing → to ensure that S always executes by itself will prevent spatial

co-location, at the cost of underutilised hardware. As a compromise, → can be varied dy-

namically, with the number of processes that can share cores growing proportionately to the

time elapsed since the last scheduling of S.

3.3.3.2 Configurations

Reasoning about temporal locality requires the ability to describe how a model evolves from

one configuration to the next, where a configuration is defined as a set of confinements de-

scribing a snapshot of the system as a given point in time. The evolution of a configuration is

determined by the agents it contains. The presence of multiple agent and varying scheduling

policies mean that, in general, there is more than one legal next configuration. This leads to

the notion of a next(C) function, which returns the set of possible configurations that can

be reached from a configuration C through a single application of a local schedule or des-

chedule operation (Figure 3.2). This is extended to the iterated next configuration function

nextn(C), which returns the set of configurations reachable from C in n steps, defined as

follows:

next0(C) def= {C}

nextn(C) def=
{

nextn−1(C′) | C′ ∈ next(C)
}

Finally, the configuration combination operator nextn
∪(C) is defined as:

nextn
∪(C) def=

{
Γ:N(C) [SB] | Γ:N(C)

[
SB′
]
∈+ CFS

}
where SB

def=
⋃{

SB′′ | Γ:N(C)
[
SB′′

]
∈+ CFS

}
and CFS

def=
⋃ ⋃

0≤i≤n

nexti(C)

This effectively performs a union of every possible configuration reachable within n local

scheduling operations, including intermediate configurations. The result is a graph that

shows every containment combination attainable in a set sequence of steps. This can be

used to represent a system’s temporal behaviour as a static spatial graph. A related graph

can be achieved by combining each agent’s containment mapping, giving a graph of potential

containments, yet this would over-approximate containments, as a scheduling policy may opt

to only use a subset of mappings available to it.
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L2:1
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(a) No isolation at L1

L3:0

L2:1

L1:1
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C:0
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(b) Creation of L1S via soft isolation

Figure 3.3: Cache-level co-location and mitigation via soft isolation, with arrows denoting

containment.

3.3.3.3 Isolation using Local Scheduling

Soft isolation can be obtained in a number of ways, often by using some form of normaliser.

In this scenario, a normaliser is a process or procedure that, through its execution, produces

a new confinement that exposes less information than its non-normalised counterpart. For

example, normalisers can reduce the information content of a side-channel that observes

triggering times of several mechanisms, such as packet delivery times [Gor+12] and hard

disk usage.

Both soft and hard isolations are represented as confinements (Section 3.2.1.1). Schedul-

ing a confinement into a soft isolation confinement would imply that the conditions for that

confinement to exist must hold. For example, by never co-scheduling processes, one creates

a mutually-exclusive containment at the cache level. This allows a dynamic scheduling policy

to be treated as a static guarded resource, simplifying the representation.

Example 4 (Round Robin Scheduler, revisited). In Example 3, co-location with a security-

sensitive process S was only considered with respect to a single moment in time, yet an

access-based cache-level side channel’s effects persist beyond a process’ execution [OST06]

until the security-sensitive memory blocks have been flushed. Thus, simply disabling co-

scheduling during S’s execution would not be sufficient to break the channel reliably.

The duration of the residual effects of caches is independent of real time, and is de-

termined by cache evictions. For the pre-emptive round robin scheduler described earlier,

the position of S in the idle queue relative to an attacker process will generally affect the

illicit channel’s quality, as the probability that S’s sensitive cache blocks become clobbered

increases with the number of processes that execute in the interim. If cache eviction patterns

and process quanta are irregular, or if a fully pre-emptive scheduling policy is used, then each

core in next∞∪ ({CPU}) will contain Q.

Residual effects can be explicitly removed through a cache-cleaning process [ZR13] that

invalidates cache blocks, masking their timing variations. The process (henceforth referred
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to as CLEAN) must execute after each de-scheduling of S. Any process using the same cache

that executes concurrently with S can potentially infer the timing state up to the point of

CLEAN’s completion. Thus, one must place an additional restriction on concurrent execution.

If these two conditions can be guaranteed as invariants, then the cache has effectively been

partitioned into two sub-confinements of type L1S (a soft-isolated L1), transforming the

hierarchy described in Figure 3.3a to that illustrated by Figure 3.3b (for simplicity, S is pinned

to C:0). The partitioning serves to isolate the process S from the other processes SC (the

latter being the complement of S). Note that the processes remain co-located within L1:0, as

they are still ultimately sharing hardware locality. If the soft isolation is deemed perfect, then

the L1 confinement can be destroyed. Removing CLEAN would lead to the partitions being

destroyed, and the L1:0 confinement being recreated.

3.3.3.4 Global Scheduling

Local scheduling limits an agent in its ability to procure isolation, as it can only move entities

amongst confinements that are under its direct control. An agent can be supported by addi-

tional agents external to its scope in two ways. First, an external agent can provide isolation

guarantees on the parents of confinements that are being managed by an agent. For example,

if an agent running within a virtual machine requires a hard isolation guarantee that a pro-

cess executes alone on a core, then it must query an agent in the underlying hypervisor’s

scope to ensure that the vC confinement is placed in a dedicated C confinement.

Secondly, an external agent serves to extend the pool of available confinements, allow-

ing confinements to be migrated to a different scope. Building on the previous example, the

hypervisor agent can migrate vC confinements amongst cores until an isolated core is pro-

visioned. If the agent finds that all of its resources are committed, it can query additional

external agents for isolations on different machines.

Migrating from one agent’s scope to the next leads to the notion of global scheduling.

Broadly, global scheduling involves two steps, namely

i) identifying a target agent which can procure the required level of isolation, and

ii) migrating the confinements required to achieve isolation.

Global migration changes a confinement’s place within a hierarchy by placing it under

another agent’s control and modifying its mapping rules. Consequently, migration changes a

system’s infinite configuration next∞∪ ().

Figure 3.4 defines the general rule for migrating a confinement X globally. The source

agent SRC initiates a migration request to a destination agent DST with an isolation criterion

isol(), which DST attempts to match against its known and controllable confinements. Fol-

lowing the migration, each agent updates its containment mapping rules, with SRC removing
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G-SC

A:SRC(CSRC)→SRC

TS [QSrc ∪ {X}] A:DST(CDST)→DST
TD [QDst]

DST∈ TS SRC ≡ X
isol()
y DST.SRC ’ D∈+ {D’ | D’ ∈ TD}

CSRC e CDST CSRC e cap(X) CDST e cap(D) isol(X,D)

A:SRC ’(CSRC)→SRC′
TS\{X} [QSrc] →SRC′≡→SRC \ {(X, Y) | (X, Y) ∈→SRC}

A:DST(CDST)→DST′
TD∪{X} [QDst ∪ {X}] →DST′≡→DST ∪{(X,D)}

Figure 3.4: Global migration rule.

the associated mappings, and DST adding a rule for X’s allowed containments. The source

and destination agents can be the same, allowing confinements to be created, destroyed, or

simply remapped. The rule can be modified so that X is assigned multiple potential parent

confinements at its destination. This allows a confinement to maintain the same number

of allocated resources across migrations, for instance, it would allow a virtual machine to

preserve its ratio and mapping of virtual CPUs to physical CPUs at the destination.

As will be seen in Chapter 4, global migration is implemented through a variety differ-

ent mechanisms, the choice of which depends on the containment level being considered,

as well as the position of the agent relative to the confinements being migrated. The choice

of migration approach affects the performance impact of reconfiguration, due to varying

amount of state that will have to be moved about. As a general rule, reconfiguration costs

can be minimised by favouring migrations between nearby confinements over migrations to

distant destinations. This is also affected by the confinements’ depth within the hierarchy.

Conversely, it may occasionally prove to be advantages to perform multiple local reconfig-

urations over a single large migration, particularly in the case of cascaded confinements. In

addition, other factors such as data locality within a data centre can serve to restrict the set

of viable destinations that a confinement may have.

Agent discovery varies depending on the confinement level being considered, but it gen-

erally involves mapping an agent’s identifier to its actual address. Discovery mechanisms

include broadcasts, distributed keystores and centralised repositories. Each method has its

own drawbacks in query time and consistency. Depending on the frequency of agent dis-

covery operations and actual migrations, one may also consider propagating notifications

of topology changes down a hierarchy following a migration, with lower-level agents sub-

scribing to their parent agents and receiving notifications whenever their scopes have been

altered. The difficulty then lies in the choice of communication interfaces that are made

available to sub-confinements. For example, while logics such as the cloud calculus [Jar+12]

make use of a parent() operator, which returns a handle to a confinement’s parent, such a

predicate is not generally available out of the box. On the contrary, there are several cases
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OS:BASE

C:1 C:2C:0 C:3

PE:ALL

P:S A:AT P:SC

(a) Bare metal

OS:BASE

C:1 C:2C:0 C:3

PE:ALL VM:VM

vC:0 vC:1
P:PS A:HYP

OS:GUEST

PE:ALLPE:SEC

P:S A:AT P:SC

(b) Single-Layer Virtualisation

Figure 3.5: Introducing indirection through virtualisation.

where the parent confinement maintains an active effort to fully encapsulate its child confine-

ments and remain transparent. This is particularly evident in the case of virtualisation, where

the virtualisation platform generally limits direct interaction from its guest virtual machines

to a set of defined drivers, and makes a conscious effort to provide guests with the illusion

that they are running directly on the underlying hardware. As will be seen in Section 5.2.3,

this problem can be overcome through the creation of additional explicit interfaces through

which an agent within the guest virtual machine can pass up requests to a hypervisor-level

agent.

As a confinement may potentially be migrated across hostile boundaries, additional meas-

ures must be adopted to secure communications between the endpoints of an implementation

of the system.

3.3.3.5 Isolation Constraints

A consequence of agent scoping is that changes to external confinements need to be delegated

to an agent. In addition, operations that modify the hierarchy cannot directly refer to specific

external confinements, both due to scoping and security reasons.

Consider a simple isolation condition isolP(), which checks whether a process exists by

itself in a C environment, defined as follows:

isolP(P:X,C:D) def= ¬∃P:Y∈+ D. X 6= Y

The evaluation of isolP() varies based on the underlying system assumptions. Fig-

ure 3.5a illustrates a partial next∞∪ () graph of the CPU hierarchy from the perspective of

54



CHAPTER 3. MODELLING LOCALITY AND MIGRATION

OS:BASE

C:1 C:2C:0 C:3

PE:ALL VM:VM

vC:0 vC:1

vC:0 vC:1

P:PS A:BASE
OS:GUEST

VM:VMGPE:ALL

A:HYPP:PS
OS:GUEST

PE:SEC PE:ALL

P:S A:AT P:SC

Figure 3.6: Nested virtualisation (two layers).

an agent running within a virtualised environment (or equivalently, a non-virtualised, bare-

metal environment). In this case, for D quantified over all visible confinements, isolP(S,D)
will fail (return false) due to processes sharing a process control group ALL. To comply with

the isolation requirement, processes must be partitioned into two process groups contained

in disjoint sets of cores.

Subsequently adding a virtualisation layer produces the containment tree shown in Fig-

ure 3.5b. If multiple VMs execute in parallel, then the isolP() predicate may fail. Thus, the

hypervisor agent HYP must be queried to ensure that cores are allocated exclusively to the vC
containing S. Given that X 7→ X’ renames a confinement X into a locally-scoped confinement

X’, a second isolation condition isolvC() is defined and sent to HYP, where:

isolvC(C:X,C:D) def= X 7→ vC:X’ ∧ ¬∃vC:Y∈D. X’ 6= Y ∧ X’ D⇐⇒ Y

In this case, D is a free variable which must be bound by HYP. As described in the previ-

ous section, the C confinement must be renamed to a structure visible to HYP, namely X’. As

virtualisation and containments can potentially be nested to an arbitrary depth (Figure 3.6),

the isolvC() isolation request must be pushed upwards in the hierarchy, until the base con-

finement is reached. This ensures that the intermediate levels of indirection do not lead to

co-locations. While the use of nested virtual machines might not currently be widespread,

the growing adoption of containers may increase the occurrence of such topologies.

Finally, an isolation request may place additional constraints on co-location. For example,

tenants may request that VMs can only be co-located on a machine if they are all owned
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by the same tenant. Given that X is the tenant’s machine from its scope, and D is the base

machine, this can be expressed as:

isolVM(M:X,M:D) def= X 7→ VM:X’∧¬∃VM:Y∈D. X’ D⇐⇒ Y∧

tenant(X’) 6= tenant(Y)

3.4 Cost Functions and Metrics

Different configurations vary in the degree of isolation that they offer and the cost required to

maintain them. The ability to quantify these factors is essential to the process of provisioning

isolation, as it allows configurations to be compared, and enables allocations to be optimised.

Cost can be expressed with respect to different resource types, including power consumption

and computational costs, yet these can often be derived from the more general measurement

of utilisation.

When comparing system hierarchies containing long-lived processes, one must consider

the cost of maintaining a configuration over time, rather than simply comparing a system’s

instantaneous configuration. Thus, accurate measurements of costs should be evaluated over

the next∞∪ () of a given hierarchy.

What constitutes cost depends on the isolation approach being used. For example, while

the upkeep cost of a soft isolation technique may be represented by its overhead, or the com-

puting capacity committed to the active process that is preserving the isolation, the cost of

hard isolation is that it can lead to unused computational capacity. The impact of unused

capacity, especially in the context of cloud computing, materialises in the form of lost poten-

tial profits and unnecessary maintenance costs. Thus, the former is quantified through the

presence of higher workloads, whereas the latter leads to the reduction or absence of com-

putation. Depending on the degree of isolation involved, one can expect a crossover point,

where the cost associated with committing resources to a soft isolation outweigh the cost of

maintaining the capacity that would be left unused using hard isolation. This crossover point

varies when one considers that freeing resources committed to maintaining soft isolation will

also make them available for the actual workloads that require isolation. The composition

of isolation strategies will also affect scalability and the total cost of isolation. For example,

a compound action such as creating a virtual machine and migrating a process that requires

isolation to it may prove cheaper than migrating the process’ original virtual machine, due to

the larger granularity of the latter confinement.
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3.4.1 Core Metrics

The following defines a number of fundamental metrics and expressions for analysing con-

figurations and evaluating costs.

3.4.1.1 Capacity

A basic metric of a model is its total capacity, or the number of confinements that a given

configuration contains. This is defined as

capacity(C) def= |
{

X | X∈+ C
}
|

Rather than the total capacity, one is generally interested in the capacity of a hierarchy

with respect to a given confinement type Γ, which allows the enumeration of elements such

as VM and M. This is defined as

capacityΓ(C) def= |
{

X | X∈+ C ∧ X = Γ′:N ∧ Γ′ = Γ
}
|

3.4.1.2 Utilisation

Certain confinements can only contain a number of sub-confinements before the system’s

overall performance peaks or begins to drop. For example, consider the scenario of a process

scheduler allocating processes to cores evenly. Given that load(Y) returns the average CPU

utilisation of a process Y expressed as a fraction, one can measure CPU utilisation for a

hierarchy C as a dimensionless unit as follows:

util(C) =
∑

C:X∈+ C
min

( ∑
P:Y∈ X

load(Y)
| {D | C:D∈+ C ∧ Y∈D} |

, 1.0
)

≈
∑

C:X∈+ C
min

(
k
∑

P:Y∈ X

|↑(Y)→|−1 , 1.0
)

The second formula is an approximation that can be computed statically given an average

processor usage k and the P-to-C mapping defined by an agent’s → structure (the relation

↑()→ being defined in Example 3). The min function caps each C’s usage value to 100% (1.0),

as each C can only work at its maximum. In the case of a hierarchy containing a mixture of

core architectures and performance ratings, a more precise utilisation metric can be derived

by parametrising the capped value and changing it based on the core’s type. These values

can be expressed as a ratio with a basic core type, or using an absolute performance metric

such as instructions per second. While the expression is designed for the context of core

utilisation, this metric can also be extended to other forms of bounded containment.
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3.4.1.3 Consolidation factor

Beyond measuring the aggregate utilisation of a system’s capacity, cloud providers are inter-

ested in their infrastructure’s consolidation factor. This is represented as utilisation/capacity,

or the ratio between the system’s utilisation and the number of confinements of a given type

within a hierarchy. This figure encompasses both underutilisation as well ask skewed load

distributions.

3.4.1.4 Pairwise co-locations

Assuming that every co-location is an equally-large threat to a tenant, one would reduce the

attack surface by minimising the total number of co-located pairs in a given hierarchy, which

can be computed as follows:

pairs(C) = 1
2 |
{
〈X,D, Y〉 | XY,D∈+ C ∧ X 6= Y ∧ X D←→ Y

}
|

When forming a coherent defence against illicit channels, a tenant may opt to prioritise

certain isolations over others. For example, a tenant may prefer to minimise co-locating pro-

cesses with other tenants prior to isolating its own local structures, based on the assumption

that the risk of an external attack is greater than an internal one. In this case, pairs() can

be extended to only consider subsets of parent confinement types.

3.4.2 Applying Metrics

As containment hierarchies are acyclic, they can be topologically sorted, and metrics can be

computed by performing a breadth-first search and evaluating each sub-graph, provided that

costs are compositional. The evaluation of metrics is complicated by agents’ partial system

specifications. For example, a tenant can compute pairs() within its own VM, yet this will

only serve as a lower-bound, and would have to be combined with additional information

from the parent confinement.

In a cloud scenario, tenants and the cloud provider are fundamentally at odds and will

attempt to optimise their configurations with respect to different metrics. For example, a

tenant will want to compromise between pairwise co-locations and total capacity, the latter

having a material financial impact on its operations. Conversely, while a cloud provider will

attempt to optimise consolidation so as to maintain a smaller deployment, it has a lower

incentive to minimise a tenant’s total capacity if it bills its clients on the basis of committed

resources.

Example 5 (Comparing architectures). A system’s containments can vary across vendors.

To illustrate, consider two different CPUs, namely an Intel i7-4790 (INTELT) with 8 hard-
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ware threads using SMT1, and a hex-core AMD Phenom II X6 (AMDT). Apart from cache

exclusivity, the architectures vary in that the former has two hardware threads to each L1
containment, whereas the latter has per-core L1 and L2 caches. This results in the following

models:

INTELT
def= L3:0 [{L2:I [L1:I [C:I [] ,C:I+4 []]] | 0 ≤ i ≤ 3}]

AMDT
def= L3:0 [{L2:I [L1:I [C:I []]] | 0 ≤ i ≤ 5}]

Consider the case where processes must never be co-located through L1 or L2. For the

INTELT hierarchy, this effectively halves the C capacity. Assuming that each system divides P

processes amongst its Cs equally, util(AMDT) = min (kAMDTP/6, 6.0) , and util(IntelT) =
min (kINTELTP/4, 4.0). Thus, INTELT’s process execution time kINTELT must be two thirds of

kAMDT in order to have equal utilisation rates.

3.4.3 Ongoing and Migration Costs

Configurations offer different security guarantees at different costs. Evaluating costs and

metrics on a configuration’s next∞∪ () is a tradeoff between performance and precision, as it

avoids recomputing costs after each local migration operation.

Given a static model, a configuration can be progressively modified until it reaches an op-

timal state with respect to a property of the system. For example, tenants within a cloud have

an incentive to use resources efficiently, and cloud providers generally attempt to provide

resources to tenants with a minimum of overhead. Thus, if no confinements are created

or destroyed by the tenants’ agents, a cloud provider can alter the system’s configuration

incrementally until it reaches its lowest cost state.

The fluidity of cloud architectures necessitate a dynamic model, which limits the time

allowed for a system to converge to an optimum. More generally, assuming that a system will

remain in configuration C for a duration τ , one should temporarily move to C′ if the cost of

τC is greater than that of migrating to and from C′ combined with the cost of maintaining τC′.
An accurate characterisation of τ enables configurations to be optimised with a minimum of

migrations, yet a system in constant flux or with very small values of τ can potentially negate

gains in migrating. Cheap migration operations can help offset the effects of τ .

Example 6. Figure 3.7 models migrations between various next∞∪ () states of a system’s L1
caches with three processes, where one of the caches has deployed the soft isolation strategy

described in Example 4. Utilisation rates are given in brackets, assuming that

i) each L1 confinement is shared between two cores and has a total capacity of 2,

1For this architecture, the indices for hardware threads sharing the same core are not consecutive.
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(2)L1:L0 [L1S:S0 [] ,L1S:S1 []] | L1:L1 [P0, P1, P2]

(2 + α)L1:L0 [L1S:S0 [] ,L1S:S1 [P1]] | L1:L1 [P0, P2] (2 + α)L1:L0 [L1S:S0 [P0] ,L1S:S1 []] | L1:L1 [P1, P2]

(1 + 2α)L1:L0 [L1S:S0 [P0] ,L1S:S1 [P1]] | L1:L1 [P2]

(1 + 2α)L1:L0 [L1S:S0 [] ,L1S:S1 [P0, P1]] | L1:L1 [P2] (1 + 2α)L1:L0 [L1S:S0 [P0, P1] ,L1S:S1 []] | L1:L1 [P2]

(2α)L1:L0 [L1S:S0 [P0] ,L1S:S1 [P1, P2]] | L1:L1 [] (2α)L1:L0 [L1S:S0 [P0, P2] ,L1S:S1 [P1]] | L1:L1 []

(2α)L1:L0 [L1S:S0 [] ,L1S:S1 [P0, P1, P2]] | L1:L1 [] (2α)L1:L0 [L1S:S0 [P0, P1, P2] ,L1S:S1 []] | L1:L1 []

Figure 3.7: A subset of possible global migrations between configurations.

ii) each process has a utilisation factor of 1,

iii) L1 confinements have zero cost, as they are built into the architecture, and

iv) non-empty L1S confinements reduce their core’s capacity to α (overhead values can

reach up to 7% [ZR13]).

Disabling co-scheduling on the partitioned core will cause its capacity to be halved. Utilisa-

tion is highest (2+α) when the unmitigated cache is at full capacity, with additional processes

running within soft isolations. The configurations with the lowest pairs() are obtained for

1 + 2α.

Metrics can also be extended to encompass special purpose confinements [BPH14] and

heterogeneous deployments, with certain configurations being cheaper or more secure to

maintain on machines with dedicated hardware.

3.5 Automatically Generating Migration Sequences

The allocation of isolations to locations within a computational hierarchy is ultimately an

exercise in scheduling. In its most general form, determining where confinements should be

placed within a system is equivalent to bin-packing and eludes an efficient solution [Aza+14].

The problem of placement is further complicated by the addition of quality of service predic-

ates, which would typically include limits on capacity and utilisation. Finally, the hierarchical

nature of the systems being investigated introduces its own nuances. For example, migrat-

ing an intermediate node within a containment graph will have a cascading effect on the

constraints of its constituents.

The task is thus to determine a sequence of migration operations that will move a system

from a configuration C to a new configuration C′ that satisfies the isolation and quality of

service criteria that are being requested. If C′ is known, then one can compute a sequence of
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To break condition X CA⇐⇒ Y:

i) find D∈+ CA.

X∈+ D ∨ X = D ∨ Y∈+ D ∨ Y = D

ii) find/create CA’. ¬CA’∈+ CA

iii) replicate path from CA to D in CA’

iv) check isolation constraints and migrate

D to new parent in CA’

(a) Migration procedure outline

. . .
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(b) Migration effects by graph height

Figure 3.8: Computing migration paths for breaking X CA⇐⇒ Y.

migration operations leading to it using a minimum edit distance algorithm for graphs, with

migrations corresponding to edit operations that are weighted according to the migration

mechanisms’ costs. One drawback of such an approach is that the minimum graph edit

distance cannot always be calculated efficiently [Gao+10]. More crucially, this approach

requires that C′ be identified beforehand, whereas one typically has to compute both the

migration sequence as well as the final configuration.

Figure 3.8a provides a general outline of the steps required to break the co-location of

X and Y via a common ancestor CA within a partially-specified hierarchy described in Fig-

ure 3.8b. In the absence of efficient and exact oracles, several steps must be approximated

by heuristics, as will be discussed in the remainder of this section. Note that the process of

releasing or removing isolation constraints is similar to this procedure, with a greater focus

on consolidating previously-isolated confinements back into existing confinements so as to

lead to a cheaper configuration.

3.5.1 Finding a Source

The impact that the migration of a confinement D will have on a graph’s isolation constraints

will vary based on the position of D within that graph. For instance, migrating a process from

one CPU core to the next will break locality at the core level, but not at the machine level.

The choice of confinement source (and similarly, destination) is limited by the set of agents

available to the orchestrator of the migration, as this directly affects the visible confinement

scopes.

When attempting to reconfigure the configuration illustrated by Figure 3.8b to comply

with the constraint ¬(X CA⇐⇒ Y), one finds that individual migration operations moving con-

finements outside of CA can take one of three forms, namely:
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i) fully isolating, where X and Y share no common ancestor up to the depth of CA,

ii) relative locality preserving, whereby co-location through CA is broken, yet the confine-

ments are still co-located within an intermediate common confinement, and

iii) non-isolating, where the structures producing co-location through CA are preserved by

the migration.

Hence, the depth within the graph at which the confinement being migrated exists determines

how many co-locations will survive migration through the effects of cascading (Section 3.1).

Consequently, for isolation to be achieved, one must migrate a confinement on the contain-

ment path leading from CA to X or Y. Note that in the case of multiple separate routes for

co-location through CA, one may have to migrate more than one confinement to fulfil a single

isolation constraint.

Migrations that preserve relative locality may be insecure and must be performed with

caution, as attacks on the locality type of CA may still be viable were one to migrate to

a location of the same type (such as the sibling CA’). Conversely, one cannot rely entirely

on fully-isolating migrations due to the finiteness of physical infrastructures. In the case

of migrations at the same depth, such as when migrating either X or Y, one should ideally

choose a migration that results in the lowest cost.

3.5.2 Finding a Target

Given that an appropriate confinement D∈+ CA has been marked for migration, the next

step is to determine a suitable destination. Trivially, this must exist outside of CA. Referring

to Figure 3.8b, the earliest depth within the graph to which the localities can be migrated is

CA’, a confinement directly co-located with CA.

Provided that it is of the correct type, any confinement CA’. ¬(CA’∈+ CA) can serve as a

destination confinement, yet a heuristic may find it reasonable to attempt to keep migrations

as local as possible. In broad terms, migration amongst smaller localities (vC to C, or P to

C) can be performed in milliseconds, as opposed to the migration of larger structures (P to

OS, or VM to M), which can be a thousand times slower, principally due to the involvement

of the network layers and shared storage, as will be seen in Chapter 4.

3.5.3 Creating an Equivalent Environment

When migrating a confinement to a new parent, one would generally have to create a con-

tainment graph at the destination that matches the source’s nesting structure. In certain

cases, it may not be necessary to duplicate the full environment at the destination. For ex-

ample, when migrating a VM that is running within a second VM, one may opt to migrate
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the former directly to bare metal. Conversely, a process will not operate correctly unless its

environment’s assumptions are correctly mirrored at the destination.

3.5.4 Satisfying Constraints

When executing a sequence of migration operations, one must ensure that both the end state

as well as the intermediate configurations do not violate any constraints that have previ-

ously been placed on the system. Ideally, constraints are checked before any migrations are

performed, and migrations are only carried out once it has been established that they re-

spect all isolation constraints. Failing this, transaction semantics must be added to migration

sequences, giving the ability to dynamically roll back migration operations and attempt to

identify an alternative path.

Backtracking will introduce delays in the servicing of isolation requests, which may not

always be tolerable. If the workloads are well characterised, one may determine that certain

constraints can be temporarily relaxed. For example, a tenant may tolerate a short-lived dip

in performance, which would in turn allow a machine to be temporarily over-provisioned

whilst performing a sequence of reconfiguration operations.

3.6 Applications

The following section investigates various contexts in which the model can be applied, in-

cluding runtime enforcement, as well as in the modelling and analysis of an access-based

side-channel and a replication-based timing channel mitigation.

3.6.1 Runtime Isolation

While co-location properties can be verified for specific scopes, the guarantees may no longer

hold after a system has been reconfigured. Runtime monitoring serves to dynamically resolve

isolation predicates that depend on confinements at the edges of a configuration’s scope. The

model can be used to define policies within a runtime monitoring framework, where declar-

ative restrictions on co-locations are used to define invalid configurations. Once a bad state

is detected (such as on detecting suspicious memory access patterns [Zha+11]), the system

can be reconfigured to a correct state using migration, leading to a reactive architecture. An

implementation of this principle will be expounded upon at greater lengths in Section 4.4.2.

Alternatively, the framework can be driven by a system of leases, with isolation being pro-

cured before a security-sensitive process executes.
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3.6.2 Pre-emption Rate Limiting

The presented model can be used to reason about attacks at different granularities, which

we demonstrate by modelling an access-driven cross-VM side-channel attack developed by

Zhang et al. [Zha+12a], and its scheduler-based mitigation [VRS14]. The attack relies on a

PRIME-PROBE cache access pattern, similar to the attack described in Example 3.

Consider a hypervisor managing two virtual machines, namely a victim VMv and attacker

VMa. Both machines (collectively referred to as
→
V) share a core C0. The hypervisor agent HYP

is defined as:

A:HYP({CVMv , CVMa , CC0}){(VMv,C0),(VMa,C0)}
{VMv,VMa,C0}

[→V ]

and implemented as a process HYPI defined as:

HYPI ≡
VM:X∈

→
V

u X y C0.X y HYP.HYPI

The next∞∪ () graph of the system at this coarse level of granularity would reveal that the

virtual machines are co-located through C0, yet the mechanism by which they interfere with

each other is not immediately apparent. The hierarchy can be defined at a finer granularity

by modelling L1 as a confinement of N cache-line sets (CLS), giving:

L1:CLS0 [{CLS:CSi [] | 0 ≤ i < N}]

Cache-lines are invalidated as processes execute within a vC. In a fine-grained model,

the agent process is modified to map vCs to CLS confinements, signifying that an operation

running within that vC has disturbed the cache set in question (more precise models of

cache eviction policies may also be defined, yet this is unnecessary for the purposes of this

exposition). A process carried out by an agent AG which schedules a vC to a C, models the

VM’s interactions with CLS for R times, and then yields control of the scheduler is defined

as:

run(A:AG,L1:L,C:C,vC:VC, R) ≡ VC y C.(
CLS:CS∈L
u VC y CS)R.VC y AG

The attack is access-based, where the attacker attempts to determine the pattern of a

victim’s memory accesses. The attacker achieves this by priming the cache and checking

its access times after the victim executes, placing its vC VCa within a cache set previously

occupied by VCv, leading to the sequence:

run(AG, CLS0, C0, VCa, N).run(AG, CLS0, C0, VCv, R)

The attacker’s resolution of the victim’s intermediate cache states is greatly influenced by

R. If a victim can be pre-empted frequently, then the attacker can build a more precise

memory access model. Conversely, large values of R will increase the probability that other

cache regions unrelated to the security-sensitive computation under attack will have been
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accessed, leading to noise. Thus, the victim VMv attempts to choose a value of R such that it

maximises the value of pairs() formed over an execution.

A mitigation against this attack is to place a minimum running time on virtual ma-

chines [VRS14], which stops an attacker from forcing deschedules and limits its ability to

profile a victim. By knowing the number of cache invalidations required to achieve the de-

sired level of isolation and the cost of performing cache operations, one can determine a

minimum VM scheduling quantum length.

A similar fine-grained cache analysis can be performed for cache colouring [KPMR12],

where scheduling must guarantee disjoint cache sets. An additional related mitigation is

that of the cache cleaning process (Example 4), which is effectively a solution for the same

problem using a different scheduling level.

3.6.3 Timing Channel Elimination

STOPWATCH [LGR13] is a collection of mitigations designed to reduce the information con-

tent of timing channels in the cloud. The approach centres on the use of replication to create

R copies of each virtual machine (R ≥ 3), each of which is placed on a different machine

containing other tenants’ replicated VMs. Clock sources on a VM are then modified to

report time as a median of its local time and that of the replicas. This ensures that a co-

located attacker will observe the same timing behaviour. Several aspects of the mitigation

can be modelled, including event synchronisation and OS-level soft isolations. This section

will focus on the VM replication and placement aspects of STOPWATCH.

Given a network NET of machines, the VM placement requirements of STOPWATCH can

be modelled as three invariant conditions, namely:

∀VM:V∈+ NET. |
{

V ’ | VM:V ’∈+ NET, is_replica(V ’, V)
}
| = R (3.1)

∀VM:V,M:M∈+ NET. | {V ’ | VM:V ’∈M, tenant(V ’) = tenant(V)} | ≤ 1 (3.2)

∀VM:V1,VM:V2,M:M∈+ NET. V1 6= V2 ∧ V1
M←→ V2 →

¬∃VM:V3,VM:V4,M:M’∈+ NET. V3 6= V4 ∧ V3
M’←→ V4 ∧M 6= M’∧

tenant(V1) = tenant(V3) ∧ tenant(V2) = tenant(V4) (3.3)

The first invariant ensures that there are R replica machines within the network. The second

invariant checks that each machine has at most one virtual machine belonging to the same

tenant. The final invariant checks that any given pair of tenants can be co-located in at most

one machine.
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3.6.4 Other Properties

The following section outlines several additional scenarios that can be characterised using

the model and concepts explored in this chapter.

Basic Chinese Wall Policy The elimination of cache-level contention can be modelled at

a number of granularities. For example, the individual cache-lines can be modelled as fine-

grained confinements, contained within a larger cache-set parent confinement. Isolation can

also be enforced at the CPU package and process level.

Trusted/Allowed Co-Schedulings The model may be used to define groups of trusted con-

finements that can be co-scheduled within time or space, either by extending confinements

to allow for attributes, or by simply replicating the trust groupings using containments. In

the latter case, groups can be broken down into finer-grained federations of confinements,

which may also span across different confinement types.

Grouping Address Ranges Due to the circuitry and algorithms involved with memory ad-

dress alias resolution, accesses to certain memory elements may influence the time taken to

perform memory operations on other, essentially unrelated, memory elements [Cop+09]. In

the case of systems using pessimistic load bypass [Cop+09], this occurs amongst elements in-

terspersed by a fixed width. These groupings can be modelled by partitioning memory into a

series of buckets, the size of which varies based on the architecture in question.

Delayed Scheduling Due to the effects of a channel potentially persisting across time, one

can postpone the scheduling of a sensitive task, or prefix it with a normalising process (Ex-

ample 4). In the case of cache-based channels, one can postpone scheduling until a given

degree of cache entropy has been reached, thus avoiding the use of an explicit cache clean-

ing process. Tracking of cache pollution can be done using hardware event counters (these

will be covered in greater detail in Section 4.4.2.2). In the case of time-critical processes,

the system can set an upperbound on time, after which a high-entropy process is forced into

existence. This can also be extended to the virtual machine level, or a mixed-level mitigation

between processes and virtual machines belonging to a different entity. A related mitiga-

tion is to schedule and migrate processes or virtual machines in such a way as to maximise

the periodicity, or the time before any given confinement is co-scheduled with a previously

co-scheduled confinement.
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3.7 Conclusion

This chapter has investigated the modelling of temporal and spatial co-location within the

context of illicit channels, examining the issues of cost, scoping and migration. Migration

was subsequently split into local and global migration classes, with the former representing

scheduling operations, and the latter enabling the transfer of confinements between agent

scopes.

While it is assumed that the model will be used in the context of cloud infrastructures,

there is nothing within the model that inherently restricts its application to such scenarios.

Cloud architectures have primarily been singled out due to their diversity of confinement

types, and because the scale of cloud infrastructures translates into an abundance of potential

targets to which a confinement can be isolated.

Based on the established attacks and mitigations studied in the previous chapter, it ap-

pears that some degree of co-location is always necessary for an illicit channel to be feasible.

That is, one cannot claim that a system is completely air-gapped whilst simultaneously ad-

mitting an illicit channel. For example, physical phenomena such as electromagnetic eman-

ations may allow a channel to be formed over physical spans [Gur+14], subject to physical

co-location. In the case of remote attacks, although the attacker and victim may not share a

single global and authoritative real-time clock, the former may indirectly correlate progress

at the victim’s end with its own local clock [BB03]. Similarly, other remote attacks may still

rely on the execution of code at the victim to directly exploit co-location [Ore+15]. This co-

location prerequisite is useful as it simplifies the model by ensuring that the same metaphors

of co-location and containment can be uniformly applied to different attack and mitigation

scenarios.

The next chapter concerns the transition from model-based mitigations to concrete imple-

mentations using SAFEHAVEN, with particular attention to the performance of reconfiguration

and migration operations.
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CHAPTER 4

THE SAFEHAVEN FRAMEWORK

WITH THE TERMINOLOGY AND NOTATION required to model confinement and

co-location defined, attention is now turned towards SAFEHAVEN, a frame-

work designed to facilitate the creation, deployment and evaluation of isolation

policies.

4.1 Introduction

Physical isolation provides tenants in a cloud with strong security guarantees against hard-

ware illicit channels. The viability of hard isolation as a general mitigation technique de-

pends on three factors, namely the availability of distinct hardware locations, the degree of

underutilisation tolerated by the owner of the infrastructure, and the cost of dynamic recon-

figuration.

The number of available isolated confinements depends on the size of the physical infra-

structure under consideration. If a cloud provider were to provision isolation at the machine

level, then it would very quickly run out of computational capacity, as well as obliterate the

system’s consolidation factor (and, by association, its profitability). This is closely tied to

the second factor, in that the granularity at which isolation is procured also determines the

granularity at which underutilisation occurs. Thus, for example, provisioning isolation at

the hardware thread level will block the utilisation of a co-located hardware thread, while a

machine-wide isolation guarantee will deny other tenants use of that machine.

The previous chapter demonstrated, by means of a hierarchical model, how a finer-

grained approach to isolation enables higher rates of utilisation by minimizing unused ca-

pacity and effectively multiplying the number of candidate confinements for isolation. This

chapter details the implementation of the model into a framework that allows the dynamic

provisioning of isolation at various levels of a system’s architecture, primarily at the core,

cache, and machine level, as well as their virtualised equivalents. Each confinement type is

studied separately, and is followed by a description of their integration into a unified frame-

work, dubbed SAFEHAVEN.

SAFEHAVEN is a framework that assists in the creation and deployment of networks of
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communicating probe and agent processes. Sophisticated system-wide detectors can be built

by cascading events from various probes at different system levels. A crucial aspect of this

approach is that detectors can be both anticipatory as well as reactive, meaning that they can

either trigger isolations as a precaution or as a countermeasure to a detected attack.

SAFEHAVEN is implemented in Erlang [Erl] due to its language-level support for many

of the framework’s requirements, with probes and agents as long-lived distributed actor pro-

cesses communicating their stimuli through message passing. Other innate language features

include robust process discovery and communication mechanisms and extensive support for

node monitoring and error reporting. SAFEHAVEN was developed in lieu of adapting existing

cloud-management suites such as OpenStack [Ope] so as to focus on the event signalling and

migration aspects of the approach. Erlang’s functional nature, defined communication se-

mantics and use of generic process behaviours [Erl] help to simplify the automatic generation

and verification of policy enforcement code, paving the way for future formal analysis.

The framework is demonstrated using two case studies, showing its efficacy both in a

reactive, as well as an anticipatory, role. Specifically, SAFEHAVEN is used to detect and foil

a system-wide covert channel in a matter of seconds, and to implement a multi-level moving

target defence policy. The results from these case studies are used to quantify the last of the

three factors determining the approach’s viability, namely the overheads of migration and

reconfiguration.

Chapter Outline

This chapter is structured as follows:

Section 4.2 investigates concrete and real-world analogues to the confinements considered

in the previous chapter, and details their migration and management.

Section 4.3 illustrates the core elements of SAFEHAVEN agents by means of an example.

Section 4.4 evaluates the application and performance of different migration mechanisms

when used to counteract a machine-wide covert-channel attack and when implement-

ing a moving target defence.

Section 4.5 concludes this chapter.

4.2 An Instantiated Hierarchy

The following section details the implementation of a framework for managing an instanti-

ation of the model described in the previous chapter. The framework, dubbed SAFEHAVEN, is

designed to control a number of confinement types, a list of which can be found in Table 4.1.
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The technologies and confinement types that were incorporated within SAFEHAVEN were

chosen as analogues to the confinement types described previously (Section 3.2.1.1), and

form the fundamental components of cloud environments and workstations.

Model Technology Reconnaissance Identifier

OS Linux uname Host name

VM QEMU virsh VM name

vC KVM or emulated virsh, /proc/ vCPU ID

Con LXC lxc-info Container name

PE cgroups cset cgroup name

P System process ps Process ID

Table 4.1: Summary of technologies used to implement confinement stack and the methods

by which confinements are enumerated at each level.

As part of its duties in managing containments and allocations, SAFEHAVEN also allows

the enumeration of confinements through a series of reconnaissance (or recon) functions,

the implementation of which varies based on the hierarchy level in question. Using recon

functions, an agent can query the underlying system at runtime and build a partial model

of the infrastructure, translating it into a graph of first-class Erlang objects representing con-

finements. This facilitates the creation of dynamic policies. Table 4.1 summarises the core

enumeration mechanisms that are used at each confinement level being considered.

Figure 4.1 illustrates a containment hierarchy built primarily using the aforementioned

confinement types, as well as the core migration pathways that are considered in this work

(depicted through arrows 1 to 7). The remainder of this section provides a detailed descrip-

tion of the modelling and implementation of each migration path.

4.2.1 Cores (C) and Virtual CPUs (vC)

Virtual CPUs (vC) are an abstraction of physical cores (C). In the case of QEMU virtualisation,

each virtual machine is assigned a subset of the C confinements that are physically available

on the underlying machine. In turn, each of the VM’s virtual CPU confinements can be

assigned (or pinned) to a subset of these allocated cores, either directly via QMP [Qema],

or through libvirt [Lib]. This means that a given vC can only execute within one of the

cores to which it is assigned, that is it can only be locally scheduled to cores within its group.

Similarly, a vC cannot be directly migrated to a core external to its parent VM’s assigned set

of Cs.

Figure 4.2 shows the series of migration operations required to migrate a vC from one C
allocation to another. The vC is first moved to an agent AG that executes in parallel to the
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Net:192.168.0.0/24

M:INTEL2

L3:0

L2:1

L1:1

C:HT3

vC:V1

PE:PE1

C:HT2

vC:V0

PE:PE0

L2:0

L1:0

C:HT1

vC:V1

PE:PE1

P:P3

C:HT0

vC:V0

PE:PE0

M:INTEL1

L3:0

L2:1

L1:1

C:HT3

vC:V3

PE:PE3

P:P2

C:HT2

vC:V2

PE:PE2

L2:0

L1:0

C:HT1

vC:V1

PE:PE1

P:P1

C:HT0

vC:V0

PE:PE0

P:P0

VM0 VM1 VM2

3 4

1 2 6 5

7

Process Migration

1: same core 5: different OS, same machine

2: different core 6: different OS, different machine

VM Migration

7: different machine

vCPU Migration

3: same core

4: different core

Figure 4.1: Configuration of two physical machines running three virtual machines, with

edges denoting containment. The paths labelled 1 through 7 denote routes for migration,

with the source confinement changing its parent to the destination.

VM to which the vC belongs, after which the mapping rules are modified, and the vC is

migrated to its destination core C1. vC migration within a nested virtualisation environment

follows a similar sequence of operations, except that the confinement type of M becomes

VM, and C0 and C1 become vC confinements.

The agent process shares the same operating system as the virtual machine, and exists at

the same level within the containment hierarchy. While the procedure may initially appear

to be a local scheduling operation, it entails a modification to the mapping rules, and con-

sequently modifies the system’s next∞∪ (). Thus, the operation is still a global migration, yet

its source and destination agents are the same.

With regards to capabilities, an agent requires authorisation over the hypervisor and vCs

to reconfigure the vC-to-C mapping. Note that the existence of a vC automatically implies

the existence of a VM further up the hierarchy, that is,

vC:VCPU∈C:CPU ⇒ ∃VM:VM. VCPU∈ VM ∧ VM∈ CPU

QEMU vCs can either operate as emulators, providing a fully-virtualised confinement, or

with hardware acceleration, typically using KVM [Kvma]. As will be seen in Section 5.3.6,

the latter may admit unsafe migrations, with virtual machines being migrated to physical
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[OS∈+ M:M,

C0∈+ M:M,

C1∈+ M:M,

VM∈ C0,

VM∈ C1]

OS:OS
[
VM:VM(CD)

[
vC:VCPU(CD)

]
,PE:PGA

[
A:AG(CAG){〈VCPU,C0〉}∪→AG

{VCPU, C0, C1, VM} []
]]

C:C0(CX) [VCPU] C:C1(CY) [] AG ≡ VCPU y AG.AG’

CAG e CD CAG e CX

OS:OS
[
VM:VM(CD) [] ,PE:PGA

[
A:AG’(CAG)→AG

{VCPU, C0, C1, VM} [vC:VCPU]
]]

C:C0(CX) [] C:C1(CY) []
CAG e CD CAG e CY AG’ ≡ VCPU y C1.AG”

OS:OS
[
VM:VM(CD)

[
vC:VCPU(CD)

]
,PE:PGA

[
A:AG”(CAG){〈VCPU,C1〉}∪→AG

{VCPU, C0, C1, VM} []
]]

C:C0(CX) [] C:C1(CY) [VCPU]

Figure 4.2: vC migration.

machines that have a different set of active CPU traits.

4.2.1.1 Discovery

The set of vCs assigned to a machine can be enumerated from within the virtual machine’s

operating system by querying /sys/devices/system/cpu/. The pool of Cs available to a

virtual machine is set using control groups (Section 4.2.2), which, when using libvirt, are

mounted at /machine/vm-libvirt-qemu/emulator/, and can be modified by an agent with

capabilities over the mount point.

4.2.2 Process/Control Groups (PE)

An agent process running within an operating system can limit the execution of its co-located

processes to a set of Cs in a number of ways. Notably, the sched_setaffinity() system

call [Sch] allows a process to set a scheduling mask, which defines the set of cores to which

a process can be scheduled. The drawback of restricting execution through affinities is that

unprivileged processes can change their own mappings at will, subverting their confinement.

Consequently, SAFEHAVEN uses control groups (managed via cpusets [Cpu]) to define a

hierarchy of C partitions (PE). Each PE defines a group of cores, and assigning a process

to a PE confinement limits its execution to the partition’s associated cores. Collections of

cores can be further partitioned into subgroups, and all processes are initially placed within a

default root control group. Crucially, processes cannot exit their PE confinement by changing

affinities, and can only be reassigned to another PE by a privileged process. Control groups

are manipulated using cpusets [Cpu], which allows the creation and destruction of PE

confinements, as well as the transferring of processes between confinements.

Figure 4.3 defines the sequence of transformations that must be undertaken when mi-

grating a process group PG from one C allocation to another. The agent executes within the

operating system of which PG makes part. As in the case of vC migration, since the effects

are local to the operating system, both the source and destination agents are the same agent,
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[OS∈M:M,

C0∈M:M,

C1∈M:M]

OS:OS
[
PE:PG(CD),PE:PGA

[
A:AG(CAG){〈PG,C0〉}∪→AG

{C0, C1, PG} []
]]

C:C0(CX) [PG] C:C1(CY) [] AG ≡ PG y AG.AG’

CAG e CD CAG e CX

OS:OS
[
PE:PGA

[
A:AG’(CAG)→AG

{C0, C1, PG}

[
PE:PG(CD)

]]]
C:C0(CX) [] C:C1(CY) []

CAG e CD CAG e CY AG’ ≡ PG y C1.AG”

OS:OS
[
PE:PG(CD),PE:PGA

[
A:AG”(CAG){〈PG,C1〉}∪→AG

{C0, C1, PG} []
]]

C:C0(CX) [] C:C1(CY) [PG]

Figure 4.3: PE migration.

yet the intermediate migration is nevertheless global. Process group migrations are always

internal to a machine, although cross-machine migrations can be approximated by first cre-

ating a process group at the target, and then subsequently migrating the processes from the

source machine.

4.2.2.1 Discovery

Control groups, their C allocations and their assigned processes can be enumerated through

the cpusets interface.

4.2.3 Processes and Containers (P, Con)

Using SAFEHAVEN, processes (P) and LXC [Lxc] containers (Con) are always placed within

a control group, and are migrated from one control group to another. Nevertheless, two

separate mechanisms are used, the choice of which depends on whether the target Con
shares the same OS as the origin, or if the target exists within a different OS.

OS:OS
[
PE:PGS(CX) [P:P] ,PE:PGD(CY) [] ,PE:PGA

[
A:AG(CAG){〈P,PGS〉}∪→AG

{PGS, PGD, P} []
]]

CAG e CX AG ≡ P y AG.AG’

OS:OS
[
PE:PGS(CX) [] ,PE:PGD(CY) [] ,PE:PGA

[
A:AG’(CAG)→AG

{PGS, PGD, P} []
]]

CAG e CY AG’ ≡ P y C1.AG”

OS:OS
[
PE:PGS(CX) [] ,PE:PGD(CY) [P:P] ,PE:PGA

[
A:AG”(CAG){〈P,PGD〉}∪→AG

{PGS, PGD, P} []
]]

Figure 4.4: P migration, intra-OS.

Figure 4.4 represents the migration sequence invoked when migrating a process from a

group PGS to PGD, where PGS OS←→ PGD, leading to a migration that is internal to the parent

operating system. Arbitrary processes can be moved directly amongst PE groups within
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OS:OSS(CX)
[
PE:PGS(CX) [P:P] ,PE:PGSA

[
A:SRC(CSRC){〈P,PGS〉}∪→SRC

{PGS, DST, P} []
]]

OS:OSD(CY)
[
PE:PGD(CY) [] ,PE:PGDA

[
A:DST(CDST)→DST

{PGD, SRC} []
]]

CSRC e CX SRC ≡ P y SRC.SRC ’

OS:OSS(CX)
[
PE:PGS(CX) [] ,PE:PGSA

[
A:SRC ’(CSRC)→SRC

{PGS, DST, P} [P:P]
]]

OS:OSD(CY)
[
PE:PGD(CY) [] ,PE:PGDA

[
A:DST(CDST)→DST

{PGD, SRC ’} []
]]

CSRC e CDST SRC ’ ≡ P y DST.SRC”

OS:OSS(CX)
[
PE:PGS(CX) [] ,PE:PGSA

[
A:SRC”(CSRC)→SRC

{PGS, DST} []
]]

OS:OSD(CY)
[
PE:PGD(CY) [] ,PE:PGDA

[
A:DST(CDST)→DST

{PGD, SRC”, P} [P:P]
]]

CDST e CY DST ≡ P y PGD.DST ’

OS:OSS(CX)
[
PE:PGS(CX) [] ,PE:PGSA

[
A:SRC”(CSRC)→SRC

{PGS, DST, P} []
]]

OS:OSD(CY)
[
PE:PGD(CY) [P:P] ,PE:PGDA

[
A:DST ’(CDST){〈P,PGD〉}∪→DST

{PGD, SRC”, P} []
]]

Figure 4.5: P migration, inter-OS.

the same OS using cpusets, which is fast and can be performed in bulk. As with previous

instances, the fact that the source and destination process groups share the same environment

typically entails that both the source and destination confinements are managed by the same

agent process.

Figure 4.5 describes the second type of process migration operation, where the participat-

ing process groups exist within separate operating systems. There is no requirement that the

operating systems exist within different physical machines, and processes may be migrated

between virtual machine environments co-located over the same machine.

Transferring processes across operating systems is significantly more complex than in-

ternal migrations, as additional mechanisms must be used to package, translate and re-

build the process’ data structures at the destination. In SAFEHAVEN, this is handled using

criu [Cri], which enables process checkpoint/restore from within user-space. Recent ver-

sions of the Linux kernel (3.11 onwards) have built-in support for the constructs required by

criu.

To perform a migration, the source agent SRC deschedules the process being migrated (P),

and transfers it to the idle queue of DST, which resides within a different OS environment.

This was implemented by having SAFEHAVEN’s agents negotiate a migration, which then

delegate the process transfer to the criu daemon.

Cross-OS process migration comes with some limitations. Trivially, processes that are

critical to their parent OS cannot be migrated away. Other restrictions stem from a process’

use of shared resources. For instance, the use of interprocess communication may result

in unsafe migrations, as the process will be disconnected from its endpoints. Similarly, a

process cannot be migrated if it would cause a conflict at the destination, such as in the case

of overlapping process IDs or changing directory structures. This problem is addressed by

launching a process with its own namespaces, or more generally, by using a container [Cri].
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Migration preserves a process’ PE containment structure.

At the time that this research was conducted, LXC live migration was still under active

development. Consequently, a stop-gap measure was used to implement migration, whereby

a full checkpoint and restore were performed, transferring the frozen image in a separate

step using rsync [Tyc14]. As will be seen in Section 4.4.3.7, this has a severe impact on per-

formance, yet it allows the SAFEHAVEN approach to be realised, and future improvements to

the migration method can be easily dropped in without necessitating any significant changes

to the architecture.

4.2.3.1 Discovery

Process enumeration is performed through the ps command, which lists the processes within

the invoker’s environment. As will be seen in Section 4.4.2.4, a process may also scan the

/proc directory, which, being a synthetic file system, allows for a scanning process to quickly

and efficiently sweep through a process list.

4.2.4 Virtual Machines (VM)

Similar to process migration, VMs can be migrated locally (changing C pinnings) using PE

groups and cpusets, or at the global level (moving to another OS). The latter is performed

in SAFEHAVEN using QEMU’s live migration operators, backed by a Network File System (NFS)

server storing VM images.

M:MS
[
OS:OSS(CX)

[
VM:VM(CD)

[
vC:V(CD)

]]
,C:CS(CX)

[
vC:V(CD)

]
,PE:PGSA

[
A:SRC(CSRC){〈V,CS〉,〈VM,OSS〉}∪→SRC

{DST, VM, CS, V, OSS} []
]]

M:MD
[
OS:OSD(CY) [] ,C:CD(CY) [] ,PE:PGSB

[
A:DST(CDST)→DST

{SRC, CD, OSD} []
]]

CSRC e CX CSRC e CD SRC ≡ VM y SRC.SRC ’

M:MS
[
OS:OSS(CX) [] ,C:CS(CX) [] ,PE:PGSA

[
A:SRC ’(CSRC)→SRC

{DST, VM, CS, V, OSS}

[
VM:VM(CD)

[
vC:V(CD)

]]]]
M:MD

[
OS:OSD(CY) [] ,C:CD(CY) [] ,PE:PGSB

[
A:DST(CDST)→DST

{SRC ’, CD, OSD} []
]]

CSRC e CDST SRC ’ ≡ VM y DST.SRC”

M:MS
[
OS:OSS(CX) [] ,C:CS(CX) [] ,PE:PGSA

[
A:SRC”(CSRC)→SRC

{DST, CS, OSS} []
]]

M:MD
[
OS:OSD(CY) [] ,C:CD(CY) [] ,PE:PGSB

[
A:DST(CDST)→DST

{SRC”, VM, CD, V, OSD}

[
VM:VM(CD)

[
vC:V(CD)

]]]]
CDST e CY CDST e CD DST ≡ VM y OSD.DST ’

M:MS
[
OS:OSS(CX) [] ,C:CS(CX) [] ,PE:PGSA

[
A:SRC”(CSRC)→SRC

{DST ’, CS, OSS} []
]]

M:MD
[
OS:OSD(CY)

[
VM:VM(CD)

[
vC:V(CD)

]]
,C:CD(CY)

[
vC:V(CD)

]
,PE:PGSB

[
A:DST ’(CDST){〈V,CD〉,〈VM,OSD〉}∪→DST

{SRC”, VM, CD, V, OSD} []
]]

Figure 4.6: VM migration.

Figure 4.6 describes the sequence of steps required to migrate a virtual machine from

one physical machine to another. This operation is a compound action, as it migrates the

VM’s vCs in addition to the VM’s constituents. The vCs are represented explicitly within

the transformation rules as they lie on the boundary between the virtualisation layer and the

underlying hardware, and interface directly with the C layer.
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SAFEHAVEN uses KVM for virtualisation, managed via libvirt and QMP. In the case of a

cloud infrastructure, the provider’s agents exist within the base OS, running alongside a

tenant’s VM. The framework can easily be retargeted to Xen or Xen-like virtualisation plat-

forms, with hypervisor-level agents residing within dom0. The choice of hypervisor largely

determines what type of instrumentation can be made available to probes.

4.2.4.1 Live Migration Modes

Virtual machines are typically large structures, and transmitting their state data from one

machine to another over a network takes an appreciable amount of time, despite several

attempts to minimise the amount of state that must be transferred [HSS15; Jo+13].

Modern virtualisation platforms such as QEMU [Qemb] implement live migration, where a

VM is moved to a different physical machine with minimal downtime by letting the virtual

machine execute throughout the greater part of the transfer process. Migration is carried out

in two phases, namely

i) a state transfer phase, where a VM’s memory contents are sent to the destination, and

ii) a control transfer phase, where a VM stops executing at the source and resumes at the

destination.

Control transfer also includes setup and tear-down procedures such as device initialisation

and network announcements.

The order in which these phases are carried out leads to two approaches to live migration,

namely pre-copy and post-copy migration [Ahm+15]. Pre-copy works by iteratively transfer-

ring a VM’s pages, with each iteration transmitting pages that were dirtied while sending

the previous iteration. This process is repeated until the number of dirty pages falls below

a set threshold, at which point the VM is paused and resumed at the target following a final

transfer.

Post-copy swaps the transfer phases, transferring a minimum amount of control state and

resuming execution immediately at the target machine, with memory pages being pulled on

request from the source using demand paging [Mil+00].

Pre-copy migration has two main drawbacks, namely that the machine’s entire state must

be transferred before control can resume at the target, and that data-intensive processes

may invalidate pages at a faster rate than that at which they are being transferred, resulting

in non-convergence. In contrast, post-copy migration will transfer each page at most once,

guaranteeing convergence [HDG09].

The key drawback of post-copy migration is that the VM’s state is split between two ma-

chines, and a link or node failure during a migration can corrupt the VM. This makes the

method less robust than pre-copy migration, which can tolerate failures at the destination
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during a migration (the operation is simply aborted, and execution continues at the source

machine). This limitation can be mitigated in part using hybrid migration, whereby a migra-

tion is initiated in pre-copy and switches to post-copy on detecting non-convergence, which

would happen when memory pages are being modified faster than they can be transferred.

Additional countermeasures will be elaborated upon in Section 5.4.2.

Pre-copy migration support comes as standard with current versions of QEMU [Qemb].

Post-copy support requires that the base operating system hosting the virtual machines in

question are equipped with the userfaultfd kernel extensions, which are implemented

within a fork [Arc16]. These extensions expose a file descriptor from kernel-space to user-

level processes over which the kernel announces the addresses of faulting pages, and must

be present both at the source and destination environments. Post-copy functionality in QEMU

making use of these extensions was also implemented as a fork [Orb16]. Similarly, libvirt was

extended [Kle16] to expose the post-copy migration functionality to system processes via the

virtualisation driver. All testing and implementation was performed on QEMU v2.2.92.

Beyond its guarantee for convergence, post-copy virtual machine migration is especially

valuable in the context of illicit channel mitigation, as it rapidly breaks a virtual machine’s

co-locations with other entities executing at the source environment. Conversely, a virtual

machine being evicted using pre-copy migration will keep executing at the source for the

duration of the migration operation, leaving the VM vulnerable to attacks at the source. This

is particularly detrimental in the case of time-critical or high-bandwidth channels. This notion

of responsiveness, and the boon of convergence, will be explored in further detail later on in

this chapter.

4.2.4.2 Discovery

The list of running and idle virtual machines can be produced via virsh, which integrates

with the libvirt virtualisation driver.

4.2.5 Additional Operations

In addition to admitting migration, VM, P and Con confinements can be paused in memory,

which can serve as a temporary compromise in cases where an imminent threat cannot be

mitigated quickly enough through migration.

4.3 Agents

The core operations of an agent process are confinement reconnaissance and migration.

Agents perform both objective and subjective moves [CG98], as they can migrate confinements
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Algorithm 4.1 SAFEHAVEN confinement data structures.

1: % Confinement t y p e s ( atoms )

2: −type l o c _ t () : : l_network | l_machine | l _ l 3 | l _ l 2 | l _ l 1

3: | l_cache | l_cpu | l_kvm_vcpu | l _o s | l_kvm_vm

4: | l _ c o n t a i n e r | l_cgroup | l_proc | l _ n f s .

5:

6: −type name_t () : : s t r i n g () . % Confinement name data type

7: −type i d _ t () : : term () . % Confinement handle data type

8:

9: −record ( l o c a l i t y , % Confinement data s t r u c t u r e

10: { type : : l o c _ t () , % Confinement t ype

11: name : : name_t () , % Symbol i c name

12: id : : i d _ t () , % Handle ( IP , PID , e t c . )

13: caps : : term () , % C a p a b i l i t i e s

14: sub locs = [ ] : : [ l o c a l i t y _ t () ] } ) . % Sub−con f in ement s

15:

16: −type l o c a l i t y _ t () : : #l o c a l i t y {} .

to which they belong as well as external confinements. The remainder of this section will

demonstrate these fundamental agent duties by means of an example.

4.3.1 Data Structures

Algorithm 4.1 defines the fundamental Erlang data structure used within SAFEHAVEN, namely

the locality record type. These records are used as references to confinements that exist

within the system, and allow properties and agents to handle confinements uniformly. The

loc_t() data type lists the types of localities that are understood by the framework. Defining

the type of a locality structure allows SAFEHAVEN to determine which migration method

to apply when moving a confinement.

4.3.2 A Process-Level Agent

Algorithm 4.2 defines a prototypical SAFEHAVEN agent that partitions a set of processes

amongst a set of cores depending on their owner. This requires both enumeration and migra-

tion, which are employed as follows.
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Algorithm 4.2 Agent partitioning processes between CPUs by owner via SAFEHAVEN.

1: Procs = process : recon () , % Get sys tem p r o c e s s e s

2: [CR, CA|Cs ] = cpu : recon () , % Get a v a i l a b l e CPUs

3: l i s t s : foreach (

4: fun (P = #l o c a l i t y { type = l_proc , id = ID} ) −>
5: User = owner( ID ) ,

6: Dest = case User of % Choose d e s t i n a t i o n CPU

7: “ root” −> CR;

8: “apache” −> CA;

9: _ −> Cs

10: end ,

11: mig_process : migrate (P , Dest ) % Pin p r o c e s s

12: end , Procs ) .

4.3.2.1 Confinement Discovery and Enumeration

The view of an arbitrary agent within a cloud is generally limited to its immediate environ-

ment and that of other agents with which it is co-operating. For example, a tenant’s agents

will be restricted to the processes and structures of their OS environment. Similarly, the

cloud provider views VMs as black boxes. Knowledge of their internal structures is lim-

ited to what is exposed by the tenants’ agents, bar the use of introspection or disassembly

mechanisms.

The agent described in Algorithm 4.2 can directly query its OS environment to retrieve

the list of running processes (Line 1) and available cores (Line 2). Both recon() operations

return lists of confinements. In the latter case, the resultant list is split into three sub-lists,

namely

1. a single element list CR to which processes owned by root are to be migrated,

2. a single element list CA, designated for processes owned by the apache user, and

3. CS, a group of cores over which the rest of the processes are to execute.

Note that the above partitioning assumes that the system has a minimum of three cores. Both

reconnaissance operations can be run using ordinary user privileges.

As discussed earlier, a subtle consequence of virtualisation is that correctly virtualised

cores are seen by the confined processes as being actual, physical cores. Thus, for the agent

being considered, the cpu:recon() function would always return a set of seemingly physical

cores, yet an external agent would correctly discern them as being virtual.
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While side-channels and advanced fingerprinting techniques may allow an agent to de-

termine additional confinement attributes (Section 2.2), SAFEHAVEN restricts itself to overt

channels and named interfaces.

4.3.2.2 Migration

The second component of the agent iterates through the list of environment processes CR

and determines the destination of each process based on its owner, which is determined via

a helper function (Line 5). The agent then invokes process migration (Line 11), moving the

process under consideration to its target core. Internally, the migrate process translates the

set of cores to a process group, and migration to a PE group is carried out as detailed in

Section 4.2.3.

Note that in this example, the agent directly invokes the process migration routine, as

the object type of P is known beforehand. Alternatively, a meta-level and generic migrate()

operation can be invoked, which executes the relevant migration operation based on the

types of the confinements constituting its arguments. While this allows properties to be

expressed using more general types, one cannot always design agents that are completely

oblivious to the migration method being used. For example, while an agent may afford to

block processes’ execution pending short migrations, long lived migrations (such as when

moving virtual machines) may be executed in blocking or non-blocking modes, necessitating

an additional argument.

4.3.3 Communication

Communication within SAFEHAVEN is carried out using Erlang’s message passing facilities.

Processes can only message others that share a token (a magic cookie [Erl]) that serves as a

communication capability.

Erlang’s message passing enables agents to communicate uniformly with each other, and

hides many of the intricacies of the underlying network topology. The primary concern of

agents is thus how best to advertise each other’s addresses (or Erlang PIDs). One simple and

effective method is to have every agent participating in implementing a policy connect to a

known Erlang node. By enabling automatic announcements, each additional agent dialling

into the known node will be added to a network of processes, each of which can communicate

with each other, provided that their cookies also match. Finer grained agent networks can be

created by assigning per-connection cookies, and disabling automatic node propagation.

The choice of using avahi [Ava] within SAFEHAVEN was based on the principle of de-

centralisation and the aim of supporting highly fluid infrastructures. While broadcasts may

simplify the setup process of a confinement following a migration, it may lead to scalability
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issues, and one may have to resort to alternative nameserver schemes.

4.3.4 Allocation

To determine a destination for a confinement that must be migrated, an agent broadcasts

an isolation request to its known agents. If one of these agents finds that it can serve the

request whilst maintaining its existent isolation commitments, it authorises the migration.

The problem of placement is equivalent to the bin-packing problem [Aza+14], and a greedy

allocation policy will not produce an optimal allocation. Nevertheless, the SAFEHAVEN ar-

chitecture is sufficiently general so as to allow different allocation strategies. For example,

targets can be prioritised based on their physical distance. Prioritisation can also be used in

hybrid infrastructures, where certain targets may be more effective at breaking specific types

of co-locations than others. For example, a cloud provider can opt to mix in a number of

machines with various hardware confinements and lease them on demand. This principle

will be explored in greater detail in Section 5.3.6.

4.4 Implementing Detection and Mitigations

The fine-grained approach to isolation advocated by SAFEHAVEN serves two purposes. First, it

increases utilisation by promoting the use of the minimum unit of isolation required to secure

a confined entity. This has the knock-on effect of reducing the amount of hardware that is

left underutilised due to restrictions on co-locations. The second is that smaller confinements

are faster to migrate, and incur fewer overheads than larger confinements. The following

section attempts to substantiate the latter claim by examining the performance impact of

different migration mechanisms. It also describes how SAFEHAVEN can be used to mitigate

a machine-wide covert channel attack, as well as to implement a multi-level moving target

defence.

4.4.1 Experimental Setup

Table 4.2 provides a summary of the core attributes of the different physical and virtual

machine configurations used throughout the following experiments.

All experiments were carried out on two Intel i7-4790 machines (4 cores × 2 hardware

threads) with 8GB RAM (INTELT). A third computer (AMDT), an AMD Phenom II X6 1090T

with 8GB RAM, served as an NFS server hosting the VMs’ images (average sequential speeds:

81MB/s read, 76 MB/s write), and was also used in the experiment described in Section 5.3.6.

Machines communicated via a consumer-grade gigabit switch. All machines ran Ubuntu 14.04
LTS with the 3.19.0-rc2+ kernel patched for post-copy support (Section 4.2.4.1), and libvirt
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Machine ID CPU Cores Threads per Core RAM (Gb)

INTEL-MT Intel i7-2640M 2 2 4

INTELT Intel i7-4790 4 2 8

AMDT AMD Phenom II X6 1090T 6 1 8

VMT - 2 1 2

Table 4.2: Hardware configurations used during evaluation.

version 1.2.11. Each VM (VMT) was allocated two vCPUs and 2GB of RAM, and had a

20GB image. VMs used bridged network interfaces, and host discovery was performed using

avahi [Ava].

4.4.1.1 Benchmarks

The evaluation of the performance aspects of migration call for repeatable workloads that

are representative of the deployment scenarios under consideration, namely, clouds. The

PARSEC [Bie+08] benchmark suite was used to generate a variety of intense and mixed

workloads, with varying pressures on memory and computational capacity. The evaluation

focuses on a subset of the workloads present in the suite, namely

• blackscholes, a financial analysis application with small working sets,

• canneal, a simulated annealing benchmark with large working sets,

• streamcluster, a data mining and clustering application with moderate working sets,

• dedup, a storage deduplicator with large working sets,

• raytrace, a rendering engine with large working sets, and

• bodytrack, a computer vision application with moderate working sets.

In addition, the all benchmark was defined. This consists of the consecutive execution

of a single run of each of the aforementioned benchmarks, and was used for benchmarks

requiring a long-running and mixed workload.

4.4.2 System-Wide (Cross-VM) Covert Channel

The following section describes the use of SAFEHAVEN as an active countermeasure to thwart

a system-wide covert-channel.
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4.4.2.1 Overview

Wu et al. [WXW12] demonstrated that performing an atomic operation spanning across a

misaligned memory boundary will lock the memory bus of certain architectures, inducing a

system-wide slowdown in memory access times. This effect could then be used to implement

a cross-VM covert channel by modulating the observed memory access speeds.

4.4.2.2 Detection

Detecting the channel’s reader process is difficult, as it mostly performs low-key memory

and timing operations, and would execute in a co-located VM, placing it outside the victim

tenant’s scope. Conversely, writer processes are relatively conspicuous, in that they perform

memory operations that are atomic and misaligned. Atomic instructions are used in very

restricted contexts, and compilers generally align a program’s memory locations to the archi-

tecture’s native width. Having both simultaneously can thus be taken as a strong indication

that a program is misbehaving.

Although an attack can be detected by replicating a reader process, a much more dir-

ect, precise and efficient method is to use hardware event counters [Int11] to measure the

occurrence of misaligned atomic accesses. Recent versions of KVM virtualise a system’s per-

formance monitoring unit, allowing VMs to count events within their domain [DSZ10]. One

limitation of hardware counters is that their implementation is not uniform across vendors,

complicating their use in heterogeneous systems. In addition, while event counters are con-

fined to their VM and can only be used by privileged users, one must ensure that they do

not themselves enable attacks (for instance, by exposing a high resolution timer).

4.4.2.3 Policy

Algorithm 4.3 and Algorithm 4.4 outline the behaviour of the agents operated by the tenant

and cloud provider, respectively, while Figure 4.7 illustrates how the components taking part

in the mitigation interoperate. Each agent takes two arguments, namely the isolation that

they are monitoring and a list of additional cooperating agents. When a probe detects that a

process P is emitting events at a rate exceeding a threshold ε, it notifies its local agent. If the

environment is not already isolated, then the agent attempts to locate an isolated resource

amongst its own existing tenants. Failing this, the cloud provider is co-opted into finding an

isolated machine and resolving the request at the virtual machine level. If a process is mobile,

then the cloud provider can opt to create a new isolated VM to which the process can be

migrated, rather than migrating the source machine.

The degree of isolation required is regulated by the isolD(X) predicate, which checks

whether X is isolated within D. Evaluating this accurately from within the tenant’s scope
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Algorithm 4.3 Tenant agent for covert channel mitigation.
Require: An event rate threshold ε

Require: AT set of tenant-owned agents

1: agent TENANT(OS:X,AT)

2: for all P:P∈+ X do

3: if evs(P) ≥ ε ∧ ¬isolX(P) then

4: D ← ⊥
5: if mobile(P) then

6: D ∈ {D’ | TENANT(D’, ∗) ∈ AT ∧ isolD’(P)}

7: if D 6= ⊥ then

8: P y D

9: else if X∈VM:V then

10: forward isolation request to CLOUD(Y, ∗). V∈+ Y

11: TENANT(X, AT)
12: end agent

Algorithm 4.4 Cloud agent for covert channel mitigation.
Require: AC set of cloud-owned agents

1: agent CLOUD(M:Y,AC)

2: receive isolation request for VM:X∈+ Y

3: if ¬isolY(X) then

4: D ∈ {D’ | CLOUD(D’, ∗) ∈ AC ∧ isolD’(X)}
5: if D 6= ⊥ then

6: X y D

7: else

8: fallback strategies

9: CLOUD(Y,AC)
10: end agent
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Figure 4.7: Policy showing mitigation for processes (VMSRC [P] → VMP [P]) and virtual ma-

chines (MACHINESRC [VMSRC]→ MACHINEv [VMSRC]). Arrows denote communication chan-

nels, with dotted paths denoting migration paths. Rectangles denote locality boundaries,

circles are predicate evaluation processes, while pentagons signify agents.

requires additional information from the cloud agent regarding its neighbours. The strictest

interpretation of isolation would be to allocate a physical machine to each VM requesting

isolation. Another approach is to stratify isolation into different classes determined by user

access lists [CDRC14], or to only allow a tenant’s isolated VMs to be co-located with each

other.

If an isolated destination cannot be found immediately, then soft isolation must be used

as a fallback strategy. Note that soft isolation only has to disrupt the channel until hard

isolation is achieved. For example, rather than migrating the locality requesting isolation,

one can evict its co-residents, applying soft isolation during their eviction. A simple, general

but intrusive method would be to pause the process until isolation is obtained. This should be

reserved for creating temporary isolations during fast migration operations. A more targeted

mitigation may attempt to degrade the attacker’s signal-to-noise ratio by flooding the memory

bus with its own misaligned atomic memory accesses. Finally, one may deploy a system such

as BusMonitor [SXZ13] on a number of machines and migrate VMs requesting isolation

to them. The problem with the latter solutions is that they must be changed with each

discovered attack, whereas a migration-based approach would only require a change in the

detector.
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4.4.2.4 Implementation and Evaluation

The policy was implemented in SAFEHAVEN as a network of Erlang server processes, with the

detector running as a separate process and taking two parameters, namely

i) a set of system processes
→P to be scanned, and

ii) a duration τ within which the scan must be performed.

Instrumentation Hardware counters were accessed using the Performance Application Pro-

gramming Interface (PAPI) [Muc+99] library, with calls proxied through an Erlang module

using Native Implemented Functions (NIF) [Erl]. The INTELT machines exposed a native

event type that counts misaligned atomic accesses (LOCK_CYCLES: SPLIT_LOCK_UC_LOCK_

DURATION [Int11]). Conversely, AMDT was found to lack such a combined event type. In

this case, one would have to measure misaligned accesses and atomic operations independ-

ently, which can lead to a higher rate of false positives.

The procedure for measuring a process’ event emission rate is to attach a counter to it,

sleep for a sample time φ, and read the number of events generated over that period of time.

This is repeated for each process in
→P. The choice of φ will affect the detector’s duty cycle.

Setting φ = τ/|→P| guarantees that each process will have been sampled once within each τ

period, but the sampling window will become narrower as the number of processes increases,

raising the frequency of library calls and consequently CPU usage. Setting a fixed φ produces

an even CPU usage, but leads to an unbounded reaction time.

Algorithm 4.5 implements the aforementioned sampling routine as a function named

instrument, which accepts a φ (SampleTime), a list of processes (Procs) and a list of hard-

ware event types (Events). The counters library is the proxy module to PAPI. This module

is used to define the event type to be monitored (Line 4), and to start (Line 8) and stop

(Line 10) counting events for a given process. The detector sleeps for the defined φ (Line 9)

between the starting and stopping of the event counter. As defined, the procedure performs

a separate sweep for each event in the Events set, and tabulates the result in a list. PAPI also

allows for multiple event types to be tracked simultaneously. The number of events that can

be tracked concurrently is limited by the hardware over which monitoring is taking place. If

this limit is exceeded, PAPI resorts to multiplexing [Muc+99].

Detection Feature The hypothesis regarding the infrequency of misaligned atomic accesses

was tested by sampling each process within virtualised and non-virtualised environments

present in the test bed over a minute during normal execution. Most processes produced

no events of the type under consideration, with the exception of certain graphical applica-

tions such as VNC, which produced intermittent spikes on the order of a few hundreds per
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Algorithm 4.5 Counting process events using PAPI.

1: ins trument (SampleTime , Procs , Events ) −>
2: l i s t s : f o l d l (

3: fun (E , EvAcc ) −>
4: % Set moni tor ing e v en t t ype ; 0 on s u c c e s s

5: CReads = case counters : p a p i _ i n i t ( [E] ) of

6: 0 −>
7: Samples = l i s t s : f o l d l (

8: % Monitor each p r o c e s s in s equence

9: fun (P , CntAcc ) −>
10: [ case counters : s t a r t _ c o u n t i n g ( l o c a l i t y : getID (P) ) of

11: 0 −> t imer : s l eep ( SampleTime ) , % Measure f o r φ

12: [ Cnt|_] = counters : s top_count ing () ,

13: Cnt ;

14: _ −> “−” % Error

15: end | CntAcc ]

16: end , [E] , Procs ) , % Reve r s e a f t e r t a i l r e c u r s i o n

17: [ l i s t s : r eve r se ( Samples ) | EvAcc ] ;

18: _ −>
19: EvAcc % Bad even t ; s k i p

20: end ,

21:

22: counters : pap i_c lo se () , % Clo s e l i b r a r y

23: CReads

24: end , [ ] , Events ) .
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second during use. The emission rate of the attack’s sender process was then measured using

the reference implementation of Wu et al. [WXW12], compiled with its defaults. This was

found to emit ≈ 1.4 × 106 events per second in both environments, with attacks for 64-byte

transmissions lasting 6± 2 seconds.

Efficiency Invoking PAPI functions via a NIF proxy is convenient, as the detector logic can

be completely defined as a high-level SAFEHAVEN agent using Erlang. This enables agents

and probes to be quickly prototyped, as they can make use of the full range of functions and

data structures made available by the framework.

The drawback of having a thin proxy is that every NIF call triggers a number of intermedi-

ate bridging operations, and converting to and from Erlang and C data structures introduces

a measurable overhead. Consequently, although the low-level components of the NIF func-

tions used by the probe defined in Algorithm 4.5 execute very quickly, the performance of

the probe as a whole is very low. This is because the NIF proxy is called with a very high

frequency, with each process triggering two NIF calls, and potentially hundreds of processes

being scanned every second.

In order to reduce the number of translations between the SAFEHAVEN proper and the

low-level NIF functions, one may opt to transfer the detector logic into the low-level layer,

which results in the probe described in Algorithm 4.6. This probe performs the process enu-

meration directly at the low-level layer by scanning the /proc/ directory. Communication

with SAFEHAVEN is reduced to two functions, namely initialisation (where the events of in-

terest are specified and the monitor is started) and reporting in the event that an offending

process is found. Unlike the Erlang-based detector, this approach places the tight loops and

polling operations within the native segment, resulting in a massive improvement in perform-

ance.

Figure 4.8 shows the detector’s CPU usage (measured directly using top) against vary-

ing φ using the compiled C probe. To fully characterise the detector’s overhead, the virtual

machine was pinned to a single vCPU. At φ = 10ms, overhead peaked at a measured 0.3%.

This is in contrast to the Erlang-based probe, which would reach an average of 25% utilisa-

tion. The performance measurements were further verified by executing the CPU-intensive

blackscholes computation from the PARSEC benchmark suite [Bie+08] in parallel with the

detector. This benchmark ran at full CPU utilisation, and thus directly competed for cycles

with the detector, as they both shared a single vCPU. As expected, the reduction in φ pro-

duced a proportional speed up in blackscholes’s execution (or, equally, a reduction in the

benchmark’s total execution time) that follows the direct measurement.

Figure 4.9 considers the quality of the detector, in that it describes how the detector’s

reaction time varied against the number of processes being monitored, where reaction time
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Algorithm 4.6 Shifting detector into native code.

1: s t a t i c in t even t_ se t ; // Event mask ; popu la ted dur ing s e tup

2: s t a t i c in t ev_cnt ; // S i z e o f e v e n t _ s e t

3:

4: in t scan ( in t threshold , in t sample_time_us , in t s l eep_ t ime_s ) {

5: DIR ∗d ;

6: in t foundpid = 0; // !0 => A t t a c k e r PID

7: long long va lues [ ev_cnt ] ;

8: i f ((d = opendir (“/ proc /”) ) ) { // Query proc d i r e c t l y

9: while ( ! foundpid ) { // Break on v i o l a t i o n

10: s t ruc t d i r e n t ∗ d i r ;

11: while ( ! foundpid && ( d i r = readd i r (d) ) != NULL) {

12: in t a t tachp id = a t o i ( di r−>d_name) ; // PID

13: i f ( a t t achp id > 0) { // S t a r t count ing e v e n t s

14: i f (( PAPI_attach ( event_set , a t t achp id ) == PAPI_OK) &&

( PAPI_ s ta r t ( even t_ se t ) == PAPI_OK) ) {

15: us leep ( sample_time_us ) ; // φ

16: PAPI_stop ( event_set , va lues ) ; // Stop and r e co rd

17: in t i t e r ; // Look f o r v i o l a t i o n

18: for ( i t e r = 0; i t e r < ev_cnt ; i t e r++) {

19: i f ( va lues [ i t e r ] > thresho ld ) {

20: foundpid = at tachp id ; break ;

21: }

22: }

23: PAPI_detach ( even t_ se t ) ; // Remove watches

24: }

25: }

26: i f ( ! foundpid && s leep_ t ime_s ) // S l e ep between s cans ?

27: s l eep ( s leep_ t ime_s ) ;

28: }

29: rewinddir (d) ;

30: }

31: }

32: c l o s e d i r (d) ;

33: return foundpid ;

34: }
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Figure 4.8: Detector overhead against φ.

was measured as the time elapsed between the start of an attack and its detection. The

reaction time was measured for 133 ≤ |→P| ≤ 200. The size of
→P was raised by spawning

additional processes that periodically wrote to an array. The attack was started at random

points in time.

4.4.2.5 Mitigation

Once a potential attack is detected, it must be isolated. As the attack is machine-wide, co-

location must be broken through virtual machine or process migration. The following section

investigates the former, whereas the latter will be discussed in Section 4.4.3.

Figure 4.10 illustrates the worst case times taken to perform a single VM live migration

using pre-copy, hybrid and post-copy while it executed various workloads from the PARSEC

suite. Migrations were triggered at random points during the benchmark’s execution, with

6 readings per benchmark and migration mode. The host machines were left idle to reduce

additional noise. Solid bars represent the time taken for the VM to resume execution at the

target machine, and the shaded area denotes the time spent copying over the remainder of

the VM’s memory pages after it has been moved.

Pre-copy migration’s performance was significantly affected by the workload being ex-

ecuted, with canneal never converging. Hybrid migration fared better, as it always con-

verged and generated less overall traffic than pre-copy migration. Post-copy exhibited the

most consistent behaviour, both in terms of migration time as well as generated traffic.

To perform a post-copy migration in QEMU, one must first initiate a normal pre-copy migra-

tion and subsequently send a command to the virtualisation platforms to switch to post-copy

migration. During the course of the experiments, it was found that attempting to start a mi-
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Figure 4.9: Reaction time on varying
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Phase Parameters Min Max Geometric Mean Arithmetic Mean

Detect
τ = 1s 0.0148 3.16 0.54 0.72

τ = 2.5s 0.0272 2.69 1.20 1.46

Migrate Post-copy 1.2813 2.13 1.47 1.48

Detect &

Migrate

Post-copy & τ = 1s 1.296 5.29 2.01 2.20

Post-copy & τ = 2.5 1.309 4.82 2.67 2.93

Table 4.3: Summary of detection and mitigation times (s).

gration immediately in post-copy mode would occasionally trigger a race condition. This was

remedied by adding a one second delay before switching to post-copy. As will be seen in the

next chapter, this delay can be almost completely eliminated, yet this requires modifications

to the QEMU migration mechanisms.

Nevertheless, even with the added delay, VMs migrated using post-copy resumed execu-

tion at the target in at most 2.13 seconds, and 1.51 seconds on average. Total migration time

and data transferred were also consistently low, averaging 20 seconds and 2GB, respectively.

Table 4.3 summarises the results. Based on the detector’s reaction times and post-copy’s

switching time, and assuming that a target machine has already been identified, a channel

can be mitigated in around 1.3 seconds under ideal conditions, 5.3 seconds in the worst case,

and in just under 3 seconds on average.
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Figure 4.10: Comparison of pre-copy, hybrid and post-copy migration.

4.4.2.6 Conclusion

This section has demonstrated how hardware event counters can be used to detect an at-

tack efficiently, quickly and precisely, and how post-copy migration considerably narrows

an attacker’s time window. Additional improvements can be obtained by integrating event

counting with the scheduling policy, where the event monitor’s targets are changed on con-

text switching. This would eliminate the need to sweep through processes and avoids missing

events.

4.4.3 Moving Target Defence, Revisited

The following describes the use of SAFEHAVEN in implementing a passive and preventive

mitigation, specifically, a moving target defence.

4.4.3.1 Overview

The risk of an illicit channel being formed between a set of processes increases in proportion

to the time they spend co-located [Aza+14; MSR15; Zha+12b]. Similarly, the greater the

number of tenants sharing an infrastructure (the consolidation factor), the higher the odds of

being co-located with a malicious tenant. Consequently, a tenant’s security with respect to

illicit channels is inversely proportional to the cloud’s consolidation factor and inertia.

The moving target defence [Zha+12b] is based on the premise that an attacker co-located

with a victim within a confinement D requires a minimum amount of time α(D) to set up and

perform its attack. Attacks can thus be foiled by limiting continuous co-location with every

other process to at most α(D).
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The defence is notable in that it does not attempt to identify a specific attacker, being

driven entirely on the basis of co-location. The principle difficulty lies in choosing a minimum

value of α(D) which will guarantee the best level of security without any excess migrations.

4.4.3.2 Policy

Algorithm 4.7 General form of the moving target defence.
Require: A root locality R

for all T:L0,T:L1 ∈+ R. L0 6= L1 do

if ∃D∈+ R. τ(L0
D⇐⇒ L1) +H(T) ≥ α(D) then

Li ∈ {0, 1} y S. S∈+ R ∧ ¬L0
D⇐⇒ L1

Algorithm 4.7 describes the moving target defence as a generalisation of the formulation

given by Zhang et al. [Zha+12b]. The policy assumes the existence of three predicates,

namely

i) H(T), the time required to migrate a locality of type T,

ii) α(D), the time required to attack a process through D, and

iii) τ(P), the duration for which a supplied predicate P holds.

The remainder of this section attempts to establish practical approximations for the afore-

mentioned predicates.

4.4.3.3 Defining H()

H() must be able to predict the cost of a future migration. In addition, H() varies based on

the destination of a migration, thus requiring that the predicate be refined. As an estimate,

the next value of H() can be approximated using an exponential average [SGG05], expressed

as the following recurrence relation:

Hn+1(T y D) = hηn(T y D) + (1− h)Hn(T y D)

where ηn() is the measured duration of a migration, and 0 ≤ h ≤ 1 biases predictions towards

historical or current migration times. By convention [SGG05], schedulers take h = 0.5, yet it

may be constructive to consider other values of h in the case of highly unstable or fluctuating

migration times.
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4.4.3.4 Defining α()

A precise predicate for α() is difficult to define, as it would require a complete characterisa-

tion of the potential attacks that a system can face, with knowledge of the state of the art at

most bounding the predicate. In the absence of a perfect model, one must adopt a pragmatic

approach, whereby the duration of co-locations (and, by association, the migration rate) is

determined by the overhead that a tenant will bear, as this is ultimately the limiting factor.

4.4.3.5 Defining τ(⇐⇒ )

A tenant can determine the co-location times for processes within its domain, but is otherwise

oblivious to other tenants’ processes. In the absence of additional isolation guarantees from

the cloud provider, τ(⇐⇒ ) must be taken as the total time spent at a location, timed from the

point of entry, this being the worst-case value of co-location time.

4.4.3.6 Propagating resets

The hierarchical nature of confinements can be leveraged to improve the moving target de-

fence. Migrations at higher levels will break co-locations in their constituents. Thus, follow-

ing a migration, an agent can propagate a directive to its sub-localities, resetting their τ(⇐⇒ )
predicates. Propagation must be selective. For example, while process migration to another

machine will break locality at the OS and C level, VM migration only breaks cache and

machine-wide locality, and leaves the OS hierarchy intact (Section 3.5). Similarly, a lower

locality can request isolation from a higher-level parent to trigger a bulk migration action,

which can resolve multiple lower-level migration deadlines.

4.4.3.7 Implementation and Evaluation

Similarly to the previous case study, a two-tiered system of agents is used. Agents are given

a set of distinct locations which are guaranteed to be disjoint, which is necessary for the

mitigation to work, as otherwise migrations would not break co-location.

Table 4.4 lists the migration times measured when migrating containers and VMs through

each migration path (paths 1-7 in Figure 4.1) whilst executing various benchmarks from PAR-

SEC, with the hosts being otherwise idle. Migrations between targets sharing a core or not

sharing a core were evaluated separately. Given its consistent behaviour, and its rapid trans-

fer of control, only post-copy migration was considered when moving VMs. The timings for

Con migration were broken down into its phases. To keep Con migration independent from

the cloud provider, container images were transferred to their target using rsync. This was

by far the dominant factor in Con migration times, and can largely be eliminated through
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Con y vC vC y C Con y OS Con y OS VM y OS
Mig. Path 1 2 3 4 5 6 7

rsync Check Rest rsync Check Rest

B
en

ch
m

ar
k

blackscholes 24.14 24.07 26.84 26.93 32,508 13,695 2,027 31,235 13,636 1,876 18,781

bodytrack 23.99 24.61 26.80 26.99 15,442 4,895 1,018 18,596 4,539 899 19,069

canneal 25.03 25.20 27.00 27.29 68,972 24,562 7,950 55,831 21,936 6,399 18,748

dedup 26.81 26.79 26.99 26.98 71,563 10,888 3,396 56,422 11,021 2,712 19,469

streamcluster 24.70 24.79 26.79 26.96 19,215 5,048 842 13,016 5,104 797 18,654

raytrace 24.30 24.85 26.92 26.96 66,881 18,668 4,804 53,223 17,057 4,255 18,841

x264 25.65 25.56 26.99 27.04 56,224 4,262 1,095 47,580 4,392 1,228 19,410

H0() (Geo.) 24.93 25.11 26.90 27.02 40,510 9,542 2,197 34,678 9,233 1,986 18,994

Table 4.4: Migration times for different isolation types and paths (ms).

shared storage. The initial value of H0() for each path was derived from the geometric mean

of the migration times.

Next, the relationship between performance and migration frequency was evaluated on

the system when running at capacity. On the first machine, three VMs were assigned bench-

marks to execute. A fourth was set as a migrating tenant, running each benchmark listed in

Table 4.4. A fifth VM served as a destination for cross-VM process migration, and was kept

idle. The second machine was configured with three tenants running benchmarks and two

idle VMs.

Table 4.5 lists the geometric means of the benchmarks’ running times, with the all

column denoting the time required for all of the migrating tenant’s benchmarks to complete.

Figure 4.11 shows the predicted and actual migration times for the first migration operations,

using the H0() values derived previously.

Network effects and thrashing on the NFS server introduced a significant degree of variab-

ility. In summary, it was found that migration operations generally had no discernible effect

on the neighbouring tenants at the frequencies investigated, although it is likely that this

would not hold for oversubscribed systems. Migrations at the C and vC level had no signi-

ficant effect on performance. Con and VM migration did not appear to affect neighbouring

tenants, but clearly affected their own execution. Migrating the VM every 30 seconds more

than doubled its benchmark’s running time (note that at this migration frequency, the VM
was involved in a migration operation for two-thirds of its running time).

4.4.3.8 Conclusion

This section has analysed the core components of a multi-level moving target defence, and

examined the cost of migration at each level. Lower-level migrations can be performed at

high frequency, but break the fewest co-locations, whereas the opposite holds at higher levels.

Restricting the moving target defence to a single level limits its ability to break co-location.
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Figure 4.11: Predictions of H() against measured migration times.

For example, while VM migration will break co-locations with other tenants, it cannot break

the OS-level co-locations formed within it. Process and container migration can break co-

location through every level, yet offline migration results in a significant downtime, rendering

its application to a moving target defence limited. The advent of live process migration will

thus help in making this mitigation pathway more viable.

4.4.4 Other Policies

The following are two examples of other policies and mechanisms that can be incorporated

within the SAFEHAVEN framework.

HomeAlone HomeAlone [Zha+11] uses a PRIME-PROBE attack to monitor cache utilisation,

and a trained classifier to recognize patterns indicative of shared locality. This can be used
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Local Remote

Dispatch (ms) Migrations all blackscholes canneal streamcluster blackscholes canneal streamcluster

No migration - 0 1,612 124 184 397 118 169 367

Con y vC (1)

500 2,930 1,475 122 168 385 117 153 368

400 3,601 1,463 120 168 385 117 154 369

300 5,230 1,567 121 166 383 117 153 369

200 7,889 1,590 122 170 384 118 153 369

Con y vC (2)

500 3,110 1,560 124 169 391 118 153 369

400 4,062 1,656 126 167 388 118 152 371

300 5,034 1,521 127 171 388 117 154 367

200 7,824 1,573 126 171 390 117 152 368

vC y C (3)

500 3,117 1,562 123 172 404 118 159 373

400 4,020 1,609 124 173 387 118 158 374

300 5,379 1,614 124 174 388 118 160 372

200 7,628 1,534 126 177 394 118 158 372

vC y C (4)

500 3,154 1,576 125 171 395 118 157 372

400 3,995 1,598 127 170 393 118 157 372

300 5,413 1,630 128 173 394 119 159 372

200 8,514 1,705 128 175 398 118 154 369

Con y OS (5)
210,000 14 2,886 124 167 380 119 153 369

180,000 18 3,565 124 165 380 118 152 369

Con y OS (6) 210,000 14 2,780 122 164 375 119 155 373

VM y OS (7)

120,000 17 2,028 120 179 392 121 176 375

90,000 23 2,025 122 170 384 120 162 392

60,000 39 2,282 121 162 389 122 173 390

30,000 125 3,770 121 169 384 124 177 394

Table 4.5: Effect of migration frequency on performance when running at capacity.

to implement a hypervisor-independent version of the isol() predicate described in Sec-

tion 4.4.2, or to detect adversarial behaviour.

Network Isolation Networks can harbour illicit channels [BT11; CBS04]. Isolation at this

level can be achieved via a combination of soft and hard isolation, with trusted machines

sharing network segments and traffic normalisers [Gor+12] monitoring communication at

the edges.

4.5 Conclusion

This chapter has examined the use of migration, in its many forms, to dynamically reconfigure

a system at runtime. This was achieved using the SAFEHAVEN framework, through which an

efficient and timely mitigation against a system-wide covert-channel attack was implemented.

The application of SAFEHAVEN was also considered in the context of a moving target defence.

Several points of consideration emerged over the course of the investigation. The first

is that low reconfiguration costs are key to the viability of the approach, as they allow

migrations to be performed at a high frequency without severely impacting the workloads

being migrated. Cheap reconfiguration allows isolation to be procured temporarily and on-

demand, further improving utilisation rates by minimising the duration for which resources
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are reserved, which translates into lowered operating costs for tenants requesting isolation.

Similarly, the turnaround time of a migration method, or the time between the reception of a

request for isolation and its procurement, is critical for the soundness of the approach. This

is because, particularly in the case of reactive mitigations, the turnaround time determines

the length of the attack window following the detection of a potential attack.

The results in this chapter confirm an early hypothesis that directed the foray into the

use of a hierarchy of confinement granularities, namely that the time taken to migrate a

confinement grows with the size of the confinement. This, coupled with utilisation, acts as a

further incentive to isolate processes using the smallest confinements possible.

The benchmarks obtained for process migration may initially appear anomalous, as one

would expect process and container migration to be quicker than migrating their parent

virtual machine. Further investigation reveals that the lacklustre performance emerges from

the low throughput of transferring files, rather than the checkpoint and restore procedures

themselves. This is purely an implementation issue, and the transition to a full-featured

live migration mechanism for criu/p.haul is only a matter of time [Cri]. In addition, the

ability to track page faults from user-space [Arc16] can also be used to implement post-copy

migration for containers.

Finally, this chapter has dispelled the false intuition that virtual machines are too cumber-

some to take part in an illicit-channel mitigation strategy that is based on migration. While

this may be the case for pre-copy migration, with its potential for non-convergence and long

turnaround times, the same cannot be said for post-copy migration. On the contrary, post-

copy migration quickly transfers a virtual machine’s execution to a target machine, followed

by the remainder of its state. This allows machine-level co-locations to be broken quickly and

within a consistent time window. Nevertheless, the stock implementation of post-copy migra-

tion within QEMU has a few limitations with respect to the aims of SAFEHAVEN, key of which

is that an ongoing migration must be carried out fully before the virtual machine in question

can be migrated to another host. This limitation, and one approach to circumventing it, forms

the topic of the next chapter.
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CHAPTER 5

ABORTED POST-COPY MIGRATION

VIRTUAL MACHINES ARE CONVENIENT units of computational capacity, offering

strong isolation guarantees and minimal barriers for adoption, yet their heft

is a double-edged sword. The stock implementation of post-copy within QEMU does

not allow ongoing migrations to be interrupted, limiting the frequency with which a

virtual machine can be migrated, and hindering the ability to procure isolation on a

short-term and temporary basis. This shortcoming is addressed through the imple-

mentation of two-way post-copy migration for QEMU, allowing partial and temporary

migrations to and from a target machine.

5.1 Introduction

Post-copy live migration is an excellent tool in procuring isolation, as it almost instantan-

eously separates a confinement from its co-located entities. This is particularly relevant when

migrating large confinements, notably virtual machines, where pre-copy migration would

leave a tenant requesting isolation co-located with its potential attackers until the migration

is completed, assuming that the migration ever converges.

While post-copy migration may solve the issue of urgency in handling isolation requests

for virtual machines, it does not entirely eliminate the complications brought about by the

virtual machines’ size. Granted, post-copy guarantees that pages will only be sent at most

once, yet one must still transfer the entire virtual machine once a migration is initiated.

A precise formulation of the problem is that post-copy migration, as implemented in QEMU,

lacks semantics for aborting a migration. Cancelling a pre-copy migration is straightforward,

as the virtual machine is still running in its entirety at the source machine throughout the

migration process. Consequently, cancelling a pre-copy simply entails tearing down the mi-

gration stream and discarding the transferred state. The version of QEMU used throughout

this work employed the same routine for cancelling a post-copy migration, which would nat-

urally corrupt both the source and destination virtual machine processes, being that neither

machine has a complete state.

The inability to abort ongoing post-copy migrations places two main limitations on the
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use of virtual machine migration in procuring isolation. First, if the destination is found to

be unsuitable during the course of a migration (for example, due to an unforeseen change

in the machine’s context traits), then one is committed to finishing the migration before the

virtual machine can be evicted.

Secondly, and more crucially, there are a number of scenarios where one would like to

migrate a virtual machine temporarily. For example, a tenant may only require isolation for

the duration of the execution of a single security-sensitive task. Similarly, when implementing

a moving target defence in a setting against attacks with very short setup times, one must be

able to migrate at a high frequency. More generally, there are sources of asymmetry between

machines in a cloud, including factors such as data locality and node capacity, that a tenant

may only need to leverage temporarily. Without the ability to perform a partial migration,

one would have to perform two full migrations in order to temporarily migrate a machine to

and from a target. This has the effect of placing a upper-bound on the frequency with which

migrations can be performed. For example, post-copy virtual machine migrations using the

setup described in the previous chapter took around 20 seconds to complete, leading to a

minimum 40 second round-trip time. This greatly discourages the use of migration at high

frequencies, or for short-lived tasks.

This chapter examines the notion of temporary virtual machine migration, whereby a

physical machine is dynamically leased to a virtual machine for a short period of time. This

is achieved by modifying the post-copy virtual machine live migration mechanisms of QEMU

to support aborted post-copy (or two-way) live migration (APC). While post-copy migration

allows a virtual machine to immediately resume its execution at a target, two-way post-copy

adds the ability to stop an ongoing migration at any point, migrating the remote state back

to its origin without losing the virtual machine’s progress. By only sending back the pages

that were transferred during the outgoing migration, APC allows partial virtual machine

migrations to be carried out at high frequencies.

The approach was evaluated by temporarily migrating virtual machines running intensive

workloads generated using the PARSEC benchmark suite. In addition, the approach was

used to take advantage of heterogeneity within a network of machines. In particular, APC

was used to demonstrate how one can improve the performance and security of software

implementations of AES operations by temporarily migrating to a machine with hardware

AES-NI extensions.

Chapter Outline

This chapter is structured as follows:

Section 5.2 explains the theory behind APC, and describes the extensions carried out to QEMU

to support it.
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Section 5.3 examines the performance of APC when migrating to machines with different

context and active traits.

Section 5.4 discusses several refinements that can be carried out on the method, and de-

scribes additional application scenarios as well as special considerations that must be

made when deploying APC.

Section 5.5 concludes this chapter.

5.2 Implementing Aborted Post-copy Migration

The task of dynamically migrating a virtual machine V hosted on a machine MSRC to a

destination MDST requires a system that, at a minimum, implements

i) a migration mechanism, and

ii) an interface over which migrations can be triggered.

The standard QEMU migration mechanisms are one-way, with a machine’s state flowing

from a source to a destination machine. In addition, migrations are triggered at the source

via the QMP protocol, the console-based monitor, or indirectly via libvirt.

Implementing two-way (or aborted) post-copy migration requires changes to the mech-

anism to allow for concurrent transmissions in opposite directions, and modifications to the

triggering mechanism, as the triggers initiating and aborting a migration are sent to different

host machines. The implementation of the mechanism and interface options for QEMU will be

described in this section.

5.2.1 Dissecting Post-Copy Virtual Machine Live Migration

The following section describes the low-level details of a standard, one-way post-copy migra-

tion of a virtual machine V within QEMU to a machine MDST, which are key to understanding

the modifications necessary to implement APC. While reference is made to specific internal

structures and processes of QEMU, the general approach is not inherently restricted to this

virtualisation platform.

5.2.1.1 Preparing the Target

Before a migration begins, a VM instance V̄ with a specification identical to V’s must first be

created at MDST [Qemb]. Unlike V, V̄ is started in a listening state, leaving its virtual CPUs

paused while waiting for an incoming migration stream. The task of creating an idle VM is

extremely lightweight, as no state is transferred or allocated.
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Figure 5.1: Serving a remote page fault during a post-copy migration.

The process of creating the idle VM at the target is performed automatically by a daemon

process when migration is triggered through libvirt. Nevertheless, in order to reduce any

confounding factors, MDST was created directly throughout the evaluation by having the

originating process invoke a script remotely.

5.2.1.2 One-Way Post-Copy

When migrating V to MDST, V opens a direct connection to V̄ on a known port, establishing

a migration stream [Kvma]. Pre-copy migration is fundamentally one-way, with a migration

thread on V pushing the VM’s memory contents onto the migration stream for reassembly by

V̄. Post-copy extends the migration process by introducing a back-channel from V̄ to V over

which page faults are announced to the source.

Figure 5.1 illustrates the data flow that takes place when the destination V̄ faults on a

page P during a post-copy migration. The fault is read by the postcopy/fault thread on

V̄ and forwarded to V over the back-channel, where it is consumed by the return path

thread and placed onto the priority queue. The migration thread on V drives the migration,

identifying memory pages to be sent and pushing them to V̄. The thread first services all

page requests on the priority queue. It then scans for and transmits batches of yet-unsent

dirty pages (the queue is serviced in favour of the scan, hence the term priority queue),

the addresses of which are indicated by the migration_bitmap structure. Once a page is

transmitted, its corresponding address is marked in the sentmap bitmap.

Automatically scanning for and sending as-yet unrequested pages carries a number of

advantages in a standard one-way migration, namely it ensures that the migration stream

remains saturated, and it generally reduces the number of remote page faults generated at
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MDST by increasing the likelihood that a requested page has already been transferred. In

addition, sending contiguous sequences of pages in bulk increases efficiency by reducing

signalling and header processing.

The advantage of scanning and sending dirty pages in anticipation is less clear-cut for

APC, as it has two main disadvantages. First, the priority queue is not pre-emptive, and

adding a page will not interrupt an ongoing batch transfer, introducing latency (by default,

batches are sent in 50ms iterations). Secondly, the scanning process is speculative, and will

potentially transfer pages that will not be used by the remote task during the temporary

migration. This makes anticipating transfers potentially wasteful, especially when the task

has a small working set

The post-copy migration mechanism was modified to better facilitate the analysis of the

impact of batch transfers. Specifically, on triggering a post-copy migration operation, one has

the ability to specify an additional mode parameter. This determines whether an outgoing

post-copy migration is to operate using Demand Paging with Scanning (DPwS) or Pure De-

mand Paging (PDP). In the latter case, the migration foregoes automatic migration_bitmap

scanning and bypasses the priority queue, instead servicing page requests immediately as

they arrive at V. In addition, a migration can be started immediately in post-copy mode,

avoiding the race condition encountered in Section 4.4.2.5.

5.2.2 Adding Cancel Semantics: Aborted Post-Copy Migration

Conceptually, a two-way migration involves stopping the original migration from V to V̄, and

performing a migration in reverse. While one may be tempted to simply cancel the original

migration and merge the modified V̄ back into V, the stock QEMU cancel operation shuts down

all the migration channels and unfreezes V while destroying V̄. This occurs when cancelling

both pre- and post-copy migrations, in the latter case corrupting V, as its state will be split

across machines.

Instead, two-way migration was implemented using a post-copy live migration in both dir-

ections. This was implemented as a separate migration protocol, which was termed bounce

mode (the analogy being that a VM is being bounced against a target physical machine, re-

turning to its original host). Using live migration on the return leg, as opposed to a simple

offline merging of pages, reduces downtime, particularly in the case of long bounce opera-

tions.

A bounce-mode migration is started immediately in post-copy mode. On receiving an

abort command, the ongoing migration is stalled, rather than cancelled, at a point just prior

to commencing cleanup. By stalling, V̄ pauses its execution, and V transfers its current

sentmap to V̄. Once received, V̄ initiates a post-copy migration back to V using the acquired

sentmap as its starting migration_bitmap, limiting transfers to the set of pages that were
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Figure 5.2: Temporarily migrating V from MSRC to MDST.

sent by V. On completion, the original migration is stopped and clean-up is performed. The

migration from V̄ to V is always carried out in DPwS, as the objective is to return back to the

origin as quickly as possible, and the set of pages to be returned is known.

While a QEMU migration would normally create a fresh VM process at its destination,

bouncing back will migrate V̄ into the original virtual machine V. This preserves the con-

tinuity of the V process on MSRC, with its process identifier persisting through the bounce

operation. V can be bounced or migrated freely following a completed bounce operation,

whereas V̄ will be left in an internal QEMU postmigrate state, and cannot be reused as

a migration target. Rather than modifying QEMU’s internal state machine and potentially

breaking compatibility with external tools and front-ends, a robust and pragmatic approach

was adopted, whereby the V̄ process was simply restarted after each completed bounce op-

eration.

The stock implementation of post-copy migration favours batching, both on the migration

stream as well as the return path. In the latter case, requests generated by page faults are

buffered and periodically flushed, adding a delay between a page fault and its placement onto

the remote priority queue. As the approach being considered focuses on leasing hardware

on a short-term basis, PDP was modified to eliminate buffering and transmit page faults

immediately.

5.2.3 Controlling Migrations

The second aspect of the approach concerns the triggering of bounce operations. As illustrated

by Figure 5.2, the state of a bounce operation is controlled by two signals, namely

i) a bounce_start() signal, received at V, that initiates an outgoing bounce operation,

and

ii) a bounce_return() signal, received at V̄, that bounces V back to its origin.

Bounce operations must be triggered by communicating with the QEMU virtualisation layer

of the VM in question. Figure 5.3 illustrates the two principal pathways for triggering bounce

operations. Bounce operations may either be triggered internally by a process within V, or

externally by a process outside V. The former is used to service a tenant VM’s request for
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Figure 5.3: Trigger interfaces and flows when triggering a bounce operation.

a specific machine trait, whereas the latter would typically be used by a cloud provider to

temporarily displace a VM.

QEMU does not employ paravirtualisation, and guests lack the ability of communicating dir-

ectly with their hypervisor via hypercalls [Kvma]. Instead, a character device driver backend

was developed, which acts as a device that is exposed to guests as a virtio serial port [Kvmb].

This allows guests to communicate with the virtualisation platform, and gives privileged pro-

cesses within a VM the ability to dynamically trigger bounce operations by writing requests

to a system file descriptor. These are then picked up and interpreted from within the QEMU

layer. Bounce directives also accept a trait parameter on which the hypervisor can base its

choice of migration target. Commands are interpreted asynchronously, as performing block-

ing or long-lived operations within the device backend can cause the entire virtual machine

to block.

The external triggering of operations is enabled by modifying the QEMU Machine Pro-

tocol (QMP) [Qema] specification, which accepts QEMU commands as JSON requests via a

defined interface (such as a UNIX socket). Concretely, the QMP specification was extended

to interpret bounce directives. Care must be exercised when triggering bounce operations

on V through QMP, as V̄ is effectively a separate machine, and existing QMP connections

will not be automatically transferred to the target following a migration. This issue does not

manifest itself in the case of internally-triggered migrations, as the backend automatically

re-establishes a connection to the VM’s tenant-facing virtio serial port following a migra-

tion, and the frontend remains unaltered from the perspective of processes within the VM.

Thus, if a process within V issues a bounce_start() to its bounce driver port, it will initiate

a migration operation to V̄. The backend will be changed transparently, and a subsequent

bounce_return() to the same port would be received by V̄’s hypervsior, bouncing the VM

back.
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5.3 Experiments

The performance of APC largely depends on the volume and access pattern of pages that

must be transferred. One could easily contrive an ideal use case, bouncing a VM running an

application with a minimal working set. While such applications exist, the strength of APC

lies in its versatility and generality. To that end, the evaluation centred on the bouncing of

heavy workloads, produced via the PARSEC [Bie+08] benchmark suite (Section 4.4.1.1).

The following section attempts to quantify the effects of APC while running intensive

workloads under various scenarios. In particular, it analyses the effects of bouncing a VM

to an idle machine (measuring the use case of obtaining temporary isolation, a context trait)

as well as an occupied target (to quantify more generic applications such as a moving target

defense). This is followed by an investigation into the use of APC to bounce a VM between

machines with different active traits, performing encryptions by temporarily migrating to a

machine with AES-NI [Gue10] extensions.

5.3.1 Baseline

As seen in Section 4.4.2.5, migrating VMT between two INTELT machines using an unmod-

ified DPwS migration takes ≈ 20 seconds. Memory ballooning, whereby a VM’s unallocated

memory is freed back to the base system, can lower migration times, but varies depending

on the workload. The following baseline can thus be established: in the absence of APC, a

2GB VM can be migrated temporarily using two full back-to-back post-copy migrations, with

a round-trip taking at least 40 seconds, and at most 4GB of memory being transferred.

5.3.2 Test Parameters

Tests are carried out on a single bouncing VM V, which is migrated temporarily from MSRC to

MDST. The tests described in this section contain various sources of variability, the foremost

being the

i) workload of V,

ii) number of additional VMs executing on MSRC and MDST, and their workloads,

iii) bounce period τ , which is the time between one outgoing bounce migration and the

next, and

iv) bounce duration δ, which is the time that V spends temporarily executing on MDST

within a single bounce operation.

A VM’s memory is partitioned into a number of ramblocks, the largest being the VM’s RAM

(524,288 pages) and video buffer (2,048 pages). In total, V has 527,025 4KiB pages that can
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Figure 5.4: Average outgoing memory transfer sizes when bouncing idle and loaded VMs in

PDP and DPwS mode.

be transferred using post-copy, requiring a bitmap of 65,880 bytes that must be exchanged

on initiating a bounce_return() operation (Section 5.2.1).

The VM’s RAM is by far the largest component of its state that will be demand paged.

Some minor savings may be had by reducing the VM’s video memory. Another possible

optimisation is to forego the migration of the networking device. In addition to reducing the

amount of memory to be transferred, this would avoid having to perform the device setup

and network announcement routines at the destination. This may be useful when bouncing

to perform very short-lived computations that do not make use of the network, but it would

also render the method application dependent. Consequently, this avenue was not pursued

in this work.

5.3.3 Characterising Workloads

The following experiments investigate the effects that different workloads have on the per-

formance of migration.

5.3.3.1 Activity and Inactivity

The first experiment seeks to establish a baseline between an active and inactive virtual

machine with respect to the amount of memory that is transferred during an outgoing bounce

operation.
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The transfer size for the inactive case was averaged over 30 bounces of a running but

otherwise idle VM. For the active case, all was executed once in the VM, which was bounced

periodically until the benchmark completed. As will be seen, larger values of δ incur longer

execution times. Consequently, the total number of bounce operations for a given δ varied

between 77 and 175. Both experiments were carried out with τ = 15s, and were repeated for

values of δ ∈ [1, 5] seconds. The VM executed alone and was rebooted between experiments.

Figure 5.4 illustrates the result of running the experiment in PDP and DPwS mode using

varying values of δ. As can be seen, the idle VM maintains a small memory footprint, only

consuming ≈ 300MB of its allocated 2GB. This leads to a complete migration in just over 3s

when in DPwS mode, as evidenced by the plateau in transfer sizes. Similarly, the VM’s very

low internal activity generates a negligible number of page faults at the temporary destination

in PDP, and little is transferred beyond an initial 20MB. In contrast, a loaded VM has a

much larger memory footprint, and more state must be transferred. DPwS saturates the

migration stream (≈ 110MB/s, which approaches the network’s nominal capacity) for the

duration of the bounce operation, and the volume of memory grows in direct proportion to

δ. While the precise value of δ beyond which the transfer plateaus varies depending on the

memory balloon size, growth in the transfer stage is effectively linear, and will take at most

≈ 20s for a 2GB VM. Conversely, throughput in PDP mode is significantly lower, capping at

≈ 12MB/s, or 11% of the saturated channel capacity. This figure embodies the drawbacks of

a pure demand-based migration strategy with no batching, whereby each page request has

an associated round-trip time. Given that this is well below the channel’s bandwidth, and

that the throughput is constant for each tested value of δ, we can deduce that this is a soft

limit set by the machinery of PDP, and that the benchmark is requesting pages at a higher

rate than that at which it can be served. This was further reinforced through the execution of

additional benchmarks, as well as by directly analysing the CPU consumption rates on both

machines during a bounce operation.

Note that the values cited in Figure 5.4 are for the outgoing migration, and the same

volume of pages must be sent back on performing bounce_return(). In terms of memory

transfers, PDP has the advantage of being more economical and only sending requested

pages, although some waste may still occur, as will be discussed in Section 5.4.1.1.

5.3.3.2 Locality and Page Spread

The comparatively poor throughput of PDP can be attributed to the large turnaround times

involved between submitting a fault and receiving the page, coupled with the relatively small

page size being used (4KB). Throughput can be improved through batching, provided that an

application’s memory access patterns are sufficiently local or regular. This section attempts

to empirically quantify the spatial locality of each benchmark, which aids in gauging the
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Figure 5.5: Percentage of pages in a PDP bounce migration that are not contiguous, for

bounce migrations triggered at 5 stages of a benchmark’s execution. τ = 10s, δ = 5s.

feasibility of batching and in interpreting subsequent evaluation results.

To characterise the spatial locality of a VM, a PDP bounce operation was triggered, and

the sequence S of n emitted pages was recorded, where S ≡ {P1, P2 . . . Pn}, and Pi is the ad-

dress of the ith page in the sequence. The number of instances where an interval of pages does

not contain pages with adjacent memory addresses were then counted. More formally, given a

distance I, a set of discontinuous pages D ≡ {i | Pi, Pj ∈ S ∧ ¬∃Pj . |Pi − Pj | = 1 ∧ |i− j| ≤ I}
is extracted. Finally, the discontinuity ratio |D|/n was computed for the identified sets.

Figure 5.5 illustrates the result of calculating the discontinuity ratio for each benchmark

using I ∈ {1, 8, 16, 32, 64}. The ratio is calculated using page sequences generated during

back-to-back bounce operations, with δ = 5s and τ = 10s. Ratios are shown for bounces at

five stages of each benchmark’s execution.

The initialisation and termination stages of a benchmark exhibit the highest spatial loc-

ality. Sequential spatial locality at the initial stages may be attributed to the benchmarks’

unpacking phase, whereas the final stages may be the product of reduced activity. Of note

is that each observed page sequence has at least 20% of its pages neighbouring others that

are adjacent in memory. Increasing the interval length to ±8 significantly lowers the discon-

tinuity ratio for localised workloads, yet the effect is less pronounced for benchmarks with

large working sets. Raising interval lengths further did not appreciably reduce discontinuity.

This would imply that discontinuities are primarily the result of page requests with sporadic

addresses, rather than a switch to a different sequential region of memory. Thus, while trans-

ferring both pages adjacent to a requested page should improve usable throughput, moving

to larger intervals may be counterproductive when migrating for very short durations.
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Benchmark
Running Time (s) TX (MB) RX Throughput (MB/s)

Base DPwS PDP DPwS PDP DPwS PDP

blackscholes 113 119 (×1.05) 160 (×1.42) 2003 548 939.2 923.2

bodytrack 95 100 (×1.05) 115 (×1.21) 1554 643 936.7 925.2

canneal 128 152 (×1.19) 229 (×1.79) 1536 1003 928.1 933.5

dedup 19 31 (×1.63) 79 (×4.16) 1987 823 922.1 939.1

raytrace 150 155 (×1.03) 239 (×1.59) 1551 943 937.7 934.0

streamcluster 340 399 (×1.17) 412 (×1.21) 483 149 864 920.6

Table 5.1: Remote execution of single benchmarks.

5.3.4 Migration to Idle Target

This section examines the migration scenario where the target physical machine is not hosting

any virtual machines, that is, when MDST is idle.

5.3.4.1 One-Shot Bounce Migration

The following experiment attempts to quantify the overhead of executing remotely during

a bounce migration. This is done by performing an outward bounce operation on a VM
shortly after a benchmark is started, and only returning once the benchmark completes. This

procedure was carried out for each benchmark in both bounce modes, and the execution

times and memory transfer sizes were recorded.

Table 5.1 lists the running times for each benchmark. The TX column refers to the volume

of data transferred during the outgoing leg of the operation. The RX column lists the through-

put of the return operation for the associated outgoing mode. Since return operations are

always performed in DPwS, identical throughput values are obtained for the return leg of

both PDP and DPwS bounces.

The triggering point of bounce_start() affects the workload’s total running time. An

early trigger, particularly in DPwS mode, can take advantage of memory ballooning, leading

to a VM being transferred before the test ramps up. Triggering later reduces the benefit

of ballooning, yet it leads to a greater fraction of the workload having executed prior to

bouncing. In the case of the benchmarks in Table 5.1, bounce_start() was triggered after

executing for ≈ 30% of the benchmarks’ base time.

With the exception of streamcluster, each benchmark’s memory footprint had ballooned

to the point of consuming the majority of the VM’s allocation, which resulted in large trans-

fers being performed in DPwS mode. In contrast, PDP migrations transferred an average of

25-50% of their DPwS equivalents. Since only the outgoing leg is being performed, and the

workloads execute for a significant amount of time, DPwS carries a distinct advantage over
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Figure 5.6: Iterated bounce migration to idle host for varying δ, τ = 20. Points denote the

total execution time (left axis), whereas bars denote the average transfer size of outgoing

bounce operations of the corresponding δ (right axis).

PDP in terms of running time. This is because once DPwS transfers the VM’s entire state,

there will no longer be any involvement from the source machine, and no further perform-

ance penalties will be incurred. Conversely, PDP leaves the migration channel active for the

duration of the bounce operation, and any remote page faults will cause a stall. This effect

becomes increasingly apparent when bouncing larger workloads for longer durations.

Most workloads only experienced a minor slowdown in DPwS mode. The dedup bench-

mark was heavily impacted by bouncing, being a short-lived computation with a large work-

ing set. The streamcluster workload is particular in that it produced the least amount of

network traffic, yet experienced the largest absolute slowdown (59s) out of the benchmarks

bounced using DPwS.

5.3.4.2 Iterated Bounce Migration

The following experiments evaluate the effect of performing back-to-back bounce operations

on a VM when running each benchmark separately. As before, the host and destination base

machines are otherwise idle, and the VM is relaunched between tests.

Figure 5.6 shows the total running times (shown as points) when bouncing with τ = 20s

using different values of δ. The outgoing transmission size for a given δ (shown as bars)
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is derived by taking the average transfer size of each bounce operation performed within

that run. The value of δ was kept constant throughout each individual execution of each

benchmark. The maximum tested δ (9s) was kept to just below half of the set τ (20s) to ensure

that a VM had returned to its source before another bounce operation is initiated. Note that

the VM is effectively in a state of constant migration when performing DPwS bounces with

δ = 9s. In contrast, a PDP bounce operation with the same δ will cause ≈ 100MBs of pages

to be transferred on the outgoing leg, which can be returned to the source machine in ≈ 1s

using a DPwS migration. This results in the VM being involved with a migration for roughly

half of its execution time.

Several factors have to be taken into consideration when comparing DPwS and PDP mi-

grations. As evidenced by the previous test, more work per unit time will be performed at the

destination using DPwS rather than PDP when bouncing workloads with non-trivial work-

ing sets using moderate values of δ. The exponential slowdown of canneal and raytrace’s

performance against δ in DPwS mode may be attributed to their locality model. The perform-

ance of the dedup benchmark is somewhat erratic due to its relatively short execution time,

where the choice of δ can change the execution time to a multiple of τ , thus changing the

total number of bounce operations performed in a run.

The performance impact of bouncing will always be bounded, as it will level off once the

migration completes. This can be observed for relatively low values of δ when bouncing the

streamcluster benchmark using DPwS. In this case, the working set is transferred within the

first five seconds of bounce_start(), and the performance impact plateaus. An intersection

with PDP’s running times can be observed around the δ = 8s mark, at which point the cost of

stalling on pages exceeds the cost of transferring the machine’s complete state via DPwS.

In summary, larger values of δ lead to slower execution times, up to the point where a

VM’s working set is migrated completely. This is primarily the result of two factors, namely

i) larger values of δ generally lead to larger outgoing memory transfers, which must be

sent back, and

ii) the longer a task executes remotely, the greater the odds of stalling on a page, particu-

larly in the case of PDP.

5.3.5 Migration with Co-Residency

APC is ultimately designed for deployment within a cloud infrastructure, where the source

and destination machines may host multiple, loaded virtual machines. This section evaluates

the behaviour of APC with co-resident VMs. This can guide the use of the method in other

contexts, such as in implementing a moving-target defence, or in temporarily balancing loads.
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Totals MSRC

Bounces Tx (GB) δ all blackscholes canneal streamcluster dedup

0 0 - 948 - - - -

0 0 - 1299 - 149.82 384.14 22.69

0 0 - 1337 121.93 - 366.21 22.51

0 0 - 1375 120.88 143.42 - 23.00

0 0 - 1099 120.52 146.45 381.97 -

PD
P

151 8.04 5 2287 - 149.45 382.09 22.21

139 7.57 5 2096 120.88 - 362.36 22.07

152 8.21 5 2296 121.36 143.83 - 22.55

138 9.91 5 2079 121.02 146.85 380.25 -

D
Pw

S

262 119.93 5 4031 - 149.38 379.69 21.32

250 112.42 5 3901 120.74 - 362.34 21.78

258 116.53 5 4032 122.60 143.80 - 21.91

217 123.49 5 3357 121.71 149.04 377.34 -

Table 5.2: Loaded source, idle destination, τ = 15s. Times are given in seconds.

5.3.5.1 Loaded Source, Idle Destination

The first test evaluated the case where MSRC is loaded and MDST is idle. For each test, three

VMs were launched concurrently with a designated bouncing VM at the source, and each VMs

was assigned a workload that it executes continuously in a loop. The co-located VMs did not

actively participate in any bounce operations, and merely served as loads. Each co-located

VM performed a warm-up round prior to the beginning of each test.

The test consisted of executing all within the bouncing VM and timing its overall ex-

ecution time when performing periodic bounce migrations in both modes with δ = 5s and

τ = 15s. The execution times of the co-located workloads were also recorded so as to examine

the global effects of APC.

Table 5.2 presents the results of bouncing a VM in APC and DPwS with an idle MDST

using δ = 5s and τ = 15s, as well as the base cases with no bounces. Each row represents a

separate test. Each column represents a separate VM, and the average time taken to execute

its associated benchmark. The all column lists the time taken to complete the bouncing

workload. As the other workloads will have executed several times before all terminated,

the geometric mean of the individual execution times was calculated. The bounces column

lists the number of bounces performed during that test’s execution, and Tx gives the total

data sent during the outgoing legs of each bounce migration.

The first observation is that simply adding parallel workloads on the source machine

115



CHAPTER 5. ABORTED POST-COPY MIGRATION

significantly impacts the performance of all, and, to a lesser extent, that of the individual

workloads. This was found to be, at least in part, the product of several intermittent and

intense write bursts to the NFS share, the effects of which are obscured when taking the mean

of the individual workloads but accumulate within the all benchmark. For the observed

runs, DPwS bounces caused the all benchmark to take almost twice as long to complete as

when bouncing using PDP, and to transfer around 14 times as much data. The extended

execution time also led to a greater number of bounce operations being performed, which

further slowed down the benchmark. PDP bounces effectively doubled the base execution

time of all. As discussed earlier, one must keep in mind that given the same δ, a VM bouncing

in DPwS mode will spend more time in flight than in PDP.

The effects of bouncing do not appear to spill over to the co-located workloads, which is

crucial in a cloud setting. This may not hold true in the case of highly-consolidated machines,

or if multiple tenants make heavy use of the network without quotas.

5.3.5.2 Loaded Source, Loaded Destination

The previous test was repeated, with the exception that the destination was no longer kept

idle. Four VMs were set to execute concurrently at MDST, with a benchmark assigned to each

VM. The bouncing VM executed all in PDP mode with δ ∈ [1, 10] seconds (Table 5.3), and in

DPwS mode with δ ∈ [1, 6] seconds (Table 5.4).

Introducing a second set of busy VMs onto the network exacerbated the bottleneck at the

NFS server that was observed in the previous test. Comparing with the previous results using

an idle destination, bouncing with δ = 5s increased the execution time of all by an average

of 38% for PDP, and 42% for DPwS. Tests where dedup did not execute were markedly faster

than other tests, which indicates some degree of interference.

5.3.6 Leveraging Active Traits: AES-NI

An interesting quirk of KVM acceleration is that it effectively leads to a virtual machine

having two cpuid registers, namely a virtualised register that is presented to the operat-

ing system, and the physical process-level register which is visible to the actual instruc-

tion stream [Kvma]. Consequently, instructions issued to a KVM vCPU will execute correctly,

provided that they form part of the physical core’s instruction set, even if QEMU reports that the

VM lacks the associated CPU feature (this behaviour has been discussed in Section 2.4.2.2

in the context of blocking clflush). Consequently, apart from bouncing for isolation, a VM

V running on MSRC can be temporarily migrated to MDST to leverage differences in the

machines’ active traits (Section 1.3.1), or instruction set extensions.

As a proof of concept, an investigation was carried out with MSRC as an AMDT machine
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Totals MSRC MDST

Bounces Tx (GB) δ all blackscholes canneal streamcluster dedup blackscholes canneal streamcluster dedup

0 0 - 948 - - - - - - - -

0 0 - 1742 - 150.21 376.99 27.76 121.02 171.79 392.55 28.38

0 0 - 2042 119.98 - 355.43 27.55 121.25 149.04 368.24 28.01

0 0 - 1892 119.77 140.35 - 25.08 120.39 143.57 368.97 25.04

0 0 - 1367 120.85 146.14 376.15 - 123.04 145.94 372.79 22.90

Pu
re

D
em

an
d

Pa
gi

n
g

147 3.81 1 2196 - 146.37 376.31 24.60 120.05 144.59 371.14 23.85

142 3.25 1 2125 119.77 - 357.34 24.89 119.59 142.28 370.46 24.28

161 3.74 1 2406 118.80 138.77 - 22.89 118.71 141.68 370.21 23.15

108 2.34 1 1609 121.39 146.43 377.21 - 121.74 146.23 373.06 22.60

151 5.77 2 2257 - 146.84 377.32 24.35 119.61 144.35 369.86 25.61

157 4.68 2 2363 118.93 - 355.80 23.34 119.80 143.11 370.24 23.81

161 5.01 2 2425 120.37 138.70 - 23.96 119.31 143.08 369.59 24.63

111 3.60 2 1668 121.10 145.75 378.50 - 120.31 148.19 373.83 22.82

160 6.28 3 2417 - 146.23 376.18 24.50 120.35 143.88 370.36 25.06

174 6.81 3 2626 119.85 - 356.33 24.48 120.21 143.56 371.72 25.22

180 7.39 3 2718 119.69 138.31 - 24.98 119.81 142.38 371.20 25.14

119 4.57 3 1793 121.01 146.05 376.27 - 121.53 145.80 373.97 23.08

185 8.75 4 2795 - 146.66 376.79 24.09 120.90 144.64 370.51 25.03

197 9.02 4 2971 119.39 - 355.77 24.13 120.42 143.13 371.00 23.80

193 9.30 4 2916 120.49 138.43 - 24.47 120.74 143.67 370.35 23.98

136 6.63 4 2044 121.80 145.98 378.76 - 122.00 147.84 374.91 23.02

201 10.49 5 3027 - 146.44 376.97 23.70 121.36 144.10 372.03 24.64

194 10.77 5 2914 119.49 - 355.20 23.64 120.42 144.80 371.80 23.42

241 12.49 5 3635 120.16 138.33 - 24.63 121.17 144.34 372.55 25.32

171 10.10 5 2577 121.01 144.65 378.10 - 121.30 147.04 376.91 23.28

239 15.30 6 3597 - 147.09 375.70 23.83 121.61 145.66 374.13 25.98

262 15.41 6 3952 119.16 - 354.72 23.26 121.08 144.70 373.89 24.55

230 14.72 6 3467 120.62 140.14 - 25.02 121.80 173.25 395.54 24.87

187 13.64 6 2812 121.64 147.43 376.58 - 121.70 149.02 376.46 23.28

280 19.71 7 4217 - 146.43 376.07 23.41 122.04 146.69 375.03 25.19

287 19.25 7 4328 119.82 - 356.69 24.31 120.94 144.45 375.57 24.45

232 17.44 7 3495 120.48 140.46 - 24.71 121.93 173.04 397.69 25.16

208 16.46 7 3132 121.39 146.29 377.69 - 121.78 152.85 376.65 22.98

312 24.68 8 4703 - 146.58 374.94 23.03 122.09 147.48 375.01 24.40

322 25.62 8 4871 120.54 - 357.69 24.11 121.56 146.19 374.10 24.15

311 24.84 8 4692 120.48 140.21 - 23.89 121.89 144.82 374.71 23.85

259 22.73 8 3908 121.19 145.60 376.69 - 122.46 149.46 377.87 23.13

375 32.04 9 5665 - 147.96 376.52 23.04 121.85 147.82 375.81 24.48

366 32.57 9 5535 120.48 - 356.26 24.48 122.36 173.76 397.53 24.55

376 32.69 9 5678 120.64 139.30 - 23.74 121.94 145.90 375.79 24.89

315 29.77 9 4754 121.29 146.57 376.80 - 122.51 169.05 377.84 23.27

449 45.55 10 6772 - 147.82 375.73 23.97 121.79 147.44 378.17 24.73

458 45.10 10 6918 120.51 - 356.31 23.98 122.27 147.08 376.42 24.38

454 44.50 10 6866 120.53 138.48 - 24.31 122.74 147.48 376.09 25.26

395 41.17 10 5962 121.78 146.02 375.84 - 123.72 149.29 379.62 22.92

Table 5.3: Loaded source and destination, PDP, τ = 15s. Times are given in seconds.
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Totals MSRC MDST

Bounces Tx (GB) δ all blackscholes canneal streamcluster dedup blackscholes canneal streamcluster dedup

0 0 - 948 - - - - - - - -

0 0 - 1742 - 150.21 376.99 27.76 121.02 171.79 392.55 28.38

0 0 - 2042 119.98 - 355.43 27.55 121.25 149.04 368.24 28.01

0 0 - 1892 119.77 140.35 - 25.08 120.39 143.57 368.97 25.04

0 0 - 1367 120.85 146.14 376.15 - 123.04 145.94 372.79 22.90
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168 25.17 1 2509 - 147.20 376.38 24.36 120.91 144.84 371.90 24.76

208 30.66 1 3104 119.16 - 354.33 25.52 120.51 146.76 371.83 25.83

178 26.11 1 2656 120.60 138.84 - 24.18 119.93 144.24 371.82 24.86

116 15.28 1 1730 121.16 147.75 379.26 - 121.12 146.79 374.96 23.06

205 41.38 2 3075 - 147.84 376.21 24.32 120.76 145.22 372.13 24.68

198 44.17 2 2959 119.83 - 356.45 23.93 120.55 144.81 370.44 24.66

206 45.92 2 3094 121.10 140.37 - 25.17 120.90 144.59 370.62 25.30

132 29.70 2 1980 121.10 147.14 376.76 - 121.65 147.67 375.77 22.42

227 67.91 3 3451 - 146.77 376.85 24.63 121.27 146.59 373.41 24.58

237 73.61 3 3582 120.57 - 356.14 24.11 120.62 146.53 372.23 24.98

241 75.10 3 3626 121.76 141.69 - 24.22 120.55 144.96 372.90 24.55

182 61.14 3 2732 121.95 147.40 378.45 - 121.79 148.45 375.27 22.75

283 114.63 4 4422 - 147.86 375.84 24.22 122.24 146.73 374.14 25.31

295 123.30 4 4564 120.17 - 356.70 25.11 120.82 147.94 372.79 25.44

293 118.38 4 4533 121.58 141.42 - 23.76 121.43 147.39 373.48 25.53

227 100.16 4 3558 121.52 147.75 377.07 - 121.99 148.57 377.77 23.10

333 159.39 5 5264 - 148.30 376.37 23.68 122.32 148.24 376.23 24.97

371 192.83 5 5956 120.27 - 380.29 24.90 122.23 148.68 374.80 26.20

370 180.86 5 5805 121.07 140.97 - 24.18 121.64 149.21 376.93 25.35

303 157.34 5 4827 122.40 148.15 376.88 - 122.06 150.83 379.49 23.06

459 248.06 6 7474 - 147.59 377.07 23.27 121.90 149.38 377.34 25.05

460 252.13 6 7339 120.21 - 357.70 24.27 122.55 147.75 375.68 25.12

463 255.21 6 7557 120.35 142.75 - 23.51 122.20 150.45 376.59 24.45

338 197.79 6 5684 122.64 148.48 376.39 - 123.05 151.26 380.68 23.16

Table 5.4: Loaded source and destination, DPwS, τ = 15s. Times are given in seconds.
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and MDST being an INTELT machine. The active traits under consideration were the AES-NI

CPU extensions [Gue10], which MSRC lacks. AES-NI operations are faster and more resilient

against side-channel attacks than their software-based equivalents [OST06]. As will be seen,

this difference in speed can add up when performing many cryptographic operations (such

as when implementing an MPC protocol [BSKR13]), to the point where it would be faster to

bounce to MDST and make use of its AES-NI capabilities rather than to use a software-based

implementation on MSRC.

5.3.6.1 Setup

The performance of AES was evaluated using the Gladman benchmarks within Intel’s AES-NI

reference implementation [Int16a]. These benchmarks measured the time taken to execute a

series of iterations of encryptions, with each iteration encrypting 160Kb of data using a 128-

bit key. The benchmark can be performed using either a pure assembly-based implementation

of the AES operators (referred to as ASM), or one that is AES-NI enabled (referred to as AES-

NI).

Simultaneous multi-threading was disabled for V so as to match the AMDT’s CPU hier-

archy. As with previous experiments, KVM acceleration was enabled. While QEMU virtual-

ises the cpuid register, KVM cuts through QEMU’s capability enforcement layer [Kvma]. Con-

sequently, a program can forego sanity checks on the vCPU’s capability model and blindly

issue AES-NI instructions. This was tested on the aforementioned machines, and it was found

that the INTELT architectures would interpret such commands correctly, whereas the AMDT

would generate an illegal instruction exception. Migrating from the AMDT to an INTELT

machine prior to dispatching the instructions results in their correct execution.

5.3.6.2 Experiments

The experiments measured the performance of AES encryption operations performed within

V when

i) hosted on an Intel machine,

ii) hosted on the AMD machine, and

iii) started on the AMD and bouncing to an Intel in PDP mode for the duration of the

workload’s execution.

Evaluations were carried out for cases (i) and (iii) using both the ASM and AES-NI imple-

mentations, whereas only ASM could be used for (ii).

Figure 5.7 illustrates the time taken to execute the benchmark for the aforementioned

scenarios while varying the number of encryption iterations. INTELT is newer and faster than
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Figure 5.7: Running times using a pure assembler-based implementation (ASM) and one

accelerated with AES-NI.

AMDT, leading to a corresponding improvement in the ASM running times. Using AES-NI

on the Intel machine halved the running time over ASM. As can be seen, the difference in

computing power is such that it can prove faster to bounce from the AMD machine to an Intel

machine and back than to execute directly on the AMD. Specifically, the ASM implementation

runs faster using bounce mode when performing over 20,000 benchmark iterations, whereas

using AES-NI will lead to a speed-up beyond 10,000 iterations.

5.3.6.3 Conclusion

This section has demonstrated an application of APC that takes advantage of asymmetries

in active traits, specifically AES-NI support. While this can increase both security and per-

formance, it is anticipated that APC will be of even greater use when leasing active traits

that have no adequate analogue at their machine of origin. For example, while a software

implementation of AES may approximate the characteristics of AES-NI, this may not be the

case for special hardware confinements such as SGX [BPH14].

Note that applying these mechanisms to a production environment would require addi-

tional safeguards to prevent a guest VM from attempting to run instructions on unsupported

hardware. The “off-label” use of CPU instructions can pose a security risk, potentially introdu-
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cing side-channels allowing machines to be fingerprinted, and can also complicate the saving

and loading of CPU states.

5.4 Discussion

The following section describes the issues affecting the performance of APC, and ways of

improving its performance. It also identifies possible additions and extensions to APC that

allow its use in additional scenarios.

5.4.1 Factors Affecting Performance

The following section describes the principle sources of inefficiency, and possible avenues of

improvement.

5.4.1.1 Crosstalk

While one may only be interested in bouncing a VM for the benefit of a single process within

it, all contained processes are ultimately participating in the migration. This is simultaneously

one of the approach’s greatest strengths and weaknesses, as migrating a whole VM avoids

having to decompose and decouple the internal workings of the hosted application, yet it

may also introduce crosstalk.

In this context, crosstalk refers to page faults generated by processes unrelated to the task

that instigated the bounce operation. The coarse-grained nature of VMs may be inadequate

for single environments that are executing multiple unrelated and intensive processes, and

one may have to resort to finer-grained container [Cri] migration (Section 4.2.3). A container-

based solution would serve to localise page faults, yet research in live container migration

is still ongoing, and deployment in a cloud setting would require the creation of additional

interfaces to coordinate deployment and confinement discovery.

5.4.1.2 Locality and Memory Size

Spatial locality and memory requirements may vary widely between applications, which com-

plicates batching transfers and pre-fetching pages during a migration [HDG09]. A direct way

of increasing performance is to simply improve the hardware. For example, DPwS is effect-

ively network-bound, and increasing bandwidth (such as by switching to a 10GbE network)

will translate to faster migration times. This is not as straightforward in the case of PDP, as

the turnaround time is primarily determined by latency, rather than bandwidth.

A more intrusive white-box approach can employ program analysis to provide hints as to

how memory will be used. One can subsequently perform a hybrid migration, transferring
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memory in anticipation of an imminent bounce operation. Analysis can also serve to identify

empty or new pages that can be skipped during migration [HSS15].

5.4.2 Limitations

Other than potential performance and capacity issues, which may be mitigated through

hardware and software, post-copy migration is inherently less reliable than pre-copy mi-

gration [Qemb]. During a post-copy migration, a virtual machine’s state is split between

the source and destination machines, with the latter hosting the most current updates to

memory. Failure of the destination machine or the network places the virtual machine in

an inconsistent state, as all the memory operations that occurred during migration will be

lost. If the destination terminates gracefully, then one could potentially rescue the VM by

aborting the post-copy operation (effectively bouncing back early), yet this would require

strong hardware guarantees. In contrast, pre-copy migration always maintains a consistent

version of the virtual machine on the source machine, and control is only transferred once

the machine’s memory contents are synchronised, greatly reducing the time window during

which a migration can be corrupted. Should the destination fail during migration, one would

simply keep executing at the source.

Post-copy operations can be made more robust by taking snapshots (or checkpointing [Cri;

Qemb]) prior to a migration, which would act as a backup. Alternatively, the source machine

can be kept frozen in memory, and a failing migration can be restarted. This solution would

require a notion of transactions and roll-backs, as operations will generally have side-effects,

and not all operations can simply be repeated.

5.4.3 Extensions

Temporary migration can potentially be applied to other contexts beyond the procurement of

isolation, such as in counteracting short-lived load imbalances, or in bringing computations

closer to their respective distributed data sources. The following is a brief overview of a

number of ways in which aborted post-copy can be improved, as well as extended to support

additional deployment scenarios.

5.4.3.1 Migrate-On-Write

The current implementation of aborted post-copy transfers any pages sent during the outgo-

ing operation back during the return leg, yet there is no need to return pages that were not

modified during the bounce operation. By tracking page writes at the destination throughout

a bounce operation and filtering out non-dirtied pages from the migration_bitmap, one can

avoid bouncing back read-only pages.
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5.4.3.2 Event Sources

In the current implementation, bounce operations are explicitly triggered either from within

the VM over the driver interface, or externally via QMP. The task of driving the migration,

or specifying event sources, will ultimately depend on the cloud provider’s specific use-case.

For example, a cloud provider may be able to stave off hardware obsolescence using

temporary migrations. Instead of upgrading its machines with every new CPU generation, a

cloud provider can mix a limited number of new machines into its existing network. Virtual

machines are then given a virtual representation of the new architecture, and calls making

use of the new features can be dynamically intercepted to transparently trigger a temporary

migration to the appropriate hardware. This would require the interception of the instruction

stream, either using traps, emulation [Qemb], or rewriting on loading (if the virtualisation

platform supports it [SXZ13]). This can prove cost-effective as a transitional technology, or

in the case of extensions that are infrequently used. Such asymmetries can be modelled as

capabilities [Lib], and could be integrated into existing VM management infrastructures.

Alternatively, code can be automatically transformed to trigger migration on the basis

of active traits, guarding code blocks via inlined commands to trigger migrations, or dy-

namically using introspection [FL12]. A heterogeneous cloud will produce variability at the

level of passive and active traits that can be leveraged, provided that the security policies

are sufficiently fine-grained. Automatically exploiting context traits is less straightforward,

as these are generally the subject of more abstract security requirements (for example, one

would have to specify the signature of a side-channel attack, or that a certain data source is

spatially sensitive).

5.4.3.3 Chained Post-copy

The current implementation of aborted post-copy always returns a bouncing VM back to its

original source. This limits the method’s ability to chain migrations, as a bounce migration’s

temporary state cannot simply be migrated to a third machine for further processing, rather

it must be returned and bounced anew.

Beyond improving the performance of operation pipelining, support for chained post-copy

can help redirect execution during hardware failure. In addition, it allows a more efficient

implementation of a moving target defence by avoiding unnecessary return migrations.

To implement chained post-copy, the migration_bitmap must be augmented to also track

the source of each page, allowing the correct machine to be polled once a page fault is

generated. Alternatively, faulting VMs can be modified to multi-cast their page requests to

each machine in the chain.
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5.4.3.4 Application to Moving Target Defence

Using the stock migration methods incorporated into SAFEHAVEN, a virtual machine VMT

could be migrated at maximum rate of around 3 times a minute (Section 4.4.3). This migra-

tion frequency may not be considered adequate in the case of very fast attacks.

Bounce migration enables an alternative approach to a moving target defence, where a

machine is bounced from a source machine MSRC to a destination MDST for a δ defined by

α(). Note that the current implementation does not support chained partial migration, mean-

ing that an aborted migration will always return to MSRC. Consequently, an implementation

of the moving target defence may want to vary MDST between bounce migrations, so as to

defend against attackers that can exploit intermittent and periodic co-location. Similarly, if

the virtual machine remains grounded on MSRC, it runs the risk of being compromised by a

co-located process on MSRC that performs an attack over a series of bounce operations. This

can be prevented either by demanding additional security guarantees on MSRC (such as only

scheduling the same tenants’ virtual machines), or by occasionally changing MSRC through a

full live migration.

With regards to the model, APC has the effect of altering h and consequently H(). This is

due to APC operations not having a typical or fixed length. The H() predicate for an outgoing

APC migration can be modelled as having zero cost, as control is transferred immediately to

the destination. Conversely, the H() value for the return leg varies based on the total amount

of state transmitted to the remote machine. If the bounce operation is being carried out

using DPwS, then one may assume that the connection is being saturated, and H() can be

approximated as a function of the total co-location time at the destination multiplied by the

maximum transfer rate. A similar approach can be adopted when operating in APC mode,

except that the average throughput value is less consistent, given that it depends on the

internal activity of the virtual machine.

5.5 Conclusion

This chapter has explored the principle of temporary virtual machine migration, demon-

strating how the semantics of cancelling a post-copy migration can be modified to initiate

a migration in reverse, enabling short-lived computations to be performed on a remote ma-

chine without necessitating two full virtual machine migrations. This concept was actualised

into a concrete implementation, enabling two-way post-copy within QEMU, and evaluated us-

ing workloads provided by the PARSEC benchmarking suite. Finally, several extensions and

alternative scenarios to which the method can be applied were examined.

The performance of a temporary virtual machine migration operation was found to de-

pend on several factors, primarily the duration for which the virtual machine is displaced,
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and the mode in which the outgoing migration is performed. A workload undergoing a tem-

porary migration using Demand Paging with Scanning is affected in much the same way as

one that is migrated using a standard post-copy migration. The advantage of APC is that the

performance impact must only be borne for the duration of the computation, as the migra-

tion can be abbreviated at will. In contrast, a full migration would always run to completion,

needlessly impacting the virtual machine’s performance beyond the task’s execution, as well

as wasting computational capacity.

Temporary migration using Pure Demand Paging aims to reduce the performance impact

of migration by only transferring the minimum amount of memory that is requested by the

remote task. This frugality comes at the expense of low throughput, and one should at least

have an inkling of the workload’s behaviour and expected execution time prior to migrating

in this mode.

While SAFEHAVEN addresses spatial granularity through the use of fine-grained confine-

ments, aborted post-copy introduces temporal granularity for large structures, allowing vir-

tual machine migrations of varying lengths. Note that the methods described are not exclus-

ive to QEMU, and can be implemented within alternative virtualisation platforms that allow

page tracking, such as Xen [Bar+03b]. Similarly, there are no fundamental barriers to apply-

ing APC to process and container migration, especially since the page tracking extensions are

available in user-space [Arc16]. This would result in the ability to specify even finer-grained

isolation properties.

The primary appeal of the approach explored in this chapter is its ability to be applied to

arbitrary workloads without requiring decomposition and with a minimum of preparation.

The method can be deployed within a network with no additional infrastructural changes, as

it does not introduce any special requirements beyond those of a standard post-copy migra-

tion. Nevertheless, the suitability of the approach is ultimately determined by the provider’s

requirements and intended deployment scenarios, and additional factors such as real-time or

capacity constraints may have to be taken into consideration.
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CHAPTER 6

CONCLUSION

THIS WORK IS BUILT UPON THREE intertwined lines of research, namely the mod-

elling of co-location using a fine-grained hierarchical model, the implement-

ation of a migration framework and the evaluation of its migration mechanisms,

and the extension of virtual machine post-copy migration to allow temporary mi-

gration. This chapter is a retrospective look at the original research questions, and

the answers provided by this work.

6.1 Introduction

The following chapter is a review of the key concepts and results produced during the course

of this work, where a fine-grained model of isolation was realised into a framework for

dynamically controlling migration. It also provides an overview of similar work, as well as

alternative approaches to illicit channel mitigation.

Chapter Outline

This chapter is structured as follows:

Section 6.2 compares various aspects of the approach with other related work.

Section 6.3 revisits the stated aims of this work and describes how they were met.

Section 6.4 identifies several lines of future research.

Section 6.5 concludes this work.

6.2 Discussion

The following section provides a review of research that is similar and related to the work

presented in this document. In particular, it describes alternative approaches to modelling

systems and isolating entities. It also describes the security considerations that one must keep

in mind when deploying an isolation-based mitigation.
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6.2.1 Comparison to Other Formalisations

The following section discusses ambient and graph-based approaches to modelling systems.

6.2.1.1 Ambient Models

A seminal work in modelling hierarchical architectures was the calculus of mobile ambi-

ents [CG98], which extended process calculi with the ambient process construct. Ambients

specify boundaries within which other ambients exist and migrate. Several extensions to the

original calculus were subsequently defined, including the ability to define security zones to

detect confidentiality breaches [BCF02], as well as to model resource allocation through a

system of markers [Bar+03a]. An additional extension is the cloud calculus [Jar+12].

Ambients differ from the model explored in this work in a number of ways. For example,

the latter uses a graph model, as confinements can be directly co-located within several

different parent containments. This has the effect of requiring migration operations that

simultaneously affect multiple containments. Another feature is the absence of the open

operator, which in the ambient calculus is designed to destroy an ambient and release its

constituents into the parent ambient. Instead, confinements are introduced into and removed

from a hierarchy in a compound action staged through agents’ idle queues.

6.2.1.2 Graph Models

Graphs allow the definition of many-to-many relationships between a system’s entities. Graph

models for VM networks can be generated automatically [BGM11; Bro+10], and can then

be checked statically [BG11] to detect violations in operational correctness, failure resilience

and isolation. Additional work focuses on making the analysis of dynamic systems more ef-

ficient through incremental analysis [BVG14], where only changes, or deltas, are analysed.

The creation and application of deltas is event-driven, triggered using hooks to a hypervisor.

This line of research differs from that explored in this document in that its focus is on de-

tection, rather than the online reconfiguration aspects of mitigation. In addition, analysis is

confined to the virtual machine level, and does not focus on finer-grained isolation.

Other work has also looked into using graphical representations to assist in the modelling

of systems, and automatically translating them into process calculi [PB09]. Challenges in

dynamic monitoring include asynchronous updates, non-atomic actions, unordered events

and blocking behaviour introduced by instrumentation [BGM13]. Other approaches group

resources into colours within which data can be shared, and employ a system of roles that

can modify colour groupings and conflict rules [BKS14].
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6.2.2 Scheduler-Based mitigations

Scheduling policies can be exploited to form illicit channels [VRS14] or steal computational

resources [Var+12]. Setting a minimum time between deschedules can undermine certain

classes of side-channels by obscuring residual cache effects [VRS14]. The problem with such

an approach is that setting a long minimum quantum size and using a non-work conserving

schedulers can result in consistently decreased utilisation rates.

Efficiently choosing migration targets is non-trivial, as placement can be constrained by

several factors in addition to isolation requirements [Raj+09]. The problem can thus be

formulated as one of constraint satisfaction. Other approaches address placement as a bin-

packing problem to guarantee different degrees of isolation whilst upholding a system’s func-

tional constraints [Aza+14; Kra+10]. The approach is evaluated in terms of a competitive

ratio, comparing the cost of configurations produced by on-line scheduling against optimal

placement, where cost is the number of bins used. Heuristics can aid migration and place-

ment [CRC14]. Another approach uses leases and deadlines to reserve resources and priorit-

ise migrations [ARC11].

Scheduling using partial virtual machine migration has also been explored in the context

of consolidation [Bil+12], where virtual machines are migrated to a shared host during peri-

ods of inactivity to reduce power consumption. While similar in mechanism, this approach

has objectives that are diametrically opposite to those of this work, as it favours long-lived

migrations with low workloads.

6.2.3 Detection and Generation

One challenge of policy-based defences is to create policies. Methods have been developed

for detecting certain types of leaks through various techniques, including information flow

analysis [BKR09], abstract interpretation [Doy+13], and data tagging and tracking [Pri+14].

Program pre-partitioning and analysis can optimise the exchange of data and limit it to the

state required by the remote operation. The problem with pre-partitioning when compared

with a fully dynamic solution is that it is not as flexible, both in choosing its isolation target

and in responding to changes in the system’s configuration. One existing hybrid approach

attempts to optimise virtual machine migration by identifying regions of memory that do not

have to be transferred, with a proof of concept having been developed using a modified Java

Virtual Machine [HSS15].

6.2.4 Security

A co-resident attacker can potentially exploit a side-channel (for example, by analysing net-

work traffic or memory access patterns) to determine that a bounce operation is underway.

129



CHAPTER 6. CONCLUSION

This could potentially be used to infer some aspect of the victim’s internal state, either by

associating bounce triggers with specific points in the victim’s applications’ execution, or by

relating packet transmission frequencies during a bounce operation to the virtual machine’s

memory state. In addition, a cloud provider must carefully regulate bounce triggers to pre-

vent load imbalances.

Note that a cloud provider should never allow a tenant to directly specify its own migra-

tion destination, as this would create a significant security risk, and could itself aid in forming

illicit channels [Ris+09]. Adopting a declarative approach, whereby the cloud provider inter-

prets a tenant’s high-level isolation requests without exposing its internals, can help mitigate

such risks. A cloud provider may also have to consider rate-limiting migrations or placing

a minimum on the time that a virtual machine spends migrated. This can protect the cloud

provider from denial-of-service attacks, as well as prevent resource-stealing attacks [Var+12;

Zho+13].

6.3 Revisiting Claims

The following section revisits the original aims of this work, as stated in Section 1.3.3, and

details the way in which they were addressed.

6.3.1 Claim 1

The problem of illicit channels is fundamentally one of co-location, and can be modelled

as such.

Bar some unknown quantum phenomena, illicit channels appear to always require a me-

dium, and do not exhibit what Einstein once termed “spooky action at a distance”. This is

reinforced by the instances of illicit channels observed throughout the course of this work,

which to date follow causality as per classical computing. Even in the case of attacks that

cross air gaps, such as when measuring electromagnetic emanations, one is operating through

a medium, and physical co-location correlates with signal quality.

Modern architectures are hierarchical and vast, with different regions of their hierarchy

offering varying granularities of isolation. Isolated resources can thus be provisioned at a

finer granularity than dedicating machines to each tenant, which enables higher rates of

utilisation. The advantage of using a layered and hierarchical model is that it can describe

the cascading effects of migration, where movements at a higher granularity also affect its

constituent confinements. Conversely, migrations at finer granularities have a limited effect

on their parent confinements. In addition, it allows the creation of mitigations against attacks

that cross hierarchies and levels.
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6.3.2 Claim 2

Containments can be modified efficiently through scheduling and migration at various

granularities.

In the model explored in this work, reconfiguration operations were split into two categor-

ies, namely local and global migrations. The cost of migrations, particularly global migrations,

directly affects the viability of the approach explored in this work, as long migration times

will lower the quality of service and will delay the fulfilment of an isolation request. When

evaluating the impact on quality of service, one should keep in mind that non-migration

based mitigations carry their own costs. In particular, terminating processes in response to

detected attacks could severely degrade the quality of service when one considers that detect-

ors may produce false positives. In contrast, migration is a lenient and largely transparent

approach to restricting resource access, and detectors can afford to be more aggressive in

their classifications.

Decomposing systems into hierarchies of containments allowed mitigations to use the

cheapest migration necessary to isolate a confinement. On-demand isolation at the larger

end of the hierarchy was shown to be viable when aided by a number of technological de-

velopments. In the case of virtual machine migrations, post-copy live migration serves to

both guarantee convergence, and, crucially, make co-location breaks at the virtualisation

level effectively immediate. The use of container and process migration allowed a second in-

termediate level of provisioning, with tenants having the option of consolidating containers

amongst their own virtual machines. Finally, hardware counters and virtualised performance

monitoring units allowed the development of cheap and accurate detectors that served to

trigger migrations.

When studying the model and implementation, it transpired that process/container mi-

gration is, in principle, the most versatile dynamic isolation mechanism in the arsenal of

reconfiguration methods. This is because it can be used to break co-location at any level of

the hierarchy. From a practical standpoint, container migration is still under development, re-

quires some forethought in deployment, and cannot always be performed at will. In contrast,

virtual machines are robust and simple to deploy to, and do not require tenants to decom-

pose their systems to facilitate migration. In addition, they offer strong system-level isolation

guarantees between tenants, and are amenable to migration due to their use of virtualised

devices and in-built decoupling assumptions.

6.3.3 Claim 3

The impact of migrating large confinements such as virtual machines can be reduced

using partial or temporary migrations.
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While post-copy live migration remedies the sluggishness of pre-copy virtual machine

migration, it still involves the transfer of large volumes of state from one machine to another.

Performing a complete migration would be particularly wasteful if one only needs isolation

for the duration of a short security-sensitive computation.

This work has detailed the implementation of temporary virtual machine migration, where

a physical machine is dynamically leased to a virtual machine for a short period of time. This

was demonstrated by modifying the post-copy migration methods of QEMU to support two-

way, or aborted, live migration. This adds the ability to stop an ongoing migration at any

point and return the partial remote state back to its origin through a post-copy migration in

the reverse direction. This avoids transferring the entire virtual machine’s state, and allows

partial migrations to be carried out at high frequencies.

Two-way post-copy migration allows machines to be leased to tenants at a high frequency

on the basis of their traits. This was evaluated by temporarily migrating a tenant perform-

ing a series of encryption operations to a physical machine that supported the AES-NI CPU

extensions, an active trait that the original machine lacked. Using two-way post-copy could

promote alternative cloud topologies, where collections of machines are assigned one or

more idle machines, which are then multiplexed temporarily amongst tenants on a demand

basis. Mixing-in designated target machines at the rack level can help leverage high-speed

interconnects and keep migrations local, which translates into faster migrations.

6.4 Future Work

Future work will focus on the automated synthesis of runtime enforcement monitors from

properties expressed using the hierarchical model, and the integration of the model into

simulation frameworks. Extensions to the model can also be considered, such as the addition

of attributes to confinements to allow co-location to be queried on the basis of a specific

attribute, and the use of weights to denote channel capacities at each level.

A natural progression for work on the implementation of the approach is to further de-

velop and improve post-copy live migration at the process and container level, and to intro-

duce two-way migration at this granularity of confinements. In addition, the incorporation

of techniques to reduce the amount of state transferred during live migration, such as by

detecting duplicate or empty memory pages, should be pursued.

6.5 Concluding Remarks

Partitioning computational resources into finer-grained units of computation challenges the

notion that hard isolation is a necessarily wasteful and impractical response to illicit chan-
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nels. Adopting a correspondingly fine-grained approach to migration further reduces the

overheads of procuring hard isolation dynamically.

While future infrastructures may be faster and larger than contemporary deployments, it

is unlikely that the fine-grained approach to isolation explored in this work will be invalid-

ated solely through scale. Even if the cost of migration were somehow reduced to nil, one

would still opt for a deployment which maximises isolation whilst minimising waste, neces-

sitating fine-grained notions of partitioning. In addition, it has historically been the case that

workloads grew in tandem with technological and architectural advancements, and economy

in allocation will remain pertinent.
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