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Abstract18

Various studies have empirically shown that the majority of Java and Android apps misuse19

cryptographic libraries, causing devastating breaches of data security. It is crucial to detect such20

misuses early in the development process. To detect cryptography misuses, one must first define21

secure uses, a process mastered primarily by cryptography experts, and not by developers.22

In this paper, we present CrySL, a definition language for bridging the cognitive gap between23

cryptography experts and developers. CrySL enables cryptography experts to specify the secure24

usage of the cryptographic libraries that they provide. We have implemented a compiler that25

translates such CrySL specification into a context-sensitive and flow-sensitive demand-driven26

static analysis. The analysis then helps developers by automatically checking a given Java or27

Android app for compliance with the CrySL-encoded rules.28

We have designed an extensive CrySL rule set for the Java Cryptography Architecture (JCA),29

and empirically evaluated it by analyzing 10,000 current Android apps. Our results show that30

misuse of cryptographic APIs is still widespread, with 95% of apps containing at least one misuse.31

Our easily extensible CrySL rule set covers more violations than previous special-purpose tools32

with hard-coded rules, with our tooling offering a more precise analysis.33
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1 Introduction40

Digital devices are increasingly storing sensitive data, which is often protected using cryp-41

tography. However, developers must not only use secure cryptographic algorithms, but also42

securely integrate such algorithms into their code. Unfortunately, prior studies suggest that43

this is rarely the case. Lazar et al. [22] examined 269 published cryptography-related vulner-44

abilities. They found that 223 are caused by developers misusing a security library while only45

46 result from faulty library implementations. Egele et al. [13] statically analyzed 11,748 An-46

droid apps using cryptography-related application interfaces (Crypto APIs) and found 88%47

of them violated at least one basic cryptography rule. Chatzikonstantinou et al. [12] reached48

a similar conclusion by analyzing apps manually and dynamically. In 2017, VeraCode listed49

insecure uses of cryptography as the second-most prevalent application-security issue right50

after information leakage [11]. Such pervasive insecure use of Crypto APIs leads to dev-51

astating vulnerabilities such as data breaches in a large number of applications. Rasthofer52

et al. [31] showed that virtually all smartphone apps that rely on cloud services use hard-53

coded keys. A simple decompilation gives adversaries access to those keys and to all data54

that these apps store in the cloud.55

Nadi et al. [27] were the first to investigate why developers often struggle to use56

Crypto APIs. The authors conducted four studies, two of which survey Java developers57

familiar with the Java Crypto APIs. The majority of participants (65%) found their re-58

spective Crypto APIs hard to use. When asked why, participants mentioned the API level59

of abstraction, insufficient documentation without examples, and an API design that makes60

it difficult to understand how to properly use the API. A potential long-term solution is to61

redesign the APIs such that they provide an easy-to-use interface for developers that is se-62

cure by default. However, it remains crucial to detect and fix the existing insecure API uses.63

When asked about what would simplify their API usage, participants wished they had tools64

that help them automatically detect misuses and suggest possible fixes [27]. Unfortunately,65

approaches based solely on specification inference and anomaly detection [34] are not viable66

for Crypto APIs, because—as elaborated above—most uses of Crypto APIs are insecure.67

Previous work has tried to detect misuses of Crypto APIs through static analysis. While68

this is a step in the right direction, existing approaches are insufficient for several reasons.69

First, these approaches implement mostly lightweight syntactic checks, which yield fast70

analysis times at the cost of exposing a high number of false negatives. Therefore, such71

analyses fail to warn about many insecure (especially non-trivial) uses of cryptography. For72

instance, applications using password-based encryption commonly do not clear passwords73

from heap memory and instead rely on garbage collection to free the respective memory74

space. Moreover, existing tools cannot easily be extended to cover those rules; instead they75

have cryptography-specific usage rules hard coded. The Java Cryptography Architecture76

(JCA), the primary cryptography API for Java applications [27], offers a plugin design that77

enables different providers to offer different crypto implementations through the same API,78

often imposing slightly different usage requirements on their clients. Hard-coded rules can79

hardly possibly reflect this diversity.80

In this paper, we present CrySL, a definition language that enables cryptography experts81

to specify the secure usage of their Crypto APIs in a lightweight special-purpose syntax. We82

also present a CrySL compiler that parses and type-checks CrySL rules and translates83

them into an efficient, yet precise flow-sensitive and context-sensitive static data-flow ana-84

lysis. The analysis automatically checks a given Java or Android app for compliance with85

the encoded CrySL rules. CrySL was specifically designed for (and with the help of) cryp-86
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tography experts. Our approach goes beyond methods that are useful for general validation87

of API usage (e.g., typestate analysis [3, 7, 28, 8] and data-flow checks [2, 5]) by enabling88

the expression of domain-specific constraints related to cryptographic algorithms and their89

parameters.90

To evaluate CrySL, we built the most comprehensive rule set available for the JCA91

classes and interfaces to date, and encoded it in CrySL. We then used the generated static92

analysis CogniCryptsast to scan 10,000 Android apps. We have also modelled the existing93

hard-coded rules by Egele et al. [13] in CrySL and compared the findings of the generated94

static analysis (CogniCryptcl) to those of CogniCryptsast. Our more comprehensive rule95

set reports 3× more violations, most of which are true warnings. With such comprehensive96

rules, CogniCryptsast finds at least one misuse in 95% of the apps. CogniCryptsast is97

also highly efficient: for more than 75% of the apps, the analysis finishes in under 3 minutes98

per app, where most of the time is spent in Android-specific call graph construction.99

In summary, this paper presents the following contributions:100

We introduce CrySL, a definition language to specify correct usages of Crypto APIs.101

We encode a comprehensive specification of correct usages of the JCA in CrySL.102

We present a CrySL compiler that translates CrySL rules into a static analysis to find103

violations in a given Java or Android app.104

We empirically evaluate CogniCryptsast on 10,000 Android apps.105

We have integrated CogniCryptsast into crypto assistant CogniCrypt [20] and have106

open-sourced our implementation and artifacts on GitHub. CogniCryptsast is available107

at https://github.com/CROSSINGTUD/CryptoAnalysis. The latest version of the CrySL108

rules for the JCA can be accessed at https://github.com/CROSSINGTUD/Crypto-API-Rules.109

110

2 Related Work111

Before we discuss the details of our approach, we contrast it with the following related lines112

of work: approaches for specifying API (mis)uses, approaches for inferring API specifica-113

tions, and previous approaches for detecting misuses of security APIs. Our review of these114

approaches shows that existing specification languages are not optimally suited for defining115

misuses of Crypto APIs. Additionally, automated inference of correct uses of Crypto APIs is116

hard to achieve, and existing tools for detecting misuses of Crypto APIs are limited mainly117

because they have hard-coded rule sets, and support for the most part lightweight syntactic118

analyses.119

2.1 Languages for Specifying and Checking API Properties120

There is a significant body of research on textual specification languages that ensure API121

properties by means of static data-flow analysis. Tracematches [3] were designed to check122

typestate properties defined by regular expressions over runtime objects. Bodden et al. [8, 10]123

as well as Naeem and Lhoták [28] present algorithms to (partially) evaluate state matches124

prior to the program execution, using static analysis.125

Martin et al. [24] present Program Query Language (PQL) that enables a developer to126

specify patterns of event sequences that constitute potentially defective behaviour. A dy-127

namic analysis (i.e., tracematches optimized by a static pre-analysis) matches the patterns128

against a given program run. A pattern may include a fix that is applied to each match129
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by dynamic instrumentation. PQL has been applied to detecting security-related vulnerab-130

ilities such as memory leaks [24], SQL injection and cross-site scripting [23]. Compared to131

tracematches, PQL captures a greater variety of pattern specifications, at the disadvantage132

of using only flow-insensitive static optimizations. PQL serves as the main inspiration for133

the CrySL syntax. Other languages that pursue similar goals include PTQL [16], PDL [26],134

and TS4J [9].135

We investigated tracematches and PQL in detail, yet found them insufficiently equipped136

for the task at hand. First, both systems follow a black-list approach by defining and137

finding incorrect program behaviour. We initially followed this approach for crypto-usage138

mistakes but quickly discovered that it would lead to long, repetitive, and convoluted139

misuse-definitions. Consequently, CrySL defines desired behaviour, which in the case of140

Crypto APIs leads to more compact specifications. Second, the above languages are general-141

purpose languages for bug finding, which causes them to miss features essential to define142

secure usages of Crypto APIs in particular. The strong focus of CrySL on cryptography143

allows us to cover a greater portion of cryptography-related problems in CrySL compared144

to other languages, while at the same time keeping CrySL relatively simple. Third, the145

CrySL compiler generates state-of-the-art static analyses that were shown to have better146

performance and precision than other approaches [37], lowering the threat of false warnings.147

2.2 Inference/Mining of API-usage specifications148

As an alternative to specifying API-usage properties manually, one can attempt to infer149

them from existing program code. Robillard et al. [33] surveyed over 60 approaches to API150

property inference. As this survey shows, however, all but two of the surveyed approaches151

infer patterns from client code (i.e., from applications that use the API in question). When152

it comes to Crypto APIs, however, past studies have shown that the majority of existing153

usages of those APIs is, in fact, insecure [13, 12, 35]. Another idea that appears sensible at154

first sight is to infer correct usage of Crypto APIs from posts on developer portals such as155

StackOverflow. However, recent studies show that the “solutions” posted there often include156

insecure code [1].157

In result, one can only conclude that automated mining of API-usage specifications is158

very challenging for Crypto APIs, if it is possible at all. In the future, we plan to investigate159

a semi-automated approach in which we use automated inference to infer at least partial160

specifications, but directly in CrySL, that security experts can then further correct and161

complete by hand.162

2.3 Detecting Misuses of Security APIs163

Only few previous approaches specifically address the detection of misuses of security APIs.164

CryptoLint [13] performs a lightweight syntactic analysis to detect violations of exactly165

six hard-coded usage rules for the JCA in Android apps. Those six rules, while important166

to obey for security, resemble only a tiny fraction of the rule set we provide in this work. It167

is also hard to specify and validate new rules using CryptoLint, because they would have168

to be hard-coded. Unlike CryptoLint, CrySL is designed to allow crypto experts to also169

express comprehensive and complex rules with ease. In Section 8, we extensively compare170

our tool CogniCryptsast to CryptoLint.171

Another tool that finds misuses of Crypto APIs is Crypto Misuse Analyzer (CMA) [35].172

Similar to CryptoLint, CMA’s rules are hard-coded, and its static analysis is rather basic.173
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1 SecretKeyGenerator kG = KeyGenerator . getInstance ("AES");
2 kG.init (128);
3 SecretKey cipherKey = kG. generateKey ();
4
5 String plaintextMSG = getMessage ();
6 Cipher ciph = Cipher . getInstance ("AES/GCM");
7 ciph.init( Cipher . ENCRYPT_MODE , cipherKey );
8 byte [] cipherText = ciph. doFinal ( plaintextMSG . getBytes ("UTF -8"));

Figure 1 An example illustrating the use of javax.crypto.KeyGenerator to implement data
encryption in Java.

Many of CMA’s hard-coded rules are also contained in the CrySL rule set that we provide.174

Unlike CogniCryptsast, CMA has been evaluated on a small dataset of only 45 apps.175

Chatzikonstantinou et al. [12] manually identified misuses of Crypto APIs in 49 apps176

and then verified their findings using a dynamic checker. All three studies concluded that177

at least 88% of the studied apps misuse at least one Crypto API.178

None of the previous approaches facilitates rule creation by means of a higher-level179

specification language. Instead, the rules are hard-coded into each tool, making it hard for180

non-experts in static analysis to extend or alter the rule set, and impossible to share rules181

among tools. Moreover, such hard-coded rules are quite restricted, causing the tools to have182

a very low recall (i.e., missing many actual API misuses). CrySL, on the other hand, due183

to its Java-like syntax, enables cryptography experts to easily define new rules. The CrySL184

compiler then automatically transforms those rules into appropriate, highly-precise static-185

analysis checks. By defining crypto-usage rules in CrySL instead of hard-coding them, one186

also makes those rules reusable in different contexts.187

3 An Example of a Secure Usage of Crypto APIs188

Throughout the paper, we will use the code example in Figure 1 to motivate the language189

features in CrySL. The code in this figure constitutes an API usage that according to the190

current state of cryptography research can be considered secure. Lines 1–3 generate a 128-191

bit secret key to use with the encryption algorithm AES. Lines 5–7 use that key to initialize192

a Java Cipher object that encrypts plaintextMSG. Since AES encrypts plaintext block by193

block, it must be configured to use one of several modes of operation. The mode of operation194

determines how to encrypt a block based on the encryption of the preceding block(s). Line 6195

configures Cipher to use the Galois/Counter Mode (GCM) of operation [25].196

Although the code example may look straightforward, a number of subtle alterations197

to the code would render the encryption non-functional or even insecure. First, both198

KeyGenerator and Cipher only support a limited choice of encryption algorithms. If the199

developer passes an unsupported algorithm to either getInstance methods, the respective200

line will throw a runtime exception. Similarly, the design of the APIs separates the classes201

for key generation and encryption. Therefore, the developer needs to make sure they pass the202

same algorithm (here "AES") to the getInstance methods of KeyGenerator and Cipher.203

If the developer does not configure the algorithms as such, the generated key will not fit204

the encryption algorithm, and the encryption will fail by throwing a runtime exception.205

None of the existing tools discussed in Section 2.3 are capable of detecting such functional206

misuses. Moreover, some supported algorithms are no longer considered secure (e.g., DES207

or AES/ECB [15]). If the developer selects such an algorithm, the program will still run208

to completion, but the resulting encryption could easily be broken by attackers. To make209

ECOOP 2018
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METHOD :=
methname(PARAMETERS)

PARAMETERS :=
varname , PARAMETERS
varname

TYPES :=
QualifiedClassName , TYPES
TYPE

CONSTANTLIST :=
constant , CONSTANTLIST
constant

AGGREGATE :=
label | AGGREGATE
label ;

EVENT :=
AGGREGATE
label : METHOD
label : varname = METHOD A: B = C(D) — a single event with

label A consisting of method C, its
parameter D, and return object B

PREDICATE :=
predname(PARAMETERS)
predname(PARAMETERS) after EVENT

PREDICATES :=
PREDICATE ; PREDICATES

Figure 2 Basic CrySL syntax elements.

things worse, the JCA, the most popular API, offers the insecure ECB mode by default (i.e.,210

when developers request only "AES" without specifying a mode of operation explicitly).211

To use Crypto APIs properly, developers generally have to take into consideration two212

dimensions of correctness: (1) the functional correctness that allows the program to run213

and terminate successfully and (2) the provided security guarantees. Prior empirical studies214

have shown that developers, for instance by looking for code examples on web portals such215

as StackOverflow [14], frequently succeed in obtaining functionally correct code. However,216

they often fail to obtain a secure use of Crypto APIs, primarily because most code examples217

on those web portals provide “solutions” that themselves are insecure [14].218
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SPEC TYPE;

OBJECTS
OBJECTS :=

OBJECT ; OBJECTS A ; B — a list of objects A and B
OBJECT ; A — a list of the single object A

OBJECT :=
TYPE varname A B — object B of Java type A

EVENTS
EVENTS :=

EVENT ; EVENTS A ; B — a list of events A and B
EVENT ; A — a list of the single event A

FORBIDDEN
FMETHODS :=

FMETHOD ; FMETHODS A ; B — a list of forbidden A and B
FMETHOD ; A — a list of the single forbidden method A

FMETHOD :=
methname(TYPES) => label A(B) => C — a forbidden method named A

with parameter of Type B and replacement C

ORDER
USAGEPATTERN :=

USAGEPATTERN , USAGEPATTERN A , B — A followed by B
USAGEPATTERN | USAGEPATTERN A | B — A or B
USAGEPATTERN ? A? — A is optional
USAGEPATTERN * A* — 0 or more As
USAGEPATTERN + A+ — 1 or more As
( USAGEPATTERN ) (A) — grouping
AGGREGATE

CONSTRAINTS
CONSTRAINTS :=

CONSTRAINT ; CONSTRAINTS
CONSTRAINT => CONSTRAINT A => B — A implies B
CONSTRAINT

CONSTRAINT :=
varname in { CONSTANTLIST } A in {1, 2} — A should be 1 or 2

REQUIRES
REQ_PREDICATES :=

PREDICATES

ENSURES
ENS_PREDICATES :=

PREDICATES

NEGATES
NEG_PREDICATES :=

PREDICATES

Figure 3 CrySL rule syntax in Extended Backus-Naur Form (EBNF) [6].

ECOOP 2018
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4 CrySL Syntax219

As we discuss in Section 2.2, mining API properties for Crypto APIs is extremely challenging,220

if possible at all, due to the overwhelming number of misuses one finds in actual applica-221

tions. Hence, instead of relying on the security of existing usages and examples, we here222

follow an approach in which cryptography experts define correct API usages manually in a223

special-purpose language, CrySL. In this section, we give an overview of the CrySL syntax224

elements. A formal treatment of the CrySL semantics is presented in Section 5. Figure 2225

presents the basic syntactic elements of CrySL, and Figure 3 presents the full syntax for226

CrySL rules. Figure 4 shows an abbreviated CrySL rule for javax.crypto.KeyGenerator.227

4.1 Design Decisions Behind CrySL228

We designed CrySL specifically with crypto experts in mind, and in fact with the help of229

crypto experts. This work was carried out in the context of a large collaborative research230

center than involves more than a dozen research groups involved in cryptography research.231

As a result of the domain research conducted within this center, we made the following232

design decisions when designing CrySL.233

White listing. During our domain analysis, we observed that, for the given Crypto APIs,234

there are many ways they can be misused, but only a few that correspond to correct235

and secure usages. To obtain concise usage specifications, we decided to design CrySL236

to use white listing in most places (i.e., defining secure uses explicitly, while implicitly237

assuming all deviations from this norm to be insecure).238

Typestate and data flow. When reviewing potential misuses, we observed that many of239

them are related to data flows and typestate properties [38]. Such misuses occur because240

developers call the wrong methods on the API objects at hand, call them in an incorrect241

order or miss to call the methods entirely. Data-flow properties are important when242

reasoning about how certain data is being used (e.g., passwords, keys or seed material).243

String and integer constraints. In the crypto domain, string and integer parameters are244

ubiquitously used to select or parametrize specific cryptography algorithms. Strings are245

widely used, because they are easily recognizable, configurable, and exchangeable. How-246

ever, specifying an incorrect string parameter may result in the selection of an insecure247

algorithm or algorithm combination. Many APIs also use strings for user credentials.248

Those credentials, passwords in particular, should not be hard-coded into the program’s249

bytecode. A precise specification of correct crypto uses must therefore comprise con-250

straints over string and integer parameters.251

Tool-independent semantics. We equipped CrySL with a tool-independent semantics (to252

be presented in Section 5). In the future, those semantics will enable us and others to253

build other or more effective tools for working with CrySL. For instance, in addition to254

the static analysis the CrySL compiler derives from the semantics within this paper, we255

are currently working on a dynamic checker to identify and mitigate CrySL violations256

at runtime.257

Our desire to allow crypto experts to easily express secure crypto uses also precludes us258

from using existing generic definition languages such as Datalog. Such languages, or minor259

extensions thereof, might have sufficient expressive power. However, following discussions260

with crypto developers, we had to acknowledge that they are often unfamiliar with those261

languages’ concepts. CrySL thus deliberately only includes concepts familiar to those de-262
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velopers, hence supporting an easy understanding. We next explain the elements that a263

typical CrySL rule comprises.264

4.2 Mandatory Sections in a CrySL Rule265

To provide simple and reusable constructs, a CrySL rule is defined on the level of individual266

classes. Therefore, the rule starts off by stating the class that it is defined for.267

In Figure 4, the OBJECTS section defines three objects1 to be used in later sections of268

the rule (e.g., the object algorithm of type String). These objects are typically used as269

parameters or return values in the EVENTS section.270

The EVENTS section defines all methods that may contribute to the successful use of a271

KeyGenerator object, including two method event patterns (Lines 17–18). The first pat-272

tern matches calls to getInstance(String algorithm), but the second pattern actually273

matches calls to two overloaded getInstance methods:274

getInstance(String algorithm, Provider provider)275

getInstance(String algorithm, String provider)276

The first parameter of all three methods is a String object whose value states the algorithm277

that the key should be generated for. This parameter is represented by the previously defined278

algorithm object. Two of the getInstance methods are overloaded with two parameters.279

Since we do not need to specify the second parameter in either method, we substitute it with280

an underscore that serves as a placeholder in one combined pattern definition (Line 18). This281

concept of method event patterns is similar to pointcuts in aspect-oriented programming282

languages such as AspectJ [19]. For CrySL, we resort to a more lightweight and restricted283

syntax as we found full-fledged pointcuts to be unnecessarily complex. Subsequently, the284

rule defines patterns for the various init methods that set the proper parameter values285

(e.g., keysize) and a generateKey method that completes the key generation and returns286

the generated key.287

Line 30 defines a usage pattern for KeyGenerator using the keyword ORDER. The usage288

pattern is a regular expression of method event patterns that are defined in EVENTS. Al-289

though each method pattern defines a label to simplify referencing related events (e.g., g1,290

i2, and GenKey), it is tedious and error-prone to require listing all those labels again in291

the ORDER section. Therefore, CrySL allows defining aggregates. An aggregate represents292

a disjunction of multiple patterns by means of their labels. Line 19 defines an aggregate293

GetInstance that groups the two getInstance patterns. Using aggregates, the usage pat-294

tern for KeyGenerator reads: there must be exactly one call to one of the getInstance295

methods, optionally followed by a call to one of the init methods, and finally a call to296

generateKey.297

Following the keyword CONSTRAINTS, Lines 33–35 define the constraints for objects298

defined under OBJECTS and used as parameters or return values in the EVENTS section. In299

the abbreviated CrySL rule in Figure 4, the first constraint limits the value of algorithm to300

"AES" or "Blowfish". For each algorithm, there is one constraint that restricts the possible301

values of keysize.302

The ENSURES section is the final mandatory construct in a CrySL rule. It allows CrySL303

to support rely/guarantee reasoning. The section specifies predicates to govern interac-304

tions between different classes. For example, a Cipher object uses a key obtained from a305

1 As the example shows, in CrySL, OBJECTS also comprise primitive values.

ECOOP 2018
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9 SPEC javax. crypto . KeyGenerator
10
11 OBJECTS
12 java.lang. String algorithm ;
13 int keySize ;
14 javax. crypto . SecretKey key;
15
16 EVENTS
17 g1: getInstance ( algorithm );
18 g2: getInstance (algorithm , _);
19 GetInstance := g1 | g2;
20
21 i1: init( keySize );
22 i2: init(keySize , _);
23 i3: init(_);
24 i4: init(_, _);
25 Init := i1 | i2 | i3 | i4;
26
27 GenKey : key = generateKey ();
28
29 ORDER
30 GetInstance , Init?, GenKey
31
32 CONSTRAINTS
33 algorithm in {"AES", " Blowfish "};
34 algorithm in {"AES"} => keySize in {128 , 192, 256};
35 algorithm in {" Blowfish "} => keySize in {128 , 192, 256, 320, 384,

448};
36
37 ENSURES
38 generatedKey [key , algorithm ];

Figure 4 CrySL rule for using javax.crypto.KeyGenerator.

39 SPEC javax. crypto . Cipher
40
41 OBJECTS
42 int encmode ;
43 java. security .Key key;
44 java.lang. String transformation ;
45 ...
46
47 EVENTS
48 g1: getInstance ( transformation );
49 ...
50 i1: init(encmode , key);
51
52 ...
53
54 REQUIRES
55 generatedKey [key , alg( transformation )];
56
57 ENSURES
58 encrypted [cipherText , plainText ];

Figure 5 CrySL rule for using javax.crypto.Cipher.
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Table 1 Helper Functions in CrySL.

Function Purpose

alg(transformation) Extract algorithm/mode/padding
from transformation parameter
of Cipher.getInstance call.

mode(transformation)
padding(transformation)
length(object) Retrieve length of object
nevertypeof(object, type) Forbid object to be of type
callTo(method) Require call to method
noCallTo(method) Forbid call to method

KeyGenerator. The ENSURES section specifies what a class guarantees, presuming that the306

object is used properly. For example, the KeyGenerator CrySL rule in Figure 4 ends with307

the definition of a predicate generatedKey with the generated key object and its corres-308

ponding algorithm as parameters. This predicate may be required (i.e., relied on) by the309

rule for Cipher or other classes that make use of such a key through the optional element310

of the REQUIRES block as illustrated in Figure 5.311

To obtain the required expressiveness, we have further enriched CrySL with some312

simple built-in auxiliary functions. For example, in Figure 5, the function alg extracts313

the encryption algorithm from transformation (Line 55). This function is necessary, be-314

cause generatedKey expects only the encryption algorithm as its second parameter, but315

transformation optionally specifies also the mode of operation and padding scheme (e.g.,316

Line 6 in Figure 1). For instance, alg would extract "AES" from "AES/GCM" or from317

"AES/CBC/PKCS5Padding". Table Table 1 lists all of these functions. Note the last two318

functions callTo and noCallTo may seem redundant to the ORDER and FORBIDDEN (see Sec-319

tion 4.3) sections because they appear to fulfil the same purpose of requiring or forbidding320

certain method calls. However, these two functions go beyond that because they allow for321

the specification of conditional forbidden and required methods.322

4.3 Optional Sections in a CrySL Rule323

A CrySL rule may contain optional sections that we showcase through the CrySL rule for324

PBEKeySpec. In Figure 6, the FORBIDDEN section specifies methods that must not be called,325

because calling them is always insecure. PBEKeySpec derives cryptographic keys from a326

user-given password. For security reasons, it is recommended to use a cryptographic salt for327

this operation. However, the constructor PBEKeySpec(char[] password) does not allow328

for a salt to be passed, and the implementation in the default provider does not generate329

one. Therefore, this constructor should not be called, and any call to it should be flagged.330

Consequently, the CrySL rule for PBEKeySpec lists it in the FORBIDDEN section (Line 72).331

In the case of PBEKeySpec, there is an alternative secure constructor (Line 68). CrySL332

allows one to specify an alternative method event pattern using the arrow notation shown333

in Line 72. With FORBIDDEN events, CrySL’s language design deviates a bit from its usual334

white-listing approach. We made this choice deliberately to keep specifications concise.335

Without explicit FORBIDDEN events, one would have to simulate their effect by explicitly336

listing all events defined on a given type except the one that ought to be forbidden. This337

would significantly increase the size of CrySL specifications.338

In general, predicates are generated for a particular usage whenever it does not use any339

FORBIDDEN events, its regular EVENTS follow the usage pattern defined in the ORDER section,340
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59 SPEC javax. crypto .spec. PBEKeySpec
60
61 OBJECTS
62 char [] pw;
63 byte [] salt;
64 int it;
65 int keylength ;
66
67 EVENTS
68 create : PBEKeySpec (pw , salt , it , keylength );
69 clear: clearPassword ();
70
71 FORBIDDEN
72 PBEKeySpec (char []) => create ;
73 PBEKeySpec (char [], byte [], int) => create ;
74
75 ORDER
76 create , clear
77 ...
78
79 ENSURES
80 keyspec [this , keylength ] after create ;
81
82 NEGATES
83 keyspec [this , _];

Figure 6 CrySL rule for javax.crypto.spec.PBEKeySpec.

and if the usage fulfils all constraints in the CONSTRAINTS section of its corresponding rule.341

PBEKeySpec, however, deviates from that standard. The class contains a constructor that342

receives a user-given password, but the method clearPassword deletes that password later,343

making it no longer accessible to other objects that might use the key-spec. Consequently, a344

PBEKeySpec object fulfils its role after calling the constructor but only until clearPassword345

is called.346

To model this usage precisely, CrySL allows one to specify a method-event pattern using347

the keyword after (Line 80). If the respective method is called, a predicate is generated.348

Furthermore, CrySL supports invalidating an existing predicate in the NEGATES section349

(Line 83). The last call to be made on a PBEKeySpec object is the call to clearPassword350

(Line 76). Additionally, the rule lists the predicate keySpec[this,_] within the NEGATES351

block. Semantically, the negation of the predicates means the following. A final event in the352

ORDER pattern, in this case a call to clearPassword, invalidates the previously generated353

keyspec predicate(s) for this. Section 5.2.2 presents the formal semantics of predicates.354

5 CrySL Formal Semantics355

5.1 Basic Definitions356

A CrySL rule consists of several sections. The OBJECTS section comprises a set of typed357

variable declarations V. In the syntax in Figure 3, each declaration v ∈ V is represented by358

the syntax element TYPE varname. M is the set of all resolved method signatures, where359

each signature includes the method name and argument types. The EVENTS section contains360

elements of the form (m, v), where m ∈ M and v ∈ V∗. We denote the set of all methods361

referenced in EVENTS by M . The FORBIDDEN section lists a set of methods from M denoted362

by their signatures; forbidden events cannot bind any variables. The ORDER section specifies363
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the usage pattern in terms of a regular expression of labels or aggregates that are in M ,364

i.e., over the defined EVENTS. We express this regular expression formally by the equivalent365

non-deterministic finite automaton (Q,M, δ, q0, F ) over the alphabet M , where Q is a set of366

states, q0 is its initial state, F is the set of accepting states, and δ : Q×M → P(Q) is the367

state transition function.368

The CONSTRAINTS section is a subset of C := (V → O ∪ V) → B (i.e., each constraint is369

a boolean function), where the argument is itself a function that maps variable names in V370

to objects in O or values with primitive types in V.371

A CrySL rule is a tuple (T,F ,A, C), where T is the reference type specified by the SPEC372

keyword, F ⊆ M is the set of forbidden events, A = (Q,M, δ, q0, F ) ∈ A is the automaton373

induced by the regular expression of the ORDER section, and C ⊆ C is the set of CONSTRAINTS374

that the rule lists. We refer to the set of all CrySL rules as SPEC.375

Our formal definition of a CrySL rule does not contain the sections REQUIRES, ENSURES,376

and NEGATES. Those sections reason about the interaction of predicates, whose formal treat-377

ment we discuss in Section 5.2.2.378

5.2 Runtime Semantics379

Each CrySL rule encodes usage constraints to be validated for all runtime objects of the380

reference type T stated in its SPEC section. We define the semantics of a CrySL rule in381

terms of an evaluation over a runtime program trace that records all relevant runtime objects382

and values, as well as all events specified within the rule.383

I Definition 1 (Event). Let O be the set of all runtime objects and V the set of all primitive-384

typed runtime values. An event is a tuple (m, e) ∈ E of a method signature m ∈ M and385

an environment e (i.e., a mapping V→ O ∪ V of the parameter variable names to concrete386

runtime objects and values). If the environment e holds a concrete object for the this value,387

then it is called the event’s base object.388

I Definition 2 (Runtime Trace). A runtime trace τ ∈ E∗ is a finite sequence of events τ0 . . . τn.389

I Definition 3 (Object Trace). For any τ ∈ E∗, a subsequence τi1 ...τin
is called an object390

trace if i1 < ... < in and all base objects of τij are identical.391

Lines 1–2 in Figure 1 result in an object trace that has two events:392

(m0, {algorithm 7→ "AES", this 7→ okg})393

(m1, {algorithm 7→ "AES", keySize 7→ 128, this 7→ okg})394
395

where m0 and m1 are the signatures of the getInstance and init methods of the396

KeyGenerator class. For static factory methods such as getInstance, we assume that this397

is bound to the returned object. We use okg to denote that the object o is bound to the398

variable kG at runtime.399

The decision whether a runtime trace τ satisfies a set of CrySL rules involves two400

steps. In the first step, individual object traces are evaluated independently of one another.401

Yet, different runtime objects may still interact with each other. CrySL rules capture this402

interaction by means of rely/guarantee reasoning, implemented through predicates that a403

rule ensures on a runtime object. These interactions between different objects are checked404

against the specification in a second step by considering the predicates they require and405

ensure. We first discuss individual object traces in more detail.406
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sato : E∗ × SPEC→ B
[τo, (T o,Fo,Ao, Co)]→ satoF (τo,Fo) ∧

satoA(τo,Ao) ∧
satoC(τo, Co)

Figure 7 The function sato verifies an individual object trace for the object o.

0start 1 2 3
GetInstance Init GenKey

GenKey

Figure 8 The state machine for the CrySL rule in Figure 4 (without an implicit error state).

5.2.1 Individual Object Traces407

The sections FORBIDDEN, ORDER and CONSTRAINTS are evaluated on individual object traces.408

Figure 7 defines the function sato that is true if and only if a given trace τo for a runtime409

object o satisfies its CrySL rule. This definition of sato ignores interactions with other410

object traces. We will discuss later how such interactions are resolved. In the following, we411

assume the trace τo = τo
0 , ..., τ

o
n, where τo

i = (mo
i , e

o
i ). To illustrate the computation, we will412

also refer to our example from Figure 1 and the involved rules of KeyGenerator (Figure 4)413

and Cipher (Figure 5). The function sato is composed of three sub-functions:414

5.2.1.1 Forbidden Events (satoF )415

Given a trace τo and a set of forbidden events F , sato ensures that none of the trace events
is forbidden.

satoF (τo,Fo) :=
∧

i=0...n

mo
i /∈ Fo

The CrySL rule for KeyGenerator does not list any forbidden methods. Hence, sato416

trivially evaluates to true for object kG in Figure 1.417

5.2.1.2 Order Errors (satoA)418

The second function checks that the trace object is used in compliance with the specified
usage pattern (i.e., all methods in the rule are invoked in no other than the specified order).
Formally, the sequence of method signatures of the object trace mo := mo

0, . . . ,m
o
n (i.e.,

the projection onto the method signatures) must be an element of the language L(Ao) that
the automaton Ao = (Q,M, δ, q0, F ) of the ORDER section induces. By definition of language
containment, after the last observed signature of the tracemo

n, the corresponding state of the
automaton must be an accepting state s ∈ F . This definition ignores any variable bindings.
They are evaluated in the second step.

satoA(τo,Ao) := mo ∈ L(Ao)

419
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Figure 8 displays the automaton created for KeyGenerator using the aggregate names as420

labels. State 0 is the initial state, and state 3 is the only accepting state. Following the code421

in Figure 1 for the object kG of type KeyGenerator, the automaton transitions from state 0422

to 1 at the call to getInstance (Line 1). With the calls to init (Line 2) and generateKey423

(Line 3), the automaton first moves to state 2 and finally to state 3. Therefore, function424

satoA evaluates to true for this example.425

5.2.1.3 Constraints (satoC)426

The validity check of the constraints ensures that all constraints of C are satisfied. This
check requires the sequence of environments (eo

0, ..., e
o
n) of the trace τo. All objects that are

bound to the variables along the trace must satisfy the constraints of the rule.

satoC(τo, Co) :=
∧

c∈Co,i=0...n

c(eo
i )

To compute satoC for the KeyGenerator object kG at the call to getInstance in Line 1,427

only the first constraint has to be checked. This is because the corresponding environment428

eo
1 holds a value only for algorithm, and the other two constraints reference other vari-429

able names. The evaluation function c returns true if algorithm assumes either “AES” or430

“Blowfish” as its value, which is the case in Figure 1. The computation of satoC for Lines 2–3431

works similarly.432

5.2.2 Interaction of Object Traces433

To define interactions between individual object traces, the REQUIRES, ENSURES, and NEGATES434

sections allow individual CrySL rules to reference one another. For a rule for one object to435

hold at any given point in an execution trace, all predicates that its REQUIRES section lists436

must have been both previously ensured (by other specifications) and not negated. Predicates437

are ensured (i.e., generated) and negated (i.e., killed) by certain events. Formally, a predicate438

is an element of P := {(name, args) | args ∈ V∗} (i.e., a pair of a predicate name and a439

sequence of variable names). Predicates are generated in specific states. Each CrySL rule440

induces a function G : S → P(P) that maps each state of its automaton to the predicate(s)441

that the state generates.442

The predicates listed in the ENSURES and NEGATES sections may be followed by the term443

after n, where n is a method event pattern label or aggregate. The states that follow444

the event or aggregate n in the automaton generate the respective predicate. If the term445

after is not used for a predicate, the final states of the automaton generate (or negate) that446

predicate (i.e., we interpret it as after n, where n is an event that leads to a final state).447

In addition to states selected as predicate-generating, the predicate is also ensured if the448

object resides in any state that transitively follows the selected state, unless the states are449

explicitly (de-)selected for the same predicate within the NEGATES section. At any state that450

generates a predicate, the event driving the automaton into this state binds the variable451

names to the values that the specification previously collected along its object trace.452

Formally, an event no = (mo, eo) ∈ E of a rule r and for an object o ensures a predicate453

p = (predName, args) ∈ P on the objects eo ∈ O if:454

1. The method mo of the event leads to a state s of the automaton that generates the455

predicate p (i.e., p ∈ G(s)).456

2. The runtime trace of the event’s base object o satisfies the function sato.457
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84 boolean option1 = isPrime (66); // some non - trivial predicate returning
false

85 byte [] input = " Message ". getBytes ("UTF -8");
86
87 String alg = "SHA -256";
88 if ( option1 ) alg = "MD5";
89 MessageDigest md = MessageDigest . getInstance (alg);
90
91 if (input.size () > 0) md. update (input);
92 byte [] digest = md. digest ();

Figure 9 An example illustrating the usage of java.security.MessageDigest in Java.

3. All relevant REQUIRES predicates of the rule are satisfied at execution of event no.458

For the KeyGeneraor object kG in Figure 1, a predicate is generated at Line 7 because (1)459

its automaton transitions to its only predicate-generating state (state 3 of the automaton460

in Figure 8), (2) sato evaluates to true as previously shown for each subfunction and (3) the461

corresponding CrySL rule does not require any predicates.462

6 Detecting Misuses of Crypto APIs463

To detect all possible rule violations, our tool CogniCryptsast approximates the evaluation464

function sato using a static data-flow analysis. In a security context, it is a requirement to465

detect as many misuses as possible. One drawback is the potential for false warnings that466

originate from over-approximations any static analysis requires. In the following, we use the467

example in Figure 9 to illustrate why and where approximations are required. We will show468

later in our evaluation that, in practice, our analysis is highly precise and that the chosen469

approximations rarely actually lead to false warnings.470

The code example in Figure 9 implements a hashing operation. By default, the code471

uses SHA-256. However, if the condition option1 evaluates to true, MD5 is chosen instead472

(Line 88). The CrySL rule for MessageDigest, displayed in Figure 10, does not allow the473

usage of MD5 though, because it is no longer secure [15].474

The update operation is performed only on non-empty input (Line 91). Otherwise,475

the call to update is skipped and only the call to digest is executed, without any in-476

put. Although not strictly insecure, this usage does not comply with the CrySL rule for477

MessageDigest, because it leads to no content being hashed.478

To approximate satoF , the analysis must search for possible forbidden events by first479

constructing a call graph for the whole program under analysis. It then iterates through the480

graph to find calls to forbidden methods. Depending on the precision of the call graph, the481

analysis may find calls to forbidden methods that cannot be reached at runtime.482

The analysis represents each runtime object o by its allocation site. In our example,483

allocation sites are new expressions and calls to getInstance that return an object of a type484

for which a CrySL rule exists. For each such allocation site, the analysis approximates satoA485

by first creating a finite-state machine. CogniCryptsast then evaluates the state machine486

using a typestate analysis that abstracts runtime traces by program paths. The typestate487

analysis is path-insensitive, thus, at branch points, it assumes that both sides of the branch488

may execute. In our contrived example, this feature leads to a false positive: although489

the condition in Line 91 always evaluates to true, and the call to update is never actually490

skipped, the analysis considers that this may happen, and thus reports a rule violation.491
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93 SPEC java. security . MessageDigest
94
95 OBJECTS
96 java.lang. String algorithm ;
97 byte [] input;
98 int offset ;
99 int length ;

100 byte [] hash;
101 ...
102
103 EVENTS
104 g1: getInstance ( algorithm );
105 g2: getInstance (algorithm , _);
106 Gets := g1 | g2;
107 ...
108 Updates := ...;
109
110 d1: output = digest ();
111 d2: output = digest (input);
112 d3: digest (hash , offset , length );
113 Digests := d1 | d2 | d3;
114
115 r: reset ();
116
117 ORDER
118 Gets , (d2 | ( Updates +, Digests )), (r, (d2 | ( Updates +, Digests )))*
119
120 CONSTRAINTS
121 algorithm in {"SHA -256", "SHA -384", "SHA -512"};
122
123 ENSURES
124 digested [hash , ...];
125 digested [hash , input ];

Figure 10 CrySL rule for java.security.MessageDigest.
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To approximate satoC, we have extended the typestate analysis to also collect potential492

runtime values of variables along all program paths where an allocated object is used. The493

constraint solver first filters out all irrelevant constraints. A constraint is irrelevant if it refers494

to one or more variables that the typestate analysis has not encountered. In Figure 10, the495

rule only includes one internal constraint—on variable algorithm. If we add a new internal496

constraint to the rule about the variable offset, the constraint solver will filter it out as497

irrelevant when analyzing the code in Figure 9 because the only method this variable is498

associated with (digest labelled d3) is never called. The analysis distinguishes between499

never encountering a variable in the source code and not being able to extract the values of500

a variable. With the same rule and code snippet, if the analysis fails to extract the value501

for algorithm, the constraint evaluates to false. Collecting potential values of a variable502

over all possible program paths of an allocation site may lead to further imprecision. In503

our example, the analysis cannot statically rule out that algorithm may be MD5. The rule504

forbids the usage of MD5. Therefore, the analysis reports a misuse.505

Handling predicates in our analysis follows the formal description very closely. If sato506

evaluates to true for a given allocation site, the analysis checks whether all required pre-507

dicates for the allocation site have been ensured earlier in the program. In the trivial case,508

when no predicate is required, the analysis immediately ensures the predicate defined in the509

ENSURES section. The analysis constantly maintains a list of all ensured predicates, including510

the statements in the program that a given predicate can be ensured for. If the allocation511

site under analysis requires predicates from other allocation sites, the analysis consults the512

list of ensured predicates and checks whether the required predicate, with matching names513

and arguments, exists at the given statement. If the analysis finds all required predicates,514

it ensures the predicate(s) specified in the ENSURES section of the rule.515

7 Implementation516

We have implemented the CrySL compiler using Xtext [17], an open-source framework for517

developing domain-specific languages as well as the CrySL- parameterizable static analysis518

CogniCryptsast. We have further integrated CogniCryptsast with CogniCrypt [20], in519

which it replaces the original code-analysis component.520

7.1 CrySL521

Given the CrySL grammar, Xtext provides a parser, type checker, and syntax highlighter for522

the language. When supplied with a type-safe CrySL rule, Xtext outputs the corresponding523

AST, which is then used to generate the required static analysis.524

We developed CrySL rules for all relevant JCA classes in an iterative process. That is, we525

first worked through the JCA documentation to produce a set of rules and then refined these526

rules through selective discussions with cryptographers and searching security blogs and for-527

ums. In total, we have devised 23 rules covering classes ranging from key handling to digital528

signing. All rules define a usage pattern. Some classes (e.g. IvParameterSpec) contain529

one call to a constructor only, while others (e.g. Cipher) involve almost ten elements with530

several layers of nesting. Fifteen rules come with parameter constraints, eight of which con-531

tain limitations on cryptographic algorithms. The eight rules without parameter constraints532

are mostly related to classes whose purpose is to set up parameters for specific encryptions533

(e.g. GCMParameterSpec). All rules define at least one ENSURES predicate, while only eleven534

require predicates from other rules. Across all rules, we have only declared two methods535

forbidden. We do not find this low number surprising as such methods are always insecure536
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and should not at all be part of a security API. If at all, two forbidden methods is too high a537

number. All rules are available at https://github.com/CROSSINGTUD/Crypto-API-Rules.538

7.2 CogniCryptsast539

CogniCryptsast consists of several extensions to the program analysis framework Soot [39,540

21]. Soot transforms a given Java program into an intermediate representation that facilit-541

ates executing intra- and inter-procedural static analyses. The framework provides standard542

static analyses such as call-graph construction. Additionally, Soot can analyze a given An-543

droid app intra-procedurally. Further extensions by FlowDroid [5] enable the construction544

of Android-specific call graphs that are necessary to perform inter-procedural analysis.545

Validating the ORDER section in a CrySL rule requires solving the typestate check satoA.546

To this end, we use IDEal, a framework for efficient inter-procedural data-flow analysis [37],547

to instantiate a typestate analysis. The analysis defines the finite-state machine Ao to check548

against and the allocation sites to start the analysis from. From those allocation sites, IDEal
549

performs a flow-, field-, and context-sensitive typestate analysis.550

The constraints and the predicates require knowledge about objects and values associated551

with rule variables at given execution points in the program. The typestate analysis in552

CogniCryptsast extracts the primitive values and objects on-the-fly, where the latter are553

abstracted by allocation sites. When the typestate analysis encounters a call site that554

is referred to in an event definition, and the respective rule requires the object or value555

of an argument to the call, CogniCryptsast triggers an on-the-fly backward analysis to556

extract the objects or values that may participate in the call. This on-the-fly analysis557

yields comparatively high performance and scalability, because many of the arguments of558

interest are values of type String and Integer. Thus, using an on-demand computation559

avoids constant propagation of all strings and integers through the program. For the on-560

the-fly backward analysis, we extended the on-demand pointer analysis Boomerang [36]561

to propagate both allocation sites and primitive values. Once the typestate analysis is562

completed, and all required queries to Boomerang are computed, CogniCryptsast solves563

the internal constraints and predicates using our own custom-made solvers.564

CogniCryptsast may be operated as a standalone command line tool. This way, it takes565

a program as input and produces an error report detailing misuses and their locations. How-566

ever, we have further integrated CogniCryptsast into CogniCrypt [20]. CogniCrypt567

is a Eclipse plugin, which supports developers in using Crypto APIs by means of scenario-568

based code generation as well code analysis for Crypto APIs. In this context, CogniCrypt569

translates misuses found by CogniCryptsast into standard Eclipse error markers.570

8 Evaluation571

We evaluate our implementation CogniCryptsast using the following research questions:572

RQ1: What are the precision and recall of CogniCryptsast?573

RQ2: What types of misuses does CogniCryptsast find?574

RQ3: How fast does CogniCryptsast run?575

RQ4: How does CogniCryptsast compare to the state of the art?576

To answer these questions, we applied the generated static analysis CogniCryptsast577

to 10,000 Android apps from the AndroZoo dataset [4] using our full CrySL rule set for578

the JCA. We ran our experiments on a Debian virtual machine with sixteen cores and579

64 GB RAM. We chose apps that are available in the official Google Play Store and580
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received an update in 2017. This ensures that we report on the most up-to-date us-581

ages of Crypto APIs. We make available all artefacts at this Github repository: https:582

//github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts.583

8.1 Precision and Recall (RQ1)584

Setup585

To compute precision and recall, the first two authors manually checked 50 randomly selected586

apps from our dataset for typestate errors and violations of internal constraints. To collect587

this random sample, we implemented a Java program that generates random numbers using588

SecureRandom and retrieved the apps from the corresponding lines in the spreadsheet con-589

taining the results of analysing the 10,000 apps. We did not check for unsatisfied predicates590

or forbidden events, because these are hard to detect manually—while it may seem simple591

to check for calls to forbidden events, it is non-trivial to determine whether or not such592

calls reside in dead code. We compare the results of our manual analysis to those reported593

by CogniCryptsast. The goal of this evaluation is to compute precision and recall of the594

analysis implementation in CogniCryptsast, not the quality of our CrySL rules. We dis-595

cuss the latter in Section 8.4. Consequently, we define a false positive to be a warning that596

should not be reported according to the specified rule, irrespective of that rule’s semantic597

correctness. Similarly, a false negative would arise if CogniCryptsast missed to report a598

misuse that, according to the CrySL rule, does exist in the analyzed program.599

Results600

In the 50 apps we inspected, CogniCryptsast detects 228 usages of JCA classes. Table 2601

lists the misuses that CogniCryptsast finds (156 misuses in total). In particular, Cog-602

niCryptsast issues 27 typestate-related warnings, with only 2 false positives. Both arise603

because the analysis is path-insensitive (Section 6). We further found 4 false negatives that604

are caused by initializing a MessageDigest or a MAC object without completing the opera-605

tion. CogniCryptsast fails to find these typestate errors because the supporting off-the-606

shelf alias analysis Boomerang times out, causing CogniCryptsast to abort the typestate607

analysis without reporting a warning for the object at hand. A larger timeout or future608

improvements to the alias analysis Boomerang would avoid this problem.609

The automated analysis finds 129 constraint violations. We were able to confirm 110610

of them. In the other 19 cases, highly obfuscated code causes the analysis to fail to ex-611

tract possible runtime values statically. For such values, the constraint solver reports the612

corresponding constraint as violated. A better handling of such highly obfuscated code can613

be enabled by techniques complementary to ours. For instance, one could augment Cog-614

niCryptsast with the hybrid static/dynamic analysis Harvester [32]. We have also checked615

the apps for missed constraint violations (false negatives), but were unable to find any.616

617

RQ1: In our manual assessment, the typestate analysis achieves high precision (92.6%) and
recall (86.2%). The constraint resolution has a precision of 85.3% and a recall of 100%.

618

https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts
https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts
https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts
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Table 2 Correctness of CogniCryptsast warnings.

Total Warnings False Positives False Negatives

Typestate 27 2 4
Constraints 129 19 0

Total 156 21 4

8.2 Types of Misuses (RQ2)619

Setup620

We report findings obtained by analyzing all our 10,000 Android apps from AndroZoo [4].621

We then use the results of our manual analysis (Section 8.1) as a baseline to evaluate our622

findings on a large scale.623

CogniCryptsast detects the usage of at least one JCA class in 8,422 apps. Further624

investigation unveiled that many of these usages originate from the same common libraries625

included in the applications. To avoid counting the same crypto usages twice, and to pre-626

vent over-counting, we exclude usages within packages com.android, com.facebook.ads,627

com.google or com.unity3d from the analysis.628

Results629

Excluding the findings in common libraries, CogniCryptsast detects the usage of at least630

one JCA class in 4,349 apps (43% of the analyzed apps). Most of these apps (95%) contain at631

least one misuse. Across all apps, CogniCryptsast started its analysis for a total of 40,295632

allocation sites (i.e., abstract objects). Of these, a total of 20,426 individual object traces633

violate at least one part of the specified rule patterns. CogniCryptsast reports typestate634

errors (ORDER section in the rule) for 4,708 objects, and reports a total of 4,443 objects635

to have unsatisfied predicates (i.e., the object expected a predicate from another object as636

listed in the REQUIRES block of a rule). The analysis also discovered 97 reachable call sites637

that call forbidden events. The majority of object traces that violate at least one part of a638

CrySL rule (54.7%) contradict a constraint listed in the CONSTRAINTS section of a rule.639

Approximately 86% of these constraint-violations are related to MessageDigest. In our640

manual analysis (see RQ1), 89 of the 110 found constraint violations originated from usages641

of MD5 and SHA-1. We expect a similar fraction to also hold for the 11,178 constraint contra-642

dictions reported over all 10,000 apps. Many developers still use MD5 and SHA-1, although643

both are no longer recommended by security experts [15]. CogniCryptsast identifies 1,228644

(10.9%) constraint violations related to Cipher usages. In our manual analysis, all misuses645

of the Cipher class are due to using the insecure algorithm DES or the ECB mode of operation.646

This result is in line with the findings of prior studies [13, 35, 12].647

More than 75% of the typestate errors that CogniCryptsast issues are caused by mis-648

uses of MessageDigest. Our manual analysis attributes this high number to incorrect649

usages of the method reset(). In addition to misusing MessageDigest, misuses of Cipher650

contribute 766 typestate errors. Finally, CogniCryptsast detects 157 typestate errors re-651

lated to PBEKeySpec. The ORDER section of the CrySL rule for PBEKeySpec requires calling652

clearPassword() at the end of the lifetime of a PBEKeySpec object. We manually inspected653

3 of the misuses and observed that the call to clearPassword() is missing in all of them.654

Predicates are unsatisfied when CogniCryptsast expects the interaction of multiple655
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object traces but is not able to prove their correct interaction. With 4,443 unsatisfied656

predicates reported, the number may seem relatively large, yet one must keep in mind that657

unsatisfied predicates accumulate transitively. For example, if CogniCryptsast cannot658

ensure a predicate for a usage of IVParameterSpec, it will not generate a predicate for the659

key object that KeyGenerator generates using the IVParameterSpec object. Transitively,660

CogniCryptsast reports an unsatisfied predicate also for any Cipher object that relies on661

the generated key object.662

CogniCryptsast also found 97 calls to forbidden methods. Since only two JCA classes663

require the definition of forbidden methods in our CrySL rule set (PBEKeySpec and Cipher),664

we do not find this low number surprising. A manual analysis of a handful of reports suggests665

that most of the reported forbidden methods originate from calling the insecure PBEKeySpec666

constructors, as we explained in Section 4.667

From the 4,349 apps that use at least one JCA Crypto API, 2,896 apps (66.6%) contain at668

least one typestate error, 1,367 apps (31.4%) lack required predicates, 62 apps (1.4%) call at669

least one forbidden method, and 3,955 apps (90.9%) violate at least one internal constraint.670

Ignoring the class MessageDigest, and hereby excluding MD5 and SHA-1 constraints, 874671

apps still violate at least one constraint in other classes.672

673

RQ2: Approximately 95% of apps misuse at least one Crypto API. Violating the constraints
of MessageDigest is the most common type of misuse.

674

8.3 Performance (RQ3)675

Setup676

CogniCryptsast comprises four main phases. It constructs (1) a call graph using Flow-677

Droid [5] and then runs the actual analysis (Section 6), which (2) calls the typestate analysis678

and (3) constraint analysis as required, attempting to (4) resolve all declared predicates.679

During the analysis of our dataset, we measured the execution time that CogniCryptsast680

spent in each phase. We ran CogniCryptsast once per application and capped the time of681

each run to 30 minutes.682

In Section 8.2, we report that CogniCryptsast found usages of the JCA in 4,349 of683

all 10,000 apps in our dataset. If we include in the reporting those usages that arise from684

misuses within the common libraries previously excluded (see Section 8.2), this number rises685

to 8,422. We include the analysis of the libraries in this part of the evaluation because it helps686

evaluate the general performance of the analysis in the worst case when whole applications687

are analyzed.688

Results689

Figure 11 summarizes the distribution of analysis times for the four phases and the total690

analysis time across these 8,422 apps. For each phase, the box plot highlights the median,691

the 25% and 75% quartiles, and the minimal and maximal values of the distribution.692

Across the apps in our dataset, there is a large variation in the reported execution time693

(10 seconds to 28.6 minutes). We attribute this variation to the following reasons. The694

analyzed apps have varying sizes—the number of reachable methods in the call graph varies695

between 116 and 16,219 (median: 3,125 methods). The majority of the total analysis time696

(83%) is spent on call-graph construction. For the remaining three phases of the analysis,697

the distribution is as follows. Across all apps, the resolution of all declared predicates takes698
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Figure 11 Analysis time (in log scale) of the individual phases of CogniCryptsast when running
on the apps that use the JCA.

approximately a median of 50 milliseconds, and the typestate analysis phase takes a median699

of 500 milliseconds. The median for the constraint phase is 350 milliseconds. Therefore, the700

major bottleneck for the analysis is call-graph construction, a problem orthogonal to the701

one we address in this work. Our analysis itself is efficient and the overall analysis time is702

clearly dominated by the runtime of the call-graph construction.703

704

RQ3: On average, CogniCryptsast analyzes an app in 101 seconds, with call-graph con-
struction taking most of the time (83%).

705

8.4 Comparison to Existing Tools (RQ4)706

Setup707

We compare CogniCryptsast to CryptoLint [13], as we explained in Section 2.3 the most708

closely related tool. Unfortunately, despite contacting the authors we were unable to obtain709

access to CryptoLint’s implementation. We thus resorted to reimplementing the original710

rules that are hard-coded in CryptoLint as CrySL rules. The fact that all CryptoLint711

rules can be modelled in CrySL shows its superior expressiveness.712

In this section, Rulesetfull denotes CogniCrypt’s comprehensive CrySL rules that713

we have created for all the JCA classes, while Rulesetcl denotes the set of CrySL rules714

that we developed to model the original CryptoLint rules. Additionally, CogniCryptsast715

denotes our analysis when it runs using Rulesetfull, and CogniCryptcl denotes the716

analysis when it runs using Rulesetcl.717

Rulesetfull consists of 23 rules, one for each class of the JCA. Rulesetcl comprises only718

six individual rules, and they only use the sections ENSURES, REQUIRES and CONSTRAINTS. In719

other words, the original hard-coded CryptoLint rules do not comprise typestate properties720

nor forbidden methods. For three out of six rules, we managed to exactly capture the721

semantics of the hard-coded CryptoLint rule in a respective CrySL rule. The remaining722

three rules (3, 4, and 6 of the original CryptoLint rules) cannot be perfectly expressed as723

a CrySL rule, and our CrySL-based rules over-approximate them instead.724

CryptoLint rule 4, for instance, requires salts in PBEKeySpec to be non-constant. In725

CrySL, such a relationship is expressed through predicates. Predicates in CrySL, however,726

follow a white-listing approach and therefore only model correct behaviour. Therefore, in727

CrySL we model the CryptoLint rule for PBEKeySpec in a stricter manner, requiring the728

salt to be not just non-constant but truly random, i.e., returned from a proper random729

generator. We followed a similar approach with the other two CryptoLint rules that730
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we modelled in CrySL. In result, Rulesetcl is stricter than the original implementation731

of CryptoLint. In the comparison of CogniCryptsast and CogniCryptcl in terms of732

their findings, the stricter rules produce more warnings than the original implementation of733

CryptoLint. In our comparison against CogniCryptsast, this setup favours CryptoLint734

because we assume that these additional findings to be true positives. Both rule sets are735

available at https://github.com/CROSSINGTUD/Crypto-API-Rules.736

Results737

CogniCryptcl detects usages of JCA classes in 1,866 Android apps. For these apps, Cog-738

niCryptcl reports 5,507 misuses, only a third of the 20,426 misuses that CogniCryptsast739

identifies using Rulesetfull, our more comprehensive rule set.740

Using CogniCryptcl, all reported warnings are related to 6 classes, compared to 23741

classes that are specified in Rulesetfull. As we have pointed out, CryptoLint does not742

specify any typestate properties or forbidden methods. Hence, CogniCryptcl does not find743

the 4,805 warnings that CogniCryptsast identifies in these categories using Rulesetfull.744

Furthermore, while CogniCryptsast reports 11,178 constraint violations with the standard745

rules, CogniCryptcl reports only 1,177 constraint violations. Of the 11,178 constraint746

violations, 9,958 are due to the rule specification for the class MessageDigest. CryptoLint747

does not model this class. If we remove these violations, 1,609 violations are still reported748

by CogniCryptsast, a total of 432 more than by CogniCryptcl.749

We compare our findings to the study by Egele et al. [13] that identifies the use of ECB750

mode as a common misuse of cryptography. In that study, 7,656 apps use ECB (65.2% of751

apps that use Crypto APIs). On the other hand, in our study, CogniCryptcl identified752

663 uses of ECB mode in 35.5% of apps that use Crypto APIs. Although a high number of753

apps still exhibit this basic misuse, there is a considerable decrease (from 65.2% to 35.5%)754

compared to the previous study by Egele et al. [13]. Given that all apps in our study must755

have received an update in 2017, we believe that the decrease of misuses reflects taking756

software security more seriously in today’s app development.757

Based on the high precision (92.6%) and recall (96.2%) values discussed in RQ1, we argue758

that CogniCryptsast provides an analysis with a much higher recall than CryptoLint.759

Although the larger and more comprehensive rule set, Rulesetfull, detects more complex760

misuses, the precise analysis keeps the false-positive rate at a low percentage.761

762

RQ4: The more comprehensive Rulesetfull detects 3× as many misuses as CryptoLint
in almost 4× more JCA classes.

763

8.5 Threats to Validity764

Our ruleset Rulesetfull is mainly based on the documentation of the JCA [18]. Although765

we have significant domain expertise, our CrySL-rule specifications for the JCA are only766

as correct as the JCA documentation. Our static-analysis toolchain depends on multiple767

external components and despite an extensive set of test cases, of course, we cannot fully768

rule out bugs in the implementation.769

Java allows a developer to programmatically select a non-default cryptographic service770

provider. CogniCryptsast currently does not detect such customizations but instead as-771

sumes that the default provider is used. This behaviour may lead to imprecise results because772

our rules forbid certain default values that are insecure for the default provider, but may be773

secure if a different one is chosen.774

https://github.com/CROSSINGTUD/Crypto-API-Rules
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9 Conclusion775

In this paper, we present CrySL, a description language for correct usages of cryptographic776

APIs. Each CrySL rule is specific to one class, and it may include usage pattern defin-777

itions and constraints on parameters. Predicates model the interactions between classes.778

For example, a rule may generate a predicate on an object if it is used successfully, and779

another rule may require that predicate from an object it uses. We also present a compiler780

for CrySL that transforms a provided ruleset into an efficient and precise data-flow ana-781

lysis CogniCryptsast checking for compliance according to the rules. For ease of use, we782

have integrated CogniCryptsast and with Eclipse crypto assistant CogniCrypt. Apply-783

ing CogniCryptsast, the analysis for our extensive ruleset Rulesetfull, to 10,000 Android784

apps, we found 20,426 misuses spread over 95% of the 4,349 apps using the JCA. Cog-785

niCryptsast is also highly efficient: for more than 75% of the apps the analysis finishes in786

under 3 minutes, where most of the time is spent in Android-specific call graph construction.787

In future work, we plan to address the following challenges. We have developed all the788

rules used in CogniCryptsast ourselves. While we have acquired some deeper familiarity789

with cryptographic concepts in general and the JCA in particular, we are not cryptograph-790

ers. Therefore, we are open to and want cryptography experts to correct potential mistakes791

in our existing rules. We would further encourage domain experts to model their own cryp-792

tographic libraries in CrySL to improve the support in CogniCryptsast and, by extension,793

CogniCrypt. CrySL currently only supports a binary understanding of security—a usage794

is either secure or not. We would like to enhance CrySL to have a more fine-grained notion795

of security to allow for more nuanced warnings in CogniCryptsast. This is challenging be-796

cause the CrySL language still ought to be concise. Additionally, CrySL currently requires797

one rule per class per JCA provider, because there is no way to express the commonality798

and variability between different providers implementing the same algorithms, leading to799

specification overhead. To address this issue, we plan to modularize the language using800

import and override mechanisms. Moreover, we plan to extend CrySL to support more801

complex properties such as using the same cryptographic key for multiple purposes. We802

will also perform consistency checks for the CrySL rules. For now, only Xtext-based type803

checks are performed.804

Lastly, we also intend on applying CrySL in other contexts. One of the authors of this805

paper has already started to have students implement a dynamic checker to identify and806

mitigate violations at runtime. While the JCA is indeed the most commonly used Crypto807

library, other Crypto libraries such as BouncyCastle [29] are being used as well and we will808

to extend CogniCryptsast to support them. Additionally, we will investigate to which809

extent CrySL is applicable to Crypto APIs in other programming languages. At the time810

of writing, we are exploring CrySL’s compatibility with OpenSSL [30]. We finally aim to811

examine whether CrySL is expressive enough to meaningfully specify usage constraints for812

non-crypto APIs.813
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