
Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems

Kadiray Karakaya
Heinz Nixdorf Institute
Paderborn University
Paderborn, Germany

kadiray.karakaya@upb.de

Eric Bodden
Heinz Nixdorf Institute

Paderborn University & Fraunhofer IEM
Paderborn, Germany
eric.bodden@upb.de

ABSTRACT

Previous work has shown that one can often greatly speed up
static analysis by computing data flows not for every edge in the
program’s control-flow graph but instead only along definition-use
chains. This yields a so-called sparse static analysis. Recent work
on SparseDroid has shown that specifically taint analysis can be
“sparsified” with extraordinary effectiveness because the taint state
of one variable does not depend on those of others. This allows
one to soundly omit more flow-function computations than in the
general case.

In this work, we now assess whether this result carries over to the
more generic setting of so-called Interprocedural Distributive Envi-
ronment (IDE) problems. Opposed to taint analysis, IDE comprises
distributive problems with large or even infinitely broad domains,
such as typestate analysis or linear constant propagation. Specif-
ically, this paper presents Sparse IDE, a framework that realizes
sparsification for any static analysis that fits the IDE framework.

We implement Sparse IDE in SparseHeros, as an extension to
the popular Heros IDE solver, and evaluate its performance on
real-world Java libraries by comparing it to the baseline IDE al-
gorithm. To this end, we design, implement and evaluate a linear
constant propagation analysis client on top of SparseHeros. Our
experiments show that, although IDE analyses can only be sparsi-
fied with respect to symbols and not (numeric) values, Sparse IDE
can nonetheless yield significantly lower runtimes and often also
memory consumptions compared to the original IDE.

KEYWORDS

static analysis, sparse analysis, IFDS, IDE, constant propagation

ACM Reference Format:

Kadiray Karakaya and Eric Bodden. 2024. Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3639092

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639092

1 INTRODUCTION

Static program analysis has proven useful for diverse purposes in-
cluding compiler optimization [18], program comprehension [9]
and developer assistance [38]. It is now an essential part of soft-
ware engineering for assuring bug-free [4], secure [22] and quality
software[12]. The key strength of static program analysis is to
account for all possible executions of a target program. But this
imposes two often competing challenges: precision and scalability.
Static analyses yield more precise results by tracking statement
ordering and by distinguishing different calling contexts.

IDE (Interprocedural Distributive Environment) [30], with its
extensions [2, 24, 33], is a state-of-the-art precise interprocedu-
ral static analysis framework. It covers a wide class of data-flow
problems ranging from variations of classical taint analysis [16]
to typestate [11, 20] and constant propagation [25] analyses. IDE
represents data-flow analysis problems on an exploded supergraph
and models data-flow facts as environments. Environments are
mappings from symbols (often program variables) to domain val-
ues. The exploded supergraph is a data-flow graph induced by the
inter-procedural control-flow graph (ICFG) for the whole program.
Its nodes are pairs (𝑠, 𝑑) of program statements and data-flow facts.
A data-flow fact 𝑑 holds at a statement 𝑠 if in the exploded super-
graph the corresponding node (𝑠, 𝑑) is reachable from the start
node. The edges of the exploded supergraph represent the effects
of program statements on a data-flow fact. IDE computes over the
exploded supergraph by tracking all data-flow facts densely across
all program points. As previous work [1, 15, 19, 41] has shown, this
approach does not scale well for large-scale real-world programs. A
key observation is, however, that in practice many program state-
ments do not affect the analysis result. Such statements thus can
be safely ignored, e.g. by sparsifying the exploded supergraph.

Sparsification is a well-known technique for scaling data-flow
analyses [13, 14, 26, 31, 35, 36] while still maintaining their preci-
sion. Sparsification approaches create sparse versions of the original
CFGs of a target program by removing statements that are irrelevant
to the analysis and then computing over the sparse CFGs. Recent
on-demand approaches take sparsification further by utilizing the
information available during the analysis. SparseBoomerang [17]
accelerates demand-driven pointer analysis by computing over
sparse CFGs specialized to the alias queries. SparseDroid [15]
accelerates taint analysis by computing over sparse CFGs special-
ized to individual data-flow facts. Both approaches demonstrate
sparsification on IFDS-based problems, that focus on mere symbol
reachability, without considering value computation.

The IFDS (Interprocedural Finite Distributive Subset) [29] frame-
work is the “small brother” of IDE. It reduces the data-flow analysis

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639092&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

problems to a pure graph reachability problem. Yet, IFDS is limited
to data-flow problems with finite domains: all IFDS problems can
be encoded as IDE problems, but only a subset of IDE problems
can be encoded as IFDS problems [30]. As an example, consider
the statement a = a + 1. Here, using IFDS one can encode a
simple taint analysis inferring that a is tainted/reachable after the
statement if and only if it was previously tainted/reachable. Ef-
ficient computation of a’s numeric value, however, requires one
to compute values within the infinitely broad domain of integers,
going beyond pure reachability. As we show, this has implications
for sparsification: while the statement a = a + 1 can be safely
considered irrelevant w.r.t. a’s reachability, and will be disregarded
in sparsification approaches for IFDS [15, 17], it is a relevant state-
ment when constant propagation is considered: it changes a’s value.
This observation is not limited to constant propagation analysis,
it applies to other data-flow analysis problems that require value
mappings. For instance, a sparse typestate analysis must retain
statements that alter a symbol’s associated state value. Based on
this observation, we generalize the recent work on SparseDroid,
i.e., on sparse IFDS [15]: we propose Sparse IDE, a symbol-specific
sparsification of the IDE framework, that enables efficient sparsifi-
cation, even in the presence of arbitrarily large value domains. In
addition, we also show the limits of sparsification in IDE: while one
can effectively sparsify with respect to symbols, such sparsification
cannot be performed with respect to values.

We formalize Sparse IDE, and show how this formalization cov-
ers also IFDS data-flow analysis problems as a special case. We
implement Sparse IDE in a tool SparseHeros, extending the pop-
ular Heros IDE solver [5]. We compare both implementations in
terms of performance, and show that sparsification maintains cor-
rectness. To this end, we implement a linear constant propagation
analysis client that uses both implementations. To validate Sparse-
Heros’s correctness, we run both on ConstantBench, a novel
microbenchmark suite for integer linear constant propagation anal-
ysis. To evaluate its performance impact, we run the analysis client
on real-world Java libraries using both Heros and SparseHeros.
The analysis client produces the same results in both cases while
terminating significantly faster when using SparseHeros.

To summarize, this paper presents the following original contri-
butions, whose implementations are open-sourced1:

• A formalization of Sparse IDE and its implementation in
SparseHeros on top of Heros and Soot [37],
• its correctness evaluation on theConstantBenchmicrobench-
mark suite for linear constant propagation analysis, and
• its performance evaluation on real-world Java libraries.

The remainder of the paper is organized as follows. In Section 2,
we present the background. In Section 3, we introduce Sparse IDE
and in Section 4, we instantiate it on linear constant propagation
analysis. In Section 5, we present the evaluation results. In Section 6,
we discuss the limitations of our approach and threats to its validity.
In Section 7, we discuss the related work and we conclude with
Section 8.

1https://github.com/secure-software-engineering/SparseIDE

2 BACKGROUND

This section briefly introduces the background that our work builds
on. We begin with the IFDS and IDE frameworks. Then we intro-
duce sparse data-flow analysis and discuss why it is an effective
alternative. Finally, we explain how the recent approaches sparsify
further by utilizing the information available during the analysis
runtime.

𝑓𝑖𝑑 : _𝑆.𝑆 𝑓𝑔𝑒𝑛 : _𝑆.(𝑆 ∪ {𝑎}) 𝑓𝑎𝑠 : _𝑆 .if 𝑎 ∈ 𝑆 : (𝑆 ∪ {𝑏}) else (𝑆 \ {𝑏})
Λ

Λ

a

a

Λ

Λ

a

a

Λ

Λ

a

a

b

b

Figure 1: Flow functions (reproduced from [29]).

2.1 IFDS and IDE

IFDS [29] and IDE [30] are two frameworks for interprocedural flow-
and context-sensitive data-flow analysis. IFDS represents data-flow
analysis problems as graph reachability on an exploded supergraph,
whose nodes are pairs of program statements and data-flow facts.
The individual edges in the exploded supergraph constitute flow
functions; they show each statement’s effect on each data-flow fact’s
reachability. A flow function determines whether a data-flow fact is
being generated, propagates to the next statement, spawns another
fact, or gets killed.

Figure 1 shows how the flow functions are represented as edges
in the exploded supergraph. The data-flow fact above the edge
means that it holds before applying the function; the fact below
means that it holds after. A special fact, Λ holds always. Facts
connected to it are newly generated. The identity function, 𝑓𝑖𝑑 ,
leaves data-flow facts unchanged. The function 𝑓𝑔𝑒𝑛 shows the case
where data-flow fact a is being generated. The function 𝑓𝑎𝑠 shows
how the existing fact, a creates another fact, b, e.g. at an assignment,
b = a.

IDE generalizes the IFDS framework by computing domain val-
ues that symbols map to. It does so in two phases: first it deter-
mines whether symbols are reachable, just like IFDS, and then
computes their values. IDE achieves this by annotating the individ-
ual exploded supergraph edges with so-called edge functions, which
constitute environment transformers.

𝑒𝑖𝑑 : _𝑒𝑛𝑣 .𝑒𝑛𝑣 𝑒𝑣𝑎𝑙 : _𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑎 ↦→ 3] 𝑒𝑜𝑝 : _𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 2 ∗ 𝑒𝑛𝑣 (𝑎) + 1]
Λ

Λ

_𝑙 .𝑙

a

a

_𝑙 .𝑙

Λ

Λ

_𝑙 .𝑙

a

a

_𝑙 .3

Λ

Λ

_𝑙 .𝑙

a

a

_𝑙 .𝑙

b

b

_𝑙 .2 ∗ 𝑙 + 1

Figure 2: Edge functions (reproduced from [30]).

Figure 2 shows how the edge functions are represented. The
environment transformer 𝑒𝑖𝑑 keeps the values as they are. 𝑒𝑣𝑎𝑙
shows the case where data-flow fact, a is mapped to a domain value,
e.g. through a constant assignment, a = 3. 𝑒𝑜𝑝 shows how the value
of b is calculated depending on the value of a, e.g. through a linear

Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

arithmetic operation, b = 2*a + 1. IDE can only compute linear
equations precisely.

IFDS and IDE apply to awide class of data-flow analysis problems.
IFDS requires data-flow problems to be defined with flow functions
that are distributive over the merge operator. Many reachability
problems such as taint, reaching definitions, or live variables anal-
ysis fall into this category. IDE, on the other hand, also requires
data-flow problems to be expressed with distributive environment
transformers. IFDS suits better the problems with a binary value
domain, e.g. taint analysis where the domain simply consists of
two values, tainted or not tainted [3]. It has been applied to more
complex domains, e.g. for typestate analysis where the domain
contains arbitrary object states [23]. The drawback of IFDS is that
it represents data-flow facts as symbol-value pairs, which blows
up the data-flow fact space with increasing size of the domain. Be-
cause of this representation, IFDS’s runtime performance depends
on the value domain’s size. Further, it may not terminate when
the value domain is infinitely broad, e.g., in constant propagation
analysis, where the domain contains all integers. IDE, on the other
hand, restricts data-flow facts to static symbols and computes their
(approximated) runtime values using the edge functions along the
path where the symbols are reachable in the exploded supergraph.
Therefore, IDE can terminate efficiently even with infinitely broad
value domains—only the set of symbols must be finite.

2.2 Sparse Data-flow Analysis

Data-flow analysis techniques aim to produce precise results while
remaining scalable within a reasonable time budget. Techniques
that prioritize scalability often resort to sacrificing precision aspects:
flow-insensitive analyses ignore control-flow ordering [40], field-
insensitive analyses approximate field accesses[8], and context-
insensitive analyses do not distinguish different calling contexts
[21]. Sparse data-flow analyses, on the other hand, often improve a
dense data-flow analysis’ scalability whilemaintaining its precision.
They sparsify a target program’s control-flow graph by removing
program statements that provably do not affect the analysis result.
Sparsification often uses a cheaper pre-analysis stage to aid a more
expensive analysis [14, 31, 35]. Recent on-demand sparse data-flow
analyses sparsify further by exploiting the information that is only
available during analysis runtime [15, 17].

2.3 Fact-Specific On-Demand Sparsification

When IFDS and IDE compute a data-flow fact’s reachability, starting
from the statement that generates the data-flow fact, they propagate
it along all statements as long as it is not killed. At each statement,
they check whether the statement is relevant for all the data-flow
facts that have reached it. Figure 3 shows how the reachability is
computed for an example constant-propagation analysis setting.
The fact-specific id edges and non-id edges show the edges which
IFDS and IDE create when propagating data-flow facts. The data-
flow facts actually only need to be propagated to the required nodes.
For instance, data-flow fact a only needs to propagate to the state-
ment b = a; all other statements are redundant for a. Similarly, b
only needs to propagate to the statement, c = b + 1. Based on this
observation, He et al. [15] introduced the sparse IFDS algorithm in
their implementation SparseDroid. Instead of propagating all the

data-flow facts to the next statement, it propagates them simply
to the next statement that uses the facts. Sparse IFDS keeps all
non-id edges and replaces the fact-specific id edges with sparse id
edges, effectively keeping all required nodes and skipping over all
redundant nodes.

int foo(){

 a = 1

 b = a

 x = new X()

 c = b + 1

 x.f = "_"

 d = c

 return d
}

Λ a b c d

fact-specific id edges
non-id edge

sparse id edges

required node

redundant node

Figure 3: Original and sparse propagations after applying

fact-specific on-demand sparsification.

Fact-specific on-demand sparsification allows effective propaga-
tion of the data-flow facts along the sparse CFGs specific to them,
which is not limited to data-flow analysis. Recent work [17] has
applied it to pointer analysis, where the variable in alias queries is
treated as the initial data-flow fact and propagated along its query-
specific sparse CFGs. So far, however, fact-specific on-demand spar-
sification has only been applied to the analysis problems that deal
with fact reachability. In this work, we expand the scope of fact-
specific on-demand sparsification to include the data-flow analyses
that compute over an additional value domain, specifically IDE.

3 SYMBOL-SPECIFIC ON-DEMAND

SPARSIFICIATIONWITH SPARSE IDE

In this section, we first explain the original IDE algorithm [30] in
detail. We then introduce the Sparse IDE algorithm by highlighting
the modifications to the original IDE algorithm.

3.1 The Original IDE Algorithm

Sagiv et al. [30] define an IDE problem instance formally as 𝐼𝑃 =

(𝐺∗, 𝐷, 𝐿,𝑀), where
• 𝐺∗ is the program supergraph (ICFG), which consists of
control flow graphs (CFG), 𝐺𝑝 of individual procedures,
• 𝐷 is a finite set of program symbols,
• 𝐿 is a finite-height lattice (which can be infinitely broad),
and
• 𝑀 : 𝐸∗

𝑑−→ (𝐸𝑛𝑣 (𝐷, 𝐿) → 𝐸𝑛𝑣 (𝐷, 𝐿)) is an assignment of
distributive environment transformers to the edges of 𝐺∗.

The original IDE algorithm [30] solves such an IDE problem,
𝐼𝑃 , in two phases. In Phase I, it creates the jump functions that
show the reachability of each 𝑑 ∈ 𝐷 , by assuming that their initial

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

mappings to 𝐿 are always _𝑙 .⊤. In Phase II, it computes each 𝑑’s
actual value mapping to 𝐿 by evaluating the edge functions defined
in𝑀 .

According to Sagiv et al. [30], the total cost of the IDE algorithm
is bounded by𝑂 (|𝐸 | |𝐷 |3), which is the cost of Phase I. Since𝐷 is the
set of symbols, it should not change if correctness is preserved. We,
therefore, apply our sparsification approach in Phase I, where the
jump functions are created by reducing 𝐸, the set of edges. Phase II
is oblivious to how the jump functions are created—it automatically
benefits from the sparsification of Phase I.

Figure 4 shows the algorithm for Phase I. Each procedure 𝑝’s CFG,
𝐺𝑝 consists of a start node 𝑠𝑝 , an exit node 𝑒𝑝 , and normal (non-call)
nodes𝑚 or 𝑛. Procedure calls are represented with two nodes: the
call-site node 𝑐 denotes the point right before the procedure call, and
the return-site node 𝑟 denotes the point right after. Program symbols,
e.g. variables, access paths, etc., are denoted with 𝑑 ′, 𝑑 ∈ 𝐷 ∪ {Λ}
including the special symbol Λ. Λ is required for generating new
symbols at arbitrary program points.

Initialization. In lines 2–5, jump and summary functions are
initialized. Jump functions, denoted by 𝐽𝑢𝑚𝑝𝐹𝑛, correspond to
the same-level realizable paths (SLRPs) from the start node 𝑠𝑝 of
a procedure 𝑝 to a node𝑚 in 𝑝 . Summary functions, denoted by
𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛, summarize the effect of a procedure call through same-
level realizable paths from the call-site 𝑐 to return-site 𝑟 . In line 3,
𝐽𝑢𝑚𝑝𝐹𝑛(⟨𝑠𝑝 , 𝑑 ′⟩ → ⟨𝑚,𝑑⟩) = _𝑙 .⊤ states that the jump function
from the node ⟨𝑠𝑝 , 𝑑 ′⟩ to each ⟨𝑚,𝑑⟩ is initialized to _𝑙 .⊤. In line
5, 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛(⟨𝑐, 𝑑 ′⟩ → ⟨𝑟, 𝑑⟩) = _𝑙 .⊤ states that the summary
function from each call-site node ⟨𝑐, 𝑑 ′⟩ to its corresponding return-
site ⟨𝑟, 𝑑⟩ is initialized to _𝑙 .⊤. Line 6 initializes the PathWorkList
to {⟨𝑠𝑚𝑎𝑖𝑛,Λ⟩ → ⟨𝑠𝑚𝑎𝑖𝑛,Λ⟩} representing a self-loop edge on
the start node of the main procedure whose jump function is the
identity function, id. The jump function from the start node 𝑠𝑝 until
the current statement 𝑛 is denoted with 𝑓 .

Call nodes. Lines 12-19 handle the case where 𝑛 is a call-site
node in 𝑝 , calling a procedure 𝑞. In line 14, the self-loop edge on
the start node of the callee procedure 𝑞 is initialized with id. In line
17, the edge from 𝑠𝑝 the corresponding return-site 𝑟 is computed by
composing the 𝑓 , the jump function until 𝑛 and the edge function
from𝑛 to 𝑟 . In line 19, the edge from 𝑠𝑝 the corresponding return-site
𝑟 is computed by composing 𝑓 and 𝑓3, the corresponding summary
function when it is not mapping to ⊤.

Exit nodes. Lines 20-30 handle the case where 𝑛 is the exit node
of 𝑝 . Edges from each call-site node 𝑐 to the start node 𝑠𝑝 (shown
with 𝑓4) and from the exit node, 𝑒𝑝 to each caller’s return-site 𝑟
(shown with 𝑓5) must be computed. In line 25, a new summary
function 𝑓 ′ is computed by composing 𝑓5, 𝑓 , and 𝑓4 and merging
the existing summary function for the same 𝑐 and 𝑟 . When it is a
new summary, a new jump function is computed from the caller
procedure’s start node 𝑠𝑞 to the node return-site node 𝑟 by compos-
ing the 𝑓 ′ with the existing jump function 𝑓3 from 𝑠𝑞 to call-site
node 𝑐 .

Normal nodes. Lines 31-33 handle the case where𝑛 is a non-call
or intraprocedural node. Edges from the start node 𝑠𝑝 to each node
𝑚, which is the statement that appears directly after 𝑛 in procedure
𝑝 , are computed by composing the edges from 𝑠𝑝 to 𝑛 (shown with
𝑓) and the edges from 𝑛 to𝑚.

1 Function ForwardComputeJumpFunctionsSLRPs():

2 for ⟨𝑠𝑝 , 𝑑′ ⟩, ⟨𝑚,𝑑 ⟩ s.t.𝑚 occurs in proc. 𝑝 and 𝑑′, 𝑑 ∈ 𝐷 ∪ {Λ} do
3 𝐽 𝑢𝑚𝑝𝐹𝑛 (⟨𝑠𝑝 , 𝑑′ ⟩ → ⟨𝑚,𝑑 ⟩) = _𝑙 .⊤
4 for corresponding call-return pairs (𝑐, 𝑟) and 𝑑′, 𝑑 ∈ 𝐷 ∪ {Λ} do
5 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛 (⟨𝑐,𝑑′ ⟩ → ⟨𝑟,𝑑 ⟩) = _𝑙 .⊤
6 PathWorkList B { ⟨𝑠𝑚𝑎𝑖𝑛 ,Λ⟩ → ⟨𝑠𝑚𝑎𝑖𝑛 ,Λ⟩ }
7 𝐽 𝑢𝑚𝑝𝐹𝑛 (⟨𝑠𝑚𝑎𝑖𝑛 ,Λ⟩ → ⟨𝑠𝑚𝑎𝑖𝑛 ,Λ⟩) B 𝑖𝑑

8 while PathWorkList ≠ ∅ do
9 Select and remove an item ⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑛,𝑑2 ⟩ from PathWorkList

10 let 𝑓 = 𝐽 𝑢𝑚𝑝𝐹𝑛 (⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑛,𝑑2 ⟩)
11 switch (𝑛) do
12 case 𝑛 is a call node in 𝑝 , calling a procedure 𝑞 do

13 for 𝑑3 s.t. ⟨𝑛,𝑑2 ⟩ → ⟨𝑠𝑞 , 𝑑3 ⟩ ∈ 𝐸# do

14 Propagate(⟨𝑠𝑞 , 𝑑3 ⟩ → ⟨𝑠𝑞 , 𝑑3 ⟩, 𝑖𝑑)
15 let 𝑟 be the return-site node that corresponds to 𝑛

16 for 𝑑3 s.t. 𝑒 = ⟨𝑛,𝑑2 ⟩ → ⟨𝑟,𝑑3 ⟩ ∈ 𝐸# do

17 Propagate(⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑟,𝑑3 ⟩, 𝐸𝑑𝑔𝑒𝐹𝑛 (𝑒) ◦ 𝑓)
18 for 𝑑3 s.t. 𝑓3 = 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛 (⟨𝑛,𝑑2 ⟩ → ⟨𝑟,𝑑3 ⟩) ≠ _𝑙 .⊤ do

19 Propagate(⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑟,𝑑3 ⟩, 𝑓3 ◦ 𝑓)
20 case 𝑛 is the exit node of 𝑝 do

21 for call node 𝑐 that calls 𝑝 with corresponding return-site node 𝑟 do

22 for 𝑑4 , 𝑑5 s.t. ⟨𝑐,𝑑4 ⟩ → ⟨𝑠𝑝 , 𝑑1 ⟩ ∈ 𝐸# and ⟨𝑒𝑝 , 𝑑2 ⟩ → ⟨𝑟,𝑑5 ⟩ ∈ 𝐸# do

23 let 𝑓4 = 𝐸𝑑𝑔𝑒𝐹𝑛 (⟨𝑐,𝑑4 ⟩ → ⟨𝑠𝑝 , 𝑑1 ⟩) and
24 𝑓5 = 𝐸𝑑𝑔𝑒𝐹𝑛 (⟨𝑒𝑝 , 𝑑2 ⟩ → ⟨𝑟,𝑑5 ⟩) and
25 𝑓 ′ = (𝑓5 ◦ 𝑓 ◦ 𝑓4) ⊓ 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛 (⟨𝑐,𝑑4 ⟩ → ⟨𝑟, 𝑑5 ⟩)
26 if 𝑓 ′ ≠ 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛 (⟨𝑐,𝑑4 ⟩ → ⟨𝑟,𝑑5 ⟩) then
27 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑛 (⟨𝑐,𝑑4 ⟩ → ⟨𝑟, 𝑑5 ⟩) B 𝑓 ′

28 let 𝑠𝑞 be the start node of 𝑐’s procedure

29 for 𝑑3 s.t. 𝑓3 = 𝐽 𝑢𝑚𝑝𝐹𝑛 (⟨𝑠𝑞 , 𝑑3 ⟩ → ⟨𝑐,𝑑4 ⟩) ≠ _𝑙 .⊤ do

30 Propagate(⟨𝑠𝑞 , 𝑑3 ⟩ → ⟨𝑟, 𝑑5 ⟩, 𝑓 ′ ◦ 𝑓3)
31 case 𝑛 is an intraprocedural node in 𝑝 do

32 for ⟨𝑚,𝑑3 ⟩𝑠.𝑡 . ⟨𝑛,𝑑2 ⟩ → ⟨𝑚,𝑑3 ⟩ ∈ 𝐸# do

33 Propagate(⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑚,𝑑3 ⟩,
34 𝐸𝑑𝑔𝑒𝐹𝑛 (⟨𝑛,𝑑2 ⟩ → ⟨𝑚,𝑑3 ⟩) ◦ 𝑓)
35

36 Function Propagate(e, f):

37 let 𝑓 ′ = 𝑓 ⊓ 𝐽 𝑢𝑚𝑝𝐹𝑛 (𝑒)
38 if 𝑓 ′ ≠ 𝐽 𝑢𝑚𝑝𝐹𝑛 (𝑒) then
39 𝐽 𝑢𝑚𝑝𝐹𝑛 (𝑒) B 𝑓 ′

40 Insert 𝑒 into PathWorkList

Figure 4: The original IDE algorithm for Phase I (re-

produced from [30]).

3.2 The Sparse IDE Algorithm

In the original IDE algorithm, each symbol 𝑑 ∈ 𝐷 ∪ {Λ} at a state-
ment 𝑛 is propagated to its direct successor statement𝑚. As also
pointed out in previous work [15], this behavior is desired when
𝑛 is a call and exit node. For these nodes, the reachability of each
𝑑 in different contexts is left to the data-flow function definition.
call-flow functions propagate each 𝑑 into the context of the callee
procedure. return-flow functions propagate each 𝑑 back to the con-
text of the caller procedure. call-to-return-flow functions propagate
each 𝑑 from before a procedure is called to after the procedure is
called. However, when 𝑛 is a non-call node, each 𝑑 can safely be
propagated to 𝑑’s next use statement.

Figure 5 shows the modifications for the Sparse IDE algorithm
for Phase I. We replace line 17 from the original IDE algorithm
with lines 17-19 in the Sparse IDE algorithm. Instead of propagat-
ing 𝑑3 to the direct return site node 𝑟 , we obtain 𝑟 ′ which is the
next use statement of 𝑑3 in its symbol-specific sparse control flow

Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 Function ForwardComputeSparseJumpFunctionsSLRPs():

2 . . .

8 while PathWorkList ≠ ∅ do
9 Select and remove an item ⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑛,𝑑2 ⟩ from PathWorkList

10 let 𝑓 = 𝐽 𝑢𝑚𝑝𝐹𝑛 (⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑛,𝑑2 ⟩)
11 switch (𝑛) do
12 case 𝑛 is a call node in 𝑝 , calling a procedure 𝑞 do

13 . . .

15 let 𝑟 be the return-site node that corresponds to 𝑛

16 for 𝑑3 s.t. 𝑒 = ⟨𝑛,𝑑2 ⟩ → ⟨𝑟,𝑑3 ⟩ ∈ 𝐸# do

17 let 𝑟 ′ = NextUse(𝑝,𝑑3, 𝑟)

18 Propagate(⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑟 ′, 𝑑3 ⟩,
19 𝐸𝑑𝑔𝑒𝐹𝑛 (⟨𝑛,𝑑2 ⟩ → ⟨𝑟,𝑑3 ⟩) ◦ 𝑓)
20 . . .

31 case 𝑛 is an intraprocedural node in 𝑝 do

32 for ⟨𝑚,𝑑3 ⟩𝑠.𝑡 . ⟨𝑛,𝑑2 ⟩ → ⟨𝑚,𝑑3 ⟩ ∈ 𝐸# do

33 let𝑚′ = NextUse(𝑝,𝑑3, 𝑛)

34 Propagate(⟨𝑠𝑝 , 𝑑1 ⟩ → ⟨𝑚′, 𝑑3 ⟩,
35 𝐸𝑑𝑔𝑒𝐹𝑛 (⟨𝑛,𝑑2 ⟩ → ⟨𝑚,𝑑3 ⟩) ◦ 𝑓)
36

41 Function NextUse(p, d, n):

42 let𝐺𝑝,𝑑 be the sparse CFG of 𝑑 in procedure 𝑝

43 let𝐶 be the sparse CFG cache with (𝑝,𝑑) typed keys and𝐺𝑝,𝑑 as values

44 if 𝐺𝑝,𝑑 ∉𝐶 then

45 construct𝐺𝑝,𝑑 and add to𝐶

46 return the next statement after 𝑛 from𝐺𝑝,𝑑

Figure 5: Modifications for Sparse IDE algorithm for

Phase I (mirrors the design from [15]).

graph. Similarly, we replace line 33 with lines 33-35, to propagate
𝑑3 to its next use statement𝑚′ its sparse control flow graph. Our
sparsification approach mirrors that of sparse IFDS algorithm [15],
however, since we generalize it to IDE, we also account for edge
function composition.

3.3 Sparse IFDS Revisited

As shown in Figure 3, a statement can behave as identity function,
meaning it does not affect any data-flow fact, 𝑑 ∈ 𝐷 . However, as
shown by He et al. [15], many statements only affect a few data-
flow facts, often even just a single fact. Their flow functions can be
considered fact-specific identity functions for the facts that they do
not affect. Sparse IFDS defines fact-specific identity functions as
follows [15]:

Given a symbol, 𝑑 ∈ 𝐷 and a flow function, 𝑓 ∈ 2𝐷 → 2𝐷 , 𝑓 is a
d-specific identity function if the following conditions hold:

∀𝑋 ∈ 2𝐷 : 𝑑 ∈ 𝑋 ⇒ 𝑑 ∈ 𝑓 (𝑋) (1.1)

∀𝑋 ∈ 2𝐷\{𝑑 } : 𝑓 (𝑋) \ {𝑑} = 𝑓 (𝑋 ∪ {𝑑}) \ {𝑑} (1.2)

Condition 1.1 states that 𝑑 is not affected by other facts when
applying 𝑓 , and 1.2 states that 𝑑 does not affect the other facts
when applying 𝑓 . However, these conditions only apply to symbols
from 𝐷 and ignore mappings from 𝐷 to the value domain 𝐿, and,
if applied to IDE problems, one would wrongly treat such flow
functions that are annotated with non-identity edge functions as
𝑑-specific identity functions as well.

int bar(){

 a = 2

 a = 3

 a = a + 1

 b = a

 return b
}

Λ a b

fact-specific id edges
non-id edge

sparse id edges

required node

redundant node

Λ a b

λl.2

λl.l+1

λl.3

λl.l

(a) Sparse IFDS (b) Sparse IDE

Figure 6: Comparison of the Sparsification Approaches of

Sparse IFDS and Sparse IDE

Figure 6 shows two important cases where sparse IFDS would
sparsify incorrectly. First, reassignments: a = 3 reassigns a, but
sparse IFDS recognizes that 𝑎 already exists (is “tainted”), and there-
fore it treats this statement as 𝑎-specific identity. Second, value
updates: a = a + 1 updates 𝑎’s value, but sparse IFDS has no
notion of values, therefore, from its perspective, this statement is
“identity” as well. Sparse IDE, on the other hand, is aware of the
effects on the value domain and retains both statements.

3.4 Fact-Specific Identity Transformers

To generalize fact-specific sparsification to the IDE framework,
we define symbol-specific identity transformers that take into ac-
count the environments that map the symbols from domain 𝐷 to
the values from domain 𝐿. Given a symbol 𝑑 ∈ 𝐷 and a value
𝑙 ∈ 𝐿, 𝑒𝑛𝑣 = [𝑑 ↦→ 𝑙] is an environment 𝑒𝑛𝑣 mapping from 𝑑 to 𝑙 ,
i.e., 𝑒𝑛𝑣 (𝑑) = 𝑙 . Then 𝑒𝑛𝑣 is an element of the set of environments
𝐸𝑛𝑣 (𝐷, 𝐿). An environment transformer, 𝑡 ∈ 𝐸𝑛𝑣 (𝐷, 𝐿) → 𝐸𝑛𝑣 (𝐷, 𝐿)
is a 𝑑-specific identity transformer, denoted by 𝑡 ≡ 𝑡𝑑 , if the follow-
ing holds:

First, the transformer 𝑡 keeps all 𝑑-specific mappings intact:

given 𝑑 ∈ 𝐷 : ∀𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣 (𝐷, 𝐿) :
𝑒𝑛𝑣 (𝑑) = 𝑡 (𝑒𝑛𝑣 (𝑑)) (2.1)

Second, for all other mappings, 𝑡 produces identical results no
matter whether or not 𝑑-specific mappings are present:

given 𝑑 ∈ 𝐷 : ∀𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣 (𝐷, 𝐿). ∀𝑑 ′ ∈ 𝐷 \ {𝑑}. ∀𝑙 ∈ 𝐿 :
𝑡 (𝑒𝑛𝑣 (𝑑 ′)) = 𝑡 (𝑒𝑛𝑣 [𝑑 ↦→ 𝑙] (𝑑 ′)) (2.2)

We test the edge functions from Figure 2 on these conditions.
𝑒𝑖𝑑 is an 𝑎-specific identity transformer (𝑒𝑖𝑑 ≡ 𝑒𝑎

𝑖𝑑
), because ap-

plying _𝑒𝑛𝑣 .𝑒𝑛𝑣 does not change a’s previous mapping. 𝑒𝑣𝑎𝑙 is not
an 𝑎-specific identity transformer (𝑒𝑣𝑎𝑙 . 𝑒𝑎

𝑣𝑎𝑙
), because applying

_𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑎 ↦→ 3] changes a’s previous mapping. 𝑒𝑜𝑝 is also not
an 𝑎-specific identity transformer (𝑒𝑜𝑝 . 𝑒𝑎𝑜𝑝) because applying
_𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 2 ∗ 𝑒𝑛𝑣 (𝑎) + 1] changes another value’s mapping

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

(for 𝑏) depending on what 𝑎 maps to, and because it changes b’s
value 𝑒𝑜𝑝 is not a 𝑏-specific identity transformer either (𝑒𝑜𝑝 . 𝑒𝑏𝑜𝑝).
Note that, importantly, a transformer can only be considered a
𝑑-identity transformer if the above restrictions hold irrespective of
any concrete 𝑙 ∈ 𝐿 that might be associated with 𝑏: (2.2) quantifies
over all 𝑙 ∈ 𝐿. This is necessary because IDE produces procedure
summaries that must be sound with respect to all 𝑙 , and thus their
creation must not be made dependent on 𝑙 . In other words, IDE can
support symbol-specific but not value-specific sparsification!

3.5 Determining symbol-specific identity

When propagating fact 𝑑 , we consider only those statements as
irrelevant statements for 𝑑 that fulfil conditions (2.1) and (2.2). But
since these conditions are value-agnostic—they quantify over all 𝑙 ∈
𝐿, this allows one to determine ahead of time the statements whose
environment transformers adhere to both conditions, structurally.
First, by Condition 2.1, a statement’s corresponding environment
transformer 𝑡 is not a 𝑑-specific identify transformer if 𝑡 affects 𝑑’s
value mapping in any way, i.e., 𝑡 = _𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝒅 ↦→ _]. Second, by
Condition 2.2, 𝑡 is not a 𝑑-specific identity transformer either, if 𝑡
uses 𝑑’s value mapping 𝑒𝑛𝑣 (𝑑) to compute another fact’s value, i.e.
𝑡 = _𝑒𝑛𝑣 .𝑒𝑛𝑣 [_ ↦→ . . . 𝑒𝑛𝑣 (𝒅) . . .].

Naturally, sparsification effectiveness is closely tied to the analysis-
specific environment-transformer definitions. The environment
transformer for the statement a = a + 1 is 𝑡 ≡ 𝑡𝑎 for taint analysis,
where 𝑡 = _𝑒𝑛𝑣 .𝑒𝑛𝑣 . For constant propagation analysis, however,
𝑡 . 𝑡𝑎 , where 𝑡 = _𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑒𝑛𝑣 (𝑎) + 1].

Sparse IDE strictly generalizes Sparse IFDS as presented in Sparse-
Droid. One can easily define sparse IFDS as an instantiation of
sparse IDE by restricting the value domain 𝐿 to {⊥,⊤}, where sym-
bols that map to ⊥ are considered reachable. In this setting, our
definitions (2.1) and (2.2) become equivalent to (1.1) and (1.2).

4 APPLICATION TO LINEAR CONSTANT

PROPAGATION

As Sagiv, Reps and Horwitz explain in their seminal work [30],
constant propagation analysis is the perfect problem setting where
IDE outperforms IFDS [29]. This is not only because the problem’s
lattice is larger than the binary domain, but also it is infinitely
broad where IFDS cannot terminate. We are, therefore, motivated
to apply the Sparse IDE framework to linear constant propagation
analysis. Heros, and thus SparseHeros, are generic tools and they
are independent of the target language and their intermediate rep-
resentations (IRs). In this work, we use Soot [37] static program
analysis framework for Java and its intermediate representation
Jimple. Therefore, in the following, we explain our implementation
based on the Jimple IR.

4.1 Analysis Definition

Linear constant propagation analysis handles the linear expressions
that generate a new data-flow fact by using just a single other fact,
e.g. a = b or a = 2*b + 1. Full constant propagation analysis
involves statements such as a = b + c. Such a statement’s flow
function is not distributive; it cannot be precisely computed within
the IDE framework. Our linear constant propagation analysis im-
plementation handles the assignment statements shown in Table 1.

IR. The IR always ensures binary operation (binop) representa-
tion by reducing more complex operations to binary operations.
For instance, a = 2*b + 1 would be reduced to s1 = 2 * b and
a = s1 + 1. The IR also reduces longer access paths to multiple as-
signments with a single access path (n=1). For instance, a statement
such as a = b.f1.f2 would be reduced to s1 = b.f1, s2 = s1.f2,
and a = s2. The same reduction applies to procedure invocations
as well.

Flow functions.We generate a symbol when it is assigned with
a constant. As discussed, we handle the binary operations in the
linear form. We distinguish between the assignments that require
alias handling and the ones that do not. The assignments such as
local, field load, static field load, and array load, overwrite the local
variable, 𝑎, on their left-hand side and therefore do not need to know
𝑎’s aliases. The assignments such as field store, static field store, and
array store, on the other hand, require handling the aliases of the
base variables or the array references. To handle aliasing we use
the Boomerang [34] demand-driven pointer analysis framework.
When necessary, we query the aliases of the base variables and add
them to the set of propagated symbols. Note that in Table 1, the
alias sets contain the query variable as well. The IDE framework
requires three types of flow functions to model the effects of invoke
statements. The call flow function propagates the symbol for the
actual parameter to the context of the callee procedure, by mapping
it to the procedure’s corresponding formal parameter. The return
flow function propagates the symbol for the returned variable to
the context of the caller procedure, by mapping it to the symbol
on the left-hand side of the invoke expression. The call-to-return
flow function propagates the symbols that are not passed to the
context of the callee procedure, to the next statement after the
invoke statement.

Edge functions. For most statements, the edge functions map
the target symbol to the value of the source symbol, acting as
identity transformers. The constant and binop statements are the
only exceptions. The constant statement maps the target symbol,
𝑎 to the given constant value, 𝐶𝑜𝑛𝑠𝑡 . The binop statement maps
the target symbol, 𝑎 to a new value. The value is computed by
simulating the operation ⊙ using the source symbol’s value, 𝑒𝑛𝑣 (𝑏)
and the constant operand,𝐶𝑜𝑛𝑠𝑡 . Edge functions must be composed
and reduced to a simple value mapping when computing the actual
values. Given 𝑓1, 𝑓2 ∈ 𝐸𝑛𝑣 (𝐷, 𝐿) and 𝑓1 appears before 𝑓2 as an
edge in the exploded supergraph, we compose the edge functions
as follows:

𝑓2 ◦ 𝑓1 :=

𝑓2 if 𝑓1 = _𝑒𝑛𝑣.𝑒𝑛𝑣

𝑓1 if 𝑓2 = _𝑒𝑛𝑣.𝑒𝑛𝑣

𝑓2 if 𝑓2 = _𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝐶𝑜𝑛𝑠𝑡]
𝑓2 (𝑓1) if 𝑓2 = _𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝑏) ⊙̂𝐶𝑜𝑛𝑠𝑡]

If an edge function is the identity transformer, we always apply
the other function by the first two conditions. We always apply
the subsequent edge function if it is a constant assignment, by the
third condition. If the subsequent edge is a binop, we compute its
value immediately in place by applying the preceding edge first, as
suggested in previous work [5].

Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Statements for Linear Constant Propagation Analysis with Corresponding IRs and Flow/Edge Functions.

Statement IR Flow Function Edge Function

constant 𝑎 ← 𝐶𝑜𝑛𝑠𝑡 _𝑆.{𝑆 ∪ {𝑎}} _𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝐶𝑜𝑛𝑠𝑡]

binop 𝑎 ← 𝑏 ⊙𝐶𝑜𝑛𝑠𝑡 _𝑆.

{
𝑆 ∪ {𝑎} if 𝑏 ∈ 𝑆
𝑆 \ {𝑎}

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝑏) ⊙̂𝐶𝑜𝑛𝑠𝑡]

local 𝑎 ← 𝑏 _𝑆.

{
𝑆 ∪ {𝑎} if 𝑏 ∈ 𝑆
𝑆 \ {𝑎}

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝑏)]

field load 𝑎 ← 𝑏.𝑓 _𝑆.

{
𝑆 ∪ {𝑎} if 𝑏.𝑓 ∈ 𝑆
𝑆 \ {𝑎}

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝑏.𝑓)]

field store 𝑎.𝑓 ← 𝑏 _𝑆.

{
𝑆 ∪ {𝑝.𝑓 | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑎) } if 𝑏 ∈ 𝑆
𝑆 \ {𝑝.𝑓 | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑎) }

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑝.𝑓 ↦→ 𝑒𝑛𝑣 (𝑏)]

static field load 𝑎 ← 𝑇 .𝑓 _𝑆.

{
𝑆 ∪ {𝑎} if𝑇 .𝑓 ∈ 𝑆
𝑆 \ {𝑎}

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝑇 .𝑓)]

static field store 𝑇 .𝑓 ← 𝑏 _𝑆.

{
𝑆 ∪ {𝑝.𝑓 | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑇) } if 𝑏 ∈ 𝑆
𝑆 \ {𝑝.𝑓 | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑇) }

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑝.𝑓 ↦→ 𝑒𝑛𝑣 (𝑏)]

array load 𝑎 ← 𝐴 [𝑖] _𝑆.

{
𝑆 ∪ {𝑎} if𝐴 [𝑖] ∈ 𝑆
𝑆 \ {𝑎}

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑎 ↦→ 𝑒𝑛𝑣 (𝐴 [𝑖])]

array store 𝐴 [𝑖] ← 𝑏 _𝑆.

{
𝑆 ∪ {𝑝 [𝑖] | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝐴) } if 𝑏 ∈ 𝑆
𝑆 \ {𝑝 [𝑖] | 𝑝 ∈ 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝐴) }

_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑝 [𝑖] ↦→ 𝑒𝑛𝑣 (𝑏)]

call 𝑟 ← 𝑏.𝑚 (𝑎𝑖) _𝑆.

{
𝑆 ∪ {𝑝𝑖 } if 𝑎𝑖 ∈ 𝑆 ∧ 𝑎𝑖 ↦→ 𝑝𝑖 in𝑚

𝑆 \ {𝑝𝑖 }
_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑝𝑖 ↦→ 𝑒𝑛𝑣 (𝑎𝑖)]

return 𝑟 ← 𝑏.𝑚 (𝑎𝑖) _𝑆.

{
𝑆 ∪ {𝑟 } if 𝑟 ′ ∈ 𝑆 ∧𝑚 returns 𝑟 ′

𝑆 \ {𝑟 }
_𝑒𝑛𝑣.𝑒𝑛𝑣 [𝑟 ↦→ 𝑒𝑛𝑣 (𝑟 ′)]

call-to-return 𝑟 ← 𝑏.𝑚 (𝑎𝑖) _𝑆.

{
𝑆 \ {𝑎𝑖 } if 𝑎𝑖 ∈ 𝑆 ∧ 𝑎𝑖 ↦→ 𝑝𝑖 in𝑚
𝑆

_𝑒𝑛𝑣.𝑒𝑛𝑣

Lattice.We perform the linear constant propagation on integers.
Therefore the lattice is Z⊤⊥. Given 𝑙1, 𝑙2 ∈ Z⊤⊥, we define the meet
operator as follows:

𝑙1 ⊓ 𝑙2 =

𝑙1 if 𝑙2 = ⊤
𝑙2 if 𝑙1 = ⊤
⊥ if 𝑙1 = ⊥ ∨ 𝑙2 = ⊥
⊤ if 𝑙1 = ⊤ ∧ 𝑙2 = ⊤

If a value is ⊤, the meet operator yields the other value by the
first two conditions. If either of the values is ⊥, the meet yields ⊥,
and if both of the values are ⊤ it yields ⊤ by the third and fourth
conditions respectively.

4.2 Sparsification for Constant Propagation

Our sparsification approach has much in common with the one
proposed by He et al. [15], though modifications were necessary.
We build the sparse control flow graphs (CFGs) by ignoring symbol-
specific identity functions. Given a procedure, 𝑝 ,𝐺𝑝 is its original
dense CFG. We build sparse CFGs specific to each symbol, 𝑑 in 𝑝 ,
denoted as 𝐺𝑝,𝑑 and propagate 𝑑 across its own sparse CFG. As
shown with the IR in Table 1, 𝑑 can be a local, an instance field or
static field, or an array access. 𝐺𝑝,𝑑 is constructed by determining
whether each statement’s corresponding flow function in 𝐺𝑝 is a
𝑑-specific identity function.

As a major modification, and most importantly, we account for
a statement’s effect on the value domain. In addition to determin-
ing whether each statement’s corresponding flow function is a

d-specific identity function, we determine whether its edge func-
tion is a d-specific identity transformer with the assumptions ex-
plained in Section 3.3. Further, we propagate the tautological fact, Λ,
(sparsely) to the statements that can generate new data-flow facts,
e.g. 𝑎 ← 𝐶𝑜𝑛𝑠𝑡 . Otherwise, it is impossible to generate new facts at
arbitrary program points. Finally, we soundly retain all branching
statements to keep the original CFGs’ control flow as it is.

5 EVALUATION

We next explain the research questions that guide our evaluation
and its experimental setup, and then we discuss the evaluation
results. Sparse data-flow analyses promise extensive performance
improvements, while still maintaining the precision of their non-
sparse counterparts. Therefore, first, we compare the sparse analysis
results against the non-sparse analysis results. Second, we measure
whether the sparse analysis produces the promised performance
benefits. Third, we investigate the factors contributing to the per-
formance impact. Therefore, we focus on the following research
questions:

• RQ1: Does Sparse IDE produce the same results as the origi-
nal IDE?
• RQ2: How does the sparsification impact the performance
in terms of runtime and memory?
• RQ3: To what extent does the number of propagations cor-
relate with the performance impact?

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

#1 #2 #3 #4 #5 #6 #7 #8 #9
#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30

0

20

40

60

80

100 2 2 2 3 3 3 4 4 5 14 19 26 49 56 71 79 13
0

16
1

17
2

20
7

28
9

30
1

31
7

42
3

43
2

47
6

54
0

84
3

11
58

32
51

2 2 2 3 3

3

3

4 5

2

14

6

7

4

11 14 21

6

16 25 35 27 27 38 48

23

71 88

37 18
6

Baseline
Runtime
(s)

IDE Sparse IDE

Figure 7: Relative runtime of Sparse IDE compared to the baseline original IDE in %, annotated with exact runtimes in seconds,

sorted by original IDE’s runtime

#1 #2 #3 #4 #5 #6 #7 #8 #9
#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30

0

20

40

60

80

100

120

0.
08

0.
16

0.
16

0.
1

0.
19

0.
17

0.
33

0.
1

0.
28

0.
52

2.
83

2.
29

2.
0

2.
68

3.
24

2.
46

7.
1

5.
74

6.
95

6.
7

6.
15

6.
92

6.
77

4.
81

4.
19

5.
94

2.
53

5.
32

8.
76

7.
190.
08

0.
16

0.
16

0.
09

0.
14

0.
09

0.
17

0.
09

0.
28

0.
15

1.
39

0.
82

0.
6

0.
16

0.
89

1.
65

1.
79

0.
35

1.
73

0.
67

2.
38

1.
45

1.
09

2.
16

2.
97

1.
97

3.
02

1.
5

0.
93 1.

17

Baseline
Memory
(GB)

IDE Sparse IDE

Figure 8: Memory consumption of Sparse IDE compared to the baseline original IDE in %, annotated with exact memory

consumptions in GB, using the same sorting as Figure 7

5.1 Experimental Setup

We implement the proposed approach in SparseHeros, by extend-
ing the open source Heros IDE solver’s latest version, at the time
of writing (e7e4a85) [32]. Using SparseHeros and the Soot static
analysis framework [37], we implement a linear constant propaga-
tion analysis. To handle aliasing, we integrate our client analysis
with the Boomerang [34] demand-driven pointer analysis, using
its latest version (1179227) [7]. Heros, and thus SparseHeros, sup-
port multi-threading, yet, because Boomerang is single-threaded,
our client analysis uses a single-thread. Therefore, our evaluation
results present single-thread performance.

As benchmark subjects we use:

• ConstantBench: A benchmark suite for constant propa-
gation analysis targeting Java, did not previously exist. We,
therefore, created ConstantBench as a micro-benchmark
suite for integer linear constant propagation analysis. We
run both Heros and SparseHeros on this benchmark suite
and compare the analysis results that they produce.
• Real-world Libraries: We include real-world Java libraries
to investigate the performance of our approach under the
workload of large-scale and complex programs. As opposed
to applications, libraries do not have a specific entry method.
We follow the closed package assumption [27] for analyzing
library code, and treat public methods of the libraries as

entry methods. We consider a method as an entry method if
it adheres to the following entry method selection criteria:
– c1: The method is a public instance method that is not
abstract, native or a constructor,

– c2: The method contains an integer assignment statement.
We selected the most downloaded (>5000) Java libraries from
the maven repository [28]. We discarded the libraries that
do not contain any entry methods according to the selection
criteria, and the ones that caused an error in the underlying
static analysis tool, Soot [37]. In the end, we retained 30
libraries.
• ReplicationPackage:We set up a replication package, avail-
able at https://zenodo.org/records/10498325

We have performed the evaluations on an Intel i7 Quad-Core at
2,3 GHz with 32GB memory. We configured the JVM with 25GB
maximum heap size (-Xmx25g) and 1GB stack size (-Xss1g).

5.2 RQ1: Does Sparse IDE produce the same

results as the original IDE?

ConstantBench consists of 40 target programs with various pro-
gram properties and sensitivity-testing edge cases, as listed in Table
2. Assignment cases test possible flow and edge functions, as well as
flow sensitivity. Branching and Loops cases test the meet operation.
Field sensitivity cases test field sensitivity and aliasing scenarios.
Context sensitivity cases test various calling contexts. Array cases

Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: ConstantBench Test Cases

Assignment Field Sensitivity

Constant LoadConstant
ConstantBinop StoreConstant
LocalBinop StoreViaAlias
LocalMultipleBinop StoreBinop
Overwrite FieldToField
Increment StoreBinopViaAlias
Operators StoreLocalViaAlias

AssignmentChain Context Sensitivity

Static Id

Branching Increment

SameValueMergedAndUsed Add
SameValueMergedNotUsed Nested
SameValueMergedAndUsedInBinop AssignFieldInCallee
DiffValuesMergedAndUsed AssignStaticInCallee

DiffValuesMergedNotUsed Array

DiffValuesMergedAndUsedInBinop LoadConstant

Loops StoreConstant

ForLoopFixedBound ArrayToArray
ForLoopUnkownBound AliasedArrays
WhileTrue LargeIndex

WhileUnknown Non-Linear

NestedLoops Binop
HashCode

test array handling and NonLinear cases test analysis’ behavior
under unanticipated non-linear operations. The results validate the
correctness of Sparse IDE by showing that SparseHeros produces
the same outputs as the non-sparse Heros.

5.3 RQ2: How does the sparsification impact

the performance in terms of runtime and

memory?

Figure 7 shows the relative analysis runtime spent by Sparse IDE
in comparison to the runtime of the baseline original IDE algo-
rithm. We sorted the results for each library by the time spent by
the original IDE algorithm. Note that we keep the same sorting
for the rest of the paper. This sorting highlights the fact that our
Sparse IDE approach pays off better for the cases where the origi-
nal IDE’s runtime is relatively larger. Sparse IDE, compared to the
original IDE algorithm, performs up to 30.7x faster. We measure
the mean speedup as 7.9x, and the median speedup as 6.7x. The
concrete measurements are presented in Table 3. Results show that,
in terms of runtime, Sparse IDE outperforms the original IDE in
each run, except for the libraries #1-#3 (jcl-over-slf4j, slf4j-api, lom-
bok), which have the shortest analysis time. In each run, Sparse
CFG construction overhead is lower than 1% of the Sparse IDE total
analysis runtime, which is substantially smaller than the achieved
speedups.

Figure 8 shows the relative memory consumption of Sparse IDE
in comparison to the memory consumption of the original IDE
algorithm. We have measured up to 94% reduction in memory
consumption in the best case, and up to a 19% increase in the
worst. The Sparse IDE algorithm, compared to the original IDE,

2 4 6 8
IDE Propagation Count / Sparse IDE Propagation Count

0

1

2

3

4

5

ID
E

Ru
nt

im
e

/
 S

pa
rs

e
ID

E
Ru

nt
im

e

Figure 9: Ratio of data-flow fact propagations and corre-

sponding speedup ratios, in log scale

2 4 6 8
IDE Propagation Count / Sparse IDE Propagation Count

3

4

5

6

7

ID
E

M
em

or
y

/
 S

pa
rs

e
ID

E
M

em
or

y

Figure 10: Ratio of data-flow fact propagations and corre-

sponding memory consumption ratios, in log scale

associates data-flow facts with fewer statements, therefore, we
anticipated memory improvements. On the other hand, because we
cache sparse CFGs (𝐺𝑑,𝑝) per each symbol and procedure pair (𝑑, 𝑝),
for some input programs memory consumption increases. However,
as shown in Figure 8, these cases are limited to a few outliers.
Moreover, the mean and median impacts on memory consumption
are 51% and 63% reduction, respectively.

We statistically assess the significance of the Sparse IDE algo-
rithm’s impact on runtime and memory improvements. According
to Wilcoxon signed-rank test [39] at 0.05 significance level, Sparse
IDE significantly improves both the runtime (𝑝 = 6.1e−08) and
memory consumption (𝑝 = 5.7e−07) of the original IDE algorithm.

5.4 RQ3: To what extent does the number of

propagations correlate with the

performance impact?

The essence of the Sparse IDE approach is that, compared to the
original IDE algorithm, it propagates data-flow facts to fewer state-
ments. We investigate to what extent this contributes to improving
the scalability of the original IDE algorithm. Figure 9, shows how
the ratio of data-flow fact propagations in IDE and Sparse IDE cor-
relate with the ratio of runtime speedups. We observe that reducing
the number of propagations is an effective approach to improving
IDE’s scalability in terms of runtime. Similarly, Figure 10 correlates
the same with the ratio of memory consumptions in IDE and Sparse
IDE. We observe a comparable trend but not to the same degree.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

Table 3: Performance of Sparse IDE compared to the baseline original IDE algorithm

Library Version #Entry Runtime (s) Memory (GB) #Propagations Sparse CFG
Methods IDE SP IDE/SP IDE SP SP/IDE (%) IDE SP IDE/SP Count Const. (ms) %Runtime

1 jcl-over-slf4j 2.0.7 1 2 2 1.00 0.08 0.08 100.78 48 34 1.41 2 0 0.01
2 slf4j-api 2.0.7 7 2 2 0.99 0.16 0.16 100.62 104 94 1.11 13 0 0.00
3 lombok 1.18.26 5 2 2 0.99 0.16 0.16 99.40 894 227 3.94 13 0 0.02
4 commons-logging 1.2 14 3 3 1.00 0.10 0.09 93.87 1,509 917 1.65 41 0 0.00
5 junit-jupiter-api 5.9.2 10 3 3 1.01 0.19 0.14 75.39 182 158 1.15 20 0 0.00
6 jackson-annotations 2.14.2 79 3 3 1.14 0.17 0.09 55.10 13,115 6,511 2.01 190 0 0.00
7 maven-plugin-api 3.9.1 13 4 3 1.20 0.33 0.17 49.61 17,353 4,780 3.63 294 4 0.14
8 junit-jupiter-engine 5.9.2 23 4 4 1.02 0.10 0.09 86.81 3,204 1,181 2.71 105 0 0.02
9 osgi.core 8.0.0 124 5 5 1.04 0.28 0.28 100.83 58,675 28,247 2.08 664 7 0.15
10 jakarta.servlet-api 6.0.0 12 14 2 5.25 0.52 0.15 29.28 126,656 341 371.43 33 0 0.00
11 commons-io 2.11.0 178 19 14 1.30 2.83 1.39 48.94 156,595 15,290 10.24 1,279 116 0.78
12 commons-codec 1.15 77 26 6 4.25 2.29 0.82 35.90 652,560 100,866 6.47 532 13 0.21
13 json 20230227 33 49 7 6.88 2.00 0.60 30.24 1,071,045 10,846 98.75 407 0 0.00
14 logback-classic 1.4.7 93 56 4 11.28 2.68 0.16 5.92 1,286,543 8,027 160.28 372 12 0.24
15 logback-core 1.4.7 218 71 11 6.44 3.24 0.89 27.55 1,739,303 14,767 117.78 925 0 0.00
16 gson 2.10.1 147 79 14 5.45 2.46 1.65 66.93 2,009,909 29,391 68.39 1,586 54 0.37
17 commons-lang3 3.12.0 318 130 21 6.14 7.10 1.79 25.22 3,418,491 31,856 107.31 1,144 0 0.00
18 commons-beanutils 1.9.4 109 161 6 25.97 5.74 0.35 6.15 5,855,012 20,640 283.67 648 2 0.04
19 mockito-core 5.3.1 235 172 16 10.20 6.95 1.73 24.85 5,025,407 51,374 97.82 1,663 119 0.71
20 junit-jupiter-params 5.9.2 293 207 25 8.22 6.70 0.67 10.03 6,266,620 99,285 63.12 1,506 109 0.43
21 assertj-core 3.24.2 334 289 35 8.22 6.15 2.38 38.71 10,033,236 45,563 220.21 2,418 37 0.11
22 commons-collections4 4.4 620 301 27 10.90 6.92 1.45 20.91 9,140,963 42,741 213.87 1,796 1 0.01
23 testng 7.7.1 246 317 27 11.68 6.77 1.09 16.08 9,329,214 116,084 80.37 2,910 15 0.06
24 joda-time 2.12.5 375 423 38 11.11 4.81 2.16 44.93 15,151,487 137,705 110.03 3,227 69 0.18
25 guice 5.1.0 336 432 48 8.95 4.19 2.97 70.80 15,141,525 390,634 38.76 3,918 58 0.12
26 hamcrest-all 1.3 290 476 23 20.48 5.94 1.97 33.10 17,953,051 71,200 252.15 1,105 28 0.12
27 log4j-core 2.20.0 512 540 71 7.60 2.53 3.02 119.69 18,746,154 1,218,580 15.38 4,666 64 0.09
28 jackson-databind 2.14.2 844 843 88 9.57 5.32 1.50 28.20 35,842,682 166,906 214.75 7,884 5 0.01
29 okhttp 4.10.0 717 1,158 37 30.69 8.76 0.93 10.58 37,431,312 581,852 64.33 5,928 69 0.18
30 guava-31.1 jre 1,332 3,251 186 17.43 7.19 1.17 16.31 131,993,565 239,589 550.92 12,200 4 0.00

Given these findings, in the future, one could investigate the poten-
tial synergies between our approach and recent approaches that
improve the scalability, in particular, in terms of memory [1, 19].

6 LIMITATIONS AND THREATS TO VALIDITY

By definition, Sparse IDE can solve the same data-flow problems
as the original IDE framework [30]. It requires data-flow analysis
problems to be expressible as distributive environment problems.
Many popular static analyses, such as taint analysis for vulnera-
bility detection [3] or typestate analysis for API misuse detection
[10], are expressible as distributive environment problems. Just like
other fact-specific sparsification approaches [15, 17], Sparse IDE
also exploits analysis domain knowledge. Domain-specific analysis
semantics must be correctly encoded with flow and edge function
definitions within the IDE framework.

Sparse IDE should theoretically lead to a similar performance
impact on other data-flow analysis problems where IDE is appli-
cable. For instance, when performing a typestate analysis, Sparse
IDE would safely omit the statements that have no impact on the
tracked state. However, due to space constraints, we were not able
to empirically show whether our evaluation results carry over to
other analysis problems.

The reported evaluation results might depend on the selected
set of Java libraries, and entry-method selection criteria. Neverthe-
less, for real-world library selection, we followed the systematic
procedure described in Section 5.1. To account for variations in
runtime and memory measurements, we conducted three runs and
presented the average across these runs.

A direct comparison to SparseDroid [15] was not possible for
many reasons. It extends an existing taint analysis client (FlowDroid
[3]) that has a basic integrated alias analysis, whereas our analysis
client utilizes a sophisticated external demand-driven pointer anal-
ysis [34]. Moreover, SparseDroid’s implementation is not publicly

available, and most importantly, IFDS may not terminate when the
value domain is infinitely broad.

7 RELATEDWORK

The IFDS [29] and IDE [30] frameworks enabled precise interproce-
dural data-flow analyses that are flow- and context-sensitive. Pre-
vious works have extended these frameworks with diverse goals.
Naeem et al. [24] proposed four extensions to the IFDS framework,
to improve its scalability and precision under certain practical anal-
ysis conditions. Heros [5] introduced a Java-based generic IFDS
and IDE solver. Reviser [2] proposed an algorithm to adapt IFDS
and IDE to incremental program updates. CleanDroid [1] intro-
duced a technique for reducing the memory footprint of IFDS-based
data-flow analyses. DiskDroid [19] applied a disk-assisted com-
puting approach for improving the scalability of IFDS-based taint
analysis.

Sparsification has been applied to improve the scalability of
static analyses. Choi et al. [6] introduced sparse data-flow eval-
uation graphs based on SSA (static-single assignment). Oh et al.
[26] presented an abstract interpretation-based framework for de-
signing generic sparse analyses, which guarantees to preserve the
precision of the non-sparse analysis through data dependencies.
Pinpoint [31], SVF [35] and SFS [14] utilize cheaper pre-analyses
to sparsify pointer analyses. Recent on-demand sparsification ap-
proaches exploit the data-flow facts that become available during
the analysis runtime for further sparsification. SparseBoomerang
[17] exploits the variables in alias queries during demand-driven
pointer analysis, to create query-specific sparse CFGs. The sparse
IFDS algorithm [15] exploits data-flow facts to create fact-specific
sparse CFGs and propagate each fact on its own sparse CFG. In
this work, we present the more generic Sparse IDE algorithm that
efficiently solves not just IFDS-based reachability problems, but
also IDE problems that require value computation.

Symbol-Specific Sparsification
of Interprocedural Distributive Environment Problems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

8 CONCLUSION AND FUTUREWORK

In this work, we presented the Sparse IDE framework as a scalable
alternative to the original IDE framework. Sparse IDE is the first
fact-specific sparsification approach that allows for computations
on infinitely broad domains. The essence of Sparse IDE is creating
symbol-specific sparse control flow graphs on-demand, and propa-
gating data-flow facts sparsely through these graphs. Sparse IDE
produces equally precise results as the original IDE, while signifi-
cantly improving its scalability. We also explicitly discuss the limits
of sparsification for IDE: while symbol-specific sparsification is pos-
sible and useful, one cannot sparsify with respect to the (typically
numeric and infinite) value domain.

In the future, we plan to apply the Sparse IDE framework to
other data-flow analysis problems and investigate problem-specific
requirements for building sparse CFGs. We also plan to combine
Sparse IDE with other scalability-improving techniques that are
orthogonal to our sparsification approach.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of Martin Mory and Marcus
Hüwe in this work. We thank Martin for the enlightening discus-
sions and for the encouragement to conclude this work. We thank
Marcus for sharing his expertise on the formal notation.

REFERENCES

[1] Steven Arzt. 2021. Sustainable Solving: Reducing The Memory Footprint of
IFDS-Based Data Flow Analyses Using Intelligent Garbage Collection. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1098–1110.

[2] Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-/IFDS-based
data-flow analyses in response to incremental program changes. In Proceedings
of the 36th International Conference on Software Engineering. 288–298.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, United King-
dom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
259–269. https://doi.org/10.1145/2594291.2594299

[4] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and
John Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008),
22–29. https://doi.org/10.1109/MS.2008.130

[5] Eric Bodden. 2012. Inter-Procedural Data-Flow Analysis with IFDS/IDE and Soot.
In Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program Analysis (Beijing, China) (SOAP ’12). Association for Computing
Machinery, New York, NY, USA, 3–8. https://doi.org/10.1145/2259051.2259052

[6] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic construction
of sparse data flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 55–66.

[7] CodeShield. [n. d.]. CodeShield-Security/SPDS: Efficient and Precise Pointer-
Tracking Data-Flow Framework. https://github.com/CodeShield-Security/SPDS.
(Accessed on 03/30/2023).

[8] Alain Deutsch. 1994. Interprocedural May-Alias Analysis for Pointers: Be-
yond k-Limiting. In Proceedings of the ACM SIGPLAN 1994 Conference on Pro-
gramming Language Design and Implementation (Orlando, Florida, USA) (PLDI
’94). Association for Computing Machinery, New York, NY, USA, 230–241.
https://doi.org/10.1145/178243.178263

[9] T. Eisenbarth, R. Koschke, and D. Simon. 2001. Aiding program comprehension by
static and dynamic feature analysis. In Proceedings IEEE International Conference
on Software Maintenance. ICSM 2001. 602–611. https://doi.org/10.1109/ICSM.200
1.972777

[10] Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolás Rosner, Martin
Schäf, Aritra Sengupta, and Willem Visser. 2021. RAPID: checking API usage for
the cloud in the cloud. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1416–1426.

[11] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
2008. Effective Typestate Verification in the Presence of Aliasing. ACM Trans.

Softw. Eng. Methodol. 17, 2, Article 9 (may 2008), 34 pages. https://doi.org/10.114
5/1348250.1348255

[12] Jeffrey S Foster, Michael W Hicks, and William Pugh. 2007. Improving software
quality with static analysis. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering. 83–84.

[13] Ben Hardekopf and Calvin Lin. 2009. Semi-Sparse Flow-Sensitive Pointer Analy-
sis. SIGPLAN Not. 44, 1 (jan 2009), 226–238. https://doi.org/10.1145/1594834.14
80911

[14] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions
of lines of code. In International Symposium on Code Generation and Optimization
(CGO 2011). IEEE, 289–298.

[15] Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu,
Shuangwei Hu, Lian Li, and Jingling Xue. 2019. Performance-Boosting Sparsifi-
cation of the IFDS Algorithm with Applications to Taint Analysis. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
267–279. https://doi.org/10.1109/ASE.2019.00034

[16] N. Jovanovic, C. Kruegel, and E. Kirda. 2006. Pixy: a static analysis tool for
detecting Web application vulnerabilities. In 2006 IEEE Symposium on Security
and Privacy (S&P’06). 6 pp.–263. https://doi.org/10.1109/SP.2006.29

[17] Kadiray Karakaya and Eric Bodden. 2023. Two Sparsification Strategies for
Accelerating Demand-Driven Pointer Analysis. In IEEE International Conference
on Software Testing, Verification and Validation (ICST).

[18] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization
(POPL ’73). Association for Computing Machinery, New York, NY, USA, 194–206.
https://doi.org/10.1145/512927.512945

[19] Haofeng Li, Haining Meng, Hengjie Zheng, Liqing Cao, Jie Lu, Lian Li, and Lin
Gao. 2021. Scaling up the IFDS algorithm with efficient disk-assisted computing.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 236–247.

[20] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-sensitive and alias-
aware typestate analysis for detecting OS bugs. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 859–872.

[21] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled
Approach to Selective Context Sensitivity for Pointer Analysis. ACM Trans.
Program. Lang. Syst. 42, 2, Article 10 (may 2020), 40 pages. https://doi.org/10.1
145/3381915

[22] V Benjamin Livshits and Monica S Lam. 2005. Finding Security Vulnerabilities in
Java Applications with Static Analysis.. In USENIX security symposium, Vol. 14.
18–18.

[23] Nomair A. Naeem and Ondrej Lhotak. 2008. Typestate-like Analysis of Multiple
Interacting Objects. In Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications (Nashville, TN,
USA) (OOPSLA ’08). Association for Computing Machinery, New York, NY, USA,
347–366. https://doi.org/10.1145/1449764.1449792

[24] Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. 2010. Practical
extensions to the IFDS algorithm. In Compiler Construction: 19th International
Conference, CC 2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings
19. Springer, 124–144.

[25] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 77–88.

[26] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012.
Design and Implementation of Sparse Global Analyses for C-like Languages.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (Beijing, China) (PLDI ’12). Association for Computing
Machinery, New York, NY, USA, 229–238. https://doi.org/10.1145/2254064.2254
092

[27] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
2016. Call Graph Construction for Java Libraries. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 474–486. https://doi.org/10.1145/2950290.2950312

[28] Maven Repository. [n. d.]. Maven Repository: Search/Browse/Explore. https:
//mvnrepository.com/. (Accessed on 03/30/2023).

[29] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 49–61.

[30] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical Computer
Science 167, 1-2 (1996), 131–170.

[31] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles
Zhang. 2018. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Mil-
lion Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 693–706.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Karakaya and Bodden

https://doi.org/10.1145/3192366.3192418
[32] soot oss. [n. d.]. soot-oss/heros: IFDS/IDE Solver for Soot and other frameworks.

https://github.com/soot-oss/heros. (Accessed on 03/30/2023).
[33] Johannes Späth, Karim Ali, and Eric Bodden. 2017. Ide al: Efficient and precise

alias-aware dataflow analysis. Proceedings of the ACM on Programming Languages
1, OOPSLA (2017), 1–27.

[34] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016.
Boomerang: Demand-driven flow-and context-sensitive pointer analysis for java.
In 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[35] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,
New York, NY, USA, 265–266. https://doi.org/10.1145/2892208.2892235

[36] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable Path-
Sensitive Pointer Analysis on Full-Sparse SSA. In Programming Languages and

Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
155–171.

[37] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[38] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C Gall. 2020.
Every build you break: developer-oriented assistance for build failure resolution.
Empirical Software Engineering 25 (2020), 2218–2257.

[39] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. Springer.
[40] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-Based Selective Flow-Sensitive

Pointer Analysis. In Static Analysis, Markus Müller-Olm and Helmut Seidl (Eds.).
Springer International Publishing, Cham, 319–336.

[41] Xiaodong Yu, Fengguo Wei, Xinming Ou, Michela Becchi, Tekin Bicer, and Dan-
feng Yao. 2020. GPU-Based Static Data-Flow Analysis for Fast and Scalable
Android App Vetting. In 2020 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). 274–284. https://doi.org/10.1109/IPDPS47924.2020.00037

