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Abstract
The systematic evaluation of program analyses as well as software-
engineering tools requires benchmark suites that are representative
of real-world projects in the domains for which the tools or analy-
ses are designed. Such benchmarks currently only exist for a few
research areas and even where they exist, they are often not effec-
tively maintained, due to the required manual effort. This makes
evaluating new analyses and tools on software that relies on current
technologies often impossible.

We describe ABM, a methodology to semi-automatically mine
software repositories to extract up-to-date and representative sets of
applications belonging to specific domains. The proposed methodol-
ogy facilitates the creation of such collections and makes it easier
to release updated versions of a benchmark suite. Resulting from
an instantiation of the methodology, we present a collection of cur-
rent real-world Java business web applications. The collection and
methodology serve as a starting point for creating current, targeted
benchmark suites, and thus helps to better evaluate current program-
analysis and software-engineering tools.

Categories and Subject Descriptors C.4 [Measurement Tech-
niques]

Keywords benchmark suite, collection, ABM methodology, auto-
mated

1. Introduction
It is a challenging task to evaluate new static or dynamic analy-
sis algorithms (e.g. for policy enforcement, code optimization, or
finding security issues) and software-engineering tools (e.g. code-
recommendation systems or code visualizations). For the sake of
reliability, reproduction, and comparison with previous approaches,
using well-known, established benchmarks is often considered the
best solution to evaluate the quality of a new analysis. Among
the more established suites are the DaCapo benchmarks [4], the
Scala Benchmarking Project [14], the Qualitas Corpus [16], Se-
curiBench [12], or micro-benchmark suites such as DroidBench [3],
SecuriBench Micro, or PointerBench [15].

New analyses and tools sometimes target domains that have
not been researched before. Their target programs may vary, and
evaluating those approaches on commonly-recognized benchmarks
may not show their full potential. Furthermore, all suites mentioned
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above except for DroidBench and PointerBench are no longer
maintained. This makes it impossible to evaluate new analyses
and tools developed for current technologies. This can prompt
authors to create their own benchmark suites, like DroidBench
for Android applications, SecuriBench for web applications, or
PointerBench for pointer analyses. Alternatively, in lack of current,
suitable benchmark suites, the authors of scientific papers are
frequently forced to evaluate their approaches on software that is
chosen in an ad-hoc fashion from popular open-source projects on
SourceForge, BitBucket or GitHub, or even self-made applications.
This significantly hinders the comparison of analyses and tools.

In this paper, we present the Automated Benchmark Management
(ABM) methodology to facilitate the management of up-to-date,
reliable, and domain-specific benchmark suites for program-analysis
and software-engineering tool evaluation. ABM seeks to maximize
the automation of the benchmark creation and maintenance pro-
cesses. By defining a set of filters, ABM uniformizes the process of
benchmark creation for a particular target domain. Automatically
reusing those filters creates updates of the benchmark suite, main-
taining a continuity between the different versions of the benchmark
while keeping it up-to-date.

We also present an instantiation of this methodology for Java
business web applications, and the benchmark suite it yields. The
suite can be used to study how current web applications are built,
or, for instance, to evaluate tools and analyses that attempt to detect
vulnerabilities in such applications. Both the instantiation of the
methodology and the resulting collection are made available.

The remainder of this paper is organized as follows: Section 2
describes the ABM methodology. Section 3 details the instantia-
tion of the methodology for Java business web applications, and
the obtained collection. In Section 4, we discuss the limitations
of our methodology, the evaluation plans and the next steps. Sec-
tion 6 presents existing benchmark suites and related automation
approaches.

2. The ABM Methodology
In this section, we detail the ABM methodology by presenting its
overall goals, and discussing the process.

2.1 Benchmark Properties
As mentioned by Tempero et al. [16], four aspects should be consid-
ered when designing a code corpus: size, content, representativeness,
and permanence. Existing benchmarks vary in size. DaCapo-9.12-
bach, for instance, contains 14 large-scale projects, while Droid-
Bench comprises more than 100 apps, all of which are very small.
To ensure code diversity, ABM includes as many suitable projects
as possible, regardless of their size.

The contents of a collection created with ABM should help eval-
uating new tools and analyses. For this purpose, collections should
only include publicly available projects. Additionally, because many
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analysis frameworks operate on bytecode, they should provide both:
the source code and the binaries, and ensure that the source code is
compilable.

The projects included in an ABM collection should be represen-
tative of real-world software in the targeted domain.

As an additional requirement, a collection should be up-to-date,
i.e. only contain new or still maintained projects at the time of its
creation. This property ensures that the collection can be easily
updated to reflect current code usage.

To summarize, collections obtained from ABM should be:

• up-to-date,
• representative of the real-world,
• only contain open-source projects,
• only contain compilable projects, and
• provide both the source code and the binary files

2.2 The Methodology
The ABM methodology consists in the choice of a source from
which to obtain interesting projects, and a set of filters which
ensure that the projects contained in the final collection follow
the properties presented in the previous section.

2.2.1 Source
The most fundamental task when creating a benchmark suite is to
identify the source from which it is possible to collect a representa-
tive collection of projects. Popular repository platforms like GitHub,
BitBucket, or SourceForge are widely used and contain projects
developed by (commercial) organization as well as individual pro-
grammers. Projects on these repositories are very active, and host a
high diversity of open-source projects. Such platforms are therefore
well suited as starting points for open-source benchmark collections.
Due to the breadth and sheer number of the projects found on these
repositories, it is even possible to create benchmarks for areas such
as enterprise applications which typically do not lend themselves to-
ward open-source. Selecting projects from these repositories can be
seen as a best-effort to approximate industrial, real-world software.

The first step of the ABM methodology is to identify which soft-
ware repositories to mine, and how to extract useful metadata. Some
platforms offer query APIs such as the GitHub REST API, which
can be used to query projects and meta information. Independent
tools such as GHTorrent [10] and GitHubArchive [9] can also be
used to mine GitHub.

When selecting projects, a filter should be created to ensure that
only active (up-to-date) projects are chosen. This can be done, for
example, by checking the date of the last commit.

2.2.2 Representativeness Filters
An important aspect of a benchmark is its representativeness.
Projects should be representative with respect to the target do-
main of the evaluated approach (e.g. Android applications), and to
the evaluated tool or analysis (for example a taint analysis would
target projects containing certain source/sink API calls, whereas a
pointer analysis would be interested in projects containing particular
types of assignments).

As the notion of representativeness varies according to what
the user wants to evaluate, it is left for them to define, as it is the
case for the currently existing benchmarks suites. As opposed to
those benchmarks, where the user must choose among the projects
available in the suite, ABM directly provides representative projects,
tuning the dataset towards the desired domain.

For this step, the properties of the target projects should be
defined as closely as possible based on the projects’ domain or
the tool’s domain. Based on this criteria, a set of filters that select

relevant projects from the dataset is created. These filters can be
based on metadata made available by the repository platforms or on
code-specific information obtained by analyzing the project.

2.2.3 Build Filters
Many projects present on repository platforms are simple test
projects, libraries, program fragments, or simply random code
dumps. While some of them would be suitable small test cases
for source code-based analyses, the ABM methodology aims at
approximating real-world programs, which is often reflected with
the usage of a mature build system. For a project to be included
in the collection, the build system should be recognized, and the
project should compile and produce an executable. This is ensured
with an additional set of filters.

2.2.4 Methodology Workflow
The combination of the filters defined in the previous paragraph
applied to the chosen repository platforms results in an instantiation
of the ABM methodology that, when applied, yields a collection
that follows the properties defined in Section 2.1. The filters can be
applied in any order, as shown in the instantiation of ABM for Java
business web applications in Section 3.

Once the collection is created, it can easily be kept up-to-date,
by re-running the instantiation. A collection’s maintenance can be
fully-automated, the manual overhead of the methodology being the
initial definition of the filters and source repositories.

We will discuss the limitations to this semi-automated approach
in Section 4.

3. ABM for Java Business Web Applications
We have applied ABM to the case of Java business web applications,
yielding the ABM instantiation shown in Figure 1. By applying it,
we obtained a collection of Java business web applications.

Java is of particular interest as it is used by 26% of the top
1000 most visited sites [18], and is the target of a lot of research.
Furthermore, no up-to-date, established benchmarks exist for this
particular case.

3.1 Instantiating ABM
3.1.1 Source
We choose GitHub as our sole project source due to its high popu-
larity in the targeted domain. It contains many business web appli-
cations, including recent student projects, open-source collaborative
applications, and also open-source commercial projects.

To query for projects and retrieve metadata, we use the GitHub
REST API, which allows easy access to the repositories and their
metadata. Using intermediate querying platforms is also possible,
but would make little difference in our use case.

An active projects filter is created using the date of the latest
commit from the metadata. Half of the projects were not updated
in the last year. They are considered unmaintained and are removed
from the dataset.

3.1.2 Representativeness Filters
To initialize the methodology, we identify the key properties of the
projects that should be included in the collection. In this case, we
only query for projects written in Java as we want to create a Java
business web applications benchmark. In the same query, we also
specifically ask for the three main types of business web applications:
customer relationship management (CRM), content management
system (CMS), and enterprise resource planning (ERP) [17]. GitHub
returns a total of 2116 projects.

GitHub sometimes mistakenly tags projects with the wrong
programming languages, or the initial search query sometimes
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Mining GitHub
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Figure 1. An instantiation of ABM for Java business web applica-
tions, with the number of remaining project after each phase, and
the location of the different filters (circled).

returns projects that are out-of-scope. We found that the use of
libraries is a sensitive metric to further filter the dataset, as it not only
reflects the programming language of at least part of the application,
but it also shows which APIs are used by the application, allowing us
to infer the application’s functionalities. For example, an application
using the javax servlet API is most likely a Java web application.
Thus, we introduce a web libraries filter that extracts project libraries
declared in the applications’ build files, or found as .jar files in the
projects. Those libraries are then compared to a whitelist created
by a domain expert. Overall, half of the buildable projects do not
contain a whitelisted library, and are removed from the collection.

3.1.3 Build Filters
We consider IDE-built projects as not relevant for the collection,
as in such cases the builds are often not repeatable across different
environments. A known build systems filter selects projects that
use known build systems. Such projects are typically more mature,
useful and representative of real projects. As shown in Figure 2, the
most popular build system for Java web applications in the dataset is
Maven. We only include projects that can be built using Ant, Maven,
or Gradle, thus removing a third of the remaining projects. Those
include all projects that are out of scope (Android applications), do
not have a proper build system (Eclipse and IntelliJ), or have a build
system which could not be clearly identified (Unknown). The latter
case can be due to missing or custom build files, projects not written
in Java, or that are not web applications.

Maven Eclipse Gradle Android Ant IntelliJUnknown
0%

20%

40%

Figure 2. Build systems distribution in the dataset. One project can
have several build systems.

The second build filter attempts to build the projects to ensure
that only compilable projects are kept. We use the standard build
commands: gradle build, mvn compile, and ant build or
ant compile. Around 40% of the projects compile well. The others
either have incorrect code, or require specific configurations that our
test environment does not provide.

Executables are created using the standard build commands:
gradle jar/war/ear, ant jar/war/ear, and mvn install.
Some of the projects do not produce an executable, due to custom
or missing configurations, or environment issues. Those projects
are kept in the collection, to provide more material for source-code
analyses, but no executables are provided.

3.1.4 Methodology Workflow
Figure 1 illustrates the instantiation of the ABM methodology for
Java business web applications. All filters before the “Known build
systems” step (incl.) are computed based on project metadata. After
this step, we download the remaining projects and apply the next
steps on the local copies. The filters are ordered specifically to
minimize the number of queries made to the GitHub API and the
number of downloaded projects. Once the instantiation is complete,
it is fully automated and can then be run regularly to keep the
collection up-to-date.

Approximately 6.5% of the projects returned by the initial query
remain after the filters are applied.

3.2 Resulting Collection
The resulting collection contains the source code of 139 projects.
Deployable binaries (.war, .ear or .jar format) are provided
for 100 of them. The projects vary in size (5 to 379.002 Loc),
activity (1 to 323 commits in the last year) and contributors (1 to
15). They range from simple test projects used to learn business web
application development, to large-scale real-world web applications
like Enonic [8] and AppDynamics [2] which are CMS and CRM
solutions deployed in industry.

The collection as well as the scripts and filters used to create
it are available at: http://www.st.informatik.tu-darmstadt.
de/artifacts/webapps/.

Both the source code and the binaries are made available. An
index file in .xls format lists those resources. It contains metadata
about the different projects, namely build and library information,
and a link to the original GitHub repository and chosen commit. The
.xls file also contains the whitelist used for the libraries filter.
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4. Limitations
The presented ABM methodology is subject to three main limita-
tions. A first limitation is that the collections created with ABM are
only limited to open-source projects, since examples of applications
that are developed by companies for in-house purposes are rarely
made publicly available. Nevertheless, ABM also retrieves projects
that are developed for commercial purposes, and it is reasonable to
assume that these projects are developed using the same, or even
better standards than typical in-house projects.

Second, to keep the build process fully automated, we only
consider projects that have well-defined build scripts. This filters out
some potentially interesting projects, such as the commercial project
Adempiere [1]. These projects have very stringent requirements on
the build environment and/or have very complex build dependencies
that cannot easily be extracted. Given that the collection contains
some very large projects (≈ 300KLoc), we do not consider this a
severe limitation, but we are still considering to improve our scripts
in this regard.

The third limitation is that the methodology relies on the user-
defined notion of representativeness, which can be difficult to
translate into sensible filters. For example, the ABM collection
we retrieved comprises CMS, CRM and ERP applications. However,
GitHub returned other applications such as INCF’s EEG/ERP
database for electroencephalography experiments [11]. Since these
projects also contain Java modules and have well defined build
scripts, they are also included in the ABM collection, despite being
out-of-scope w.r.t. to selected domain. As a result, ABM generally
yields a collection of applications that is a significant step toward a
benchmark suite, but some additional (potentially manual) filtering
may be required.

Sharing a filter set effectively allows different researchers to
produce collections for the same target programs and analyses.
The collections might differ if they were created at different times.
Because two researchers would most likely define different filters
for the same targets, we advocate the use of a collaborative platform
for ABM based collections.

5. Using the Benchmark Collection
We have used the proposed collection to evaluate static taint analyses
and novel algorithms for dead code elimination [7]. For the dead
code elimination, we were particularly interested in learning how
useful the analysis is for web applications, compared to analyzing
the Java Runtime Environment, or the Qualitas Corpus. The analysis
found far fewer dead paths in the code of the web applications than
it did for projects from the Qualitas Corpus, or the JDK. For the
JDK, it found approximately one issue every 20 methods. In the case
of the largest web application from the ABM collection, one issue
was reported every 312 methods. For other web applications, the
ratio was even smaller. This result is expected, as age seems to be a
major reason for dead code, and web applications – from the ABM
benchmark in particular – are generally (much) younger. Those
preliminary results show that the choice of benchmarks matters a
lot, and that methodologies such as the one proposed may help in
improving the evaluation conditions of analysis tools.

With our experiments for taint analysis, we hope to better assess
the usefulness of our static taint-analysis tools which were developed
for Android, in the context of Java web applications.

6. Related Work
The DaCapo benchmark suite [4] is comprised of open-source, real-
world projects containing important memory loads. The suite is
mainly used for performance testing. Its latest release is the DaCapo-
9.12-bach suite, released in 2009.

In their paper, Tempero et al. discuss the challenges of creating
and maintaining a corpus of representative programs. Their rea-
soning produced the Qualitas Corpus [16], a large collection of
open-source Java programs. The collection’s latest distribution was
released in 2013.

Created in 2012, the Scala Benchmarking Project addresses the
problem of the absence of benchmarks for the use of non-Java
languages on the JVM. It contains real-world Scala applications that
can be used to compare performance of Java and Scala programs.

SecuriBench [12] was created to respond to the lack of Java
web application benchmarks to assess static analyses by Livshits
et al. It contains large, real-life applications for J2EE programs,
and was last updated in 2005. SecuriBench Micro also targets Java
web applications, and is made of smaller, hand-crafted projects
containing known vulnerabilities. It was last updated in 2006.

Created to assess the precision of the taint analysis FlowDroid
[3], DroidBench is a micro-benchmark comprised of many custom-
made, small Android applications, specifically targeting the weak-
nesses of data-flow analyses for Android.

PointerBench [15] is a micro-benchmark created for the pointer
analysis Boomerang in 2016. Due to the lack of existing benchmarks
for pointer analyses, Späth et al. created PointerBench to compare
the precision of their approach to existing pointer analyses.

These collections and benchmark suites were all created to ad-
dress the lack of existing benchmarks in the research areas needed
by their authors. The projects they contain were either meticulously
hand-picked from existing real-world applications, or hand-made
to target specific vulnerabilities and weaknesses in analysis tools.
For this reason, many of those collections became reference bench-
mark suites in their respective domains, and are widely used to
compare and test new approaches. However, the maintenance of
such benchmarks is a time-consuming, and a somewhat repetitive
task. They are no longer maintained, to the exception of DroidBench
and PointerBench, which is a recent creation. Our approach thrives
to automate the collection process to the largest extent, facilitating
the creation and automating the maintenance of benchmark suites.

Efforts have been made toward automatizing the process of
benchmark creation. In their paper, Dallmeier et al. present iBugs
[5], an approach that automatically analyzes the history of real-
world projects to extract bugs, from which it derives minimum test
cases. Its latest update was made in 2011.

JSBench [13] was created by Richard et al. as an approach to
automatically create micro-benchmarks for JavaScript performance
and load issues. It records human interaction with a website that
uses JavaScript, records traces containing heavy workloads, and
arranges them make them deterministic. The benchmark suite was
last updated in 2013.

In his paper [6], Dujmović discusses techniques to create fully
artificial benchmarks on-demand, based on simple criteria such as
program size, or basic operations characteristics.

Such approaches thrive to automate the process of benchmark
creation. The test cases generated from the first two approaches are
representative of real-world issues to a certain extent, as they are
extracted from real code, and observed problems. These approaches
can be used to create micro-benchmark suites, and their test cases
are either modified (eg. for the sake of determinism), or completely
artificial. In contrast, the ABM methodology aims at collecting
unchanged real-world applications to avoid the limitations related to
the use of micro-benchmarks. The first two approaches are especially
interesting in how they determine relevant test cases, with respect
to the target analysis. In future work, we plan to base ourselves on
such criteria to characterize representativeness towards the evaluated
analysis.
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7. Conclusion
In this paper, we discussed how to create more dynamic, easily
updatable benchmark suites that can be adapted to the needs of
different research topics. We have presented the ABM methodology
for semi-automatically creating and automatically maintaining col-
lections of real-world open-source applications within a particular
domain. Resulting from an instantiation of this methodology, we
have created, released, and discussed the ABM collection, a suite
of 139 projects within the domain of Java web applications. Both
the methodology and the collection serve as a starting point for
creating current, targeted benchmark suites with the goal of better
evaluating program-analysis and software-engineering tools. We
have also discussed the limitations of the ABM methodology, such
as the necessity to manually filter the selection of benchmark ap-
plication for true representativeness. In future research, we plan to
determine how to better characterize representativeness with respect
to real-world applications and the evaluated program-analysis or
software-engineering tool. One possibility to further automate the
creation of filters would be to apply machine-learning to an ini-
tial set of projects to extract interesting features – such as library
information for example, and use them to discover similar projects.
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