
Cheetah: Just-in-Time Taint Analysis for Android Apps

Lisa Nguyen Quang Do∗, Karim Ali†, Benjamin Livshits‡, Eric Bodden§, Justin Smith¶, and Emerson Murphy-Hill¶
∗Fraunhofer IEM, Germany, lisa.nguyen@iem.fraunhofer.de
†University of Alberta, Canada, karim.ali@ualberta.ca

‡Imperial College London, United Kingdom, b.livshits@imperial.ac.uk
§Heinz Nixdorf Institute at Paderborn University & Fraunhofer IEM, Germany, eric.bodden@upb.de

¶North Carolina State University, USA, jssmit11@ncsu.edu and emerson@csc.ncsu.edu

Abstract—Current static-analysis tools are often
long-running, which causes them to be sidelined into
nightly build checks. As a result, developers rarely use
such tools to detect bugs when writing code, because
they disrupt their workflow. In this paper, we present
Cheetah, a static taint analysis tool for Android apps
that interleaves bug fixing and code development in the
Eclipse integrated development environment. Cheetah
is based on the novel concept of Just-in-Time static
analysis that discovers and reports the most relevant
results to the developer fast, and computes the more
complex results incrementally later. Unlike traditional
batch-style static-analysis tools, Cheetah causes mini-
mal disruption to the developer’s workflow. This video
demo showcases the main features of Cheetah: https:
//www.youtube.com/watch?v=i_KQD-GTBdA.

I. Introduction

Integrating static analysis in the development process
enables early detection of software bugs, which reduces
the cost of fixing them. However, most developers do not
use static-analysis tools, because they generate many false
positives and may take hours, or even days, to run on
sizeable code bases [1], [2]. Therefore, most companies side-
line static-analysis tools, such as PREfix [3], PREfast [4],
Fortify [5], and Coverity [6], to nightly build checks to
avoid disrupting the workflow of software developers.

We argue that interleaving code development and bug
fixing enables a less disruptive and more usable integration
of static analyses into development environments (IDEs),
similar to, for example, the incremental Java compiler in
Eclipse. To achieve that, we introduce the novel concept of
Just-in-Time (JIT) static analysis that takes into account
the development context to report relevant, easy-to-fix
results fast. The approach depends on the general concept
of layering, such that initial analysis layers narrow the
analysis scope to provide quick and relevant warnings, and
later layers compute more complex results while the de-
veloper handles the first ones. In this paper, we introduce
Cheetah, an Eclipse plugin that implements a JIT taint
analysis for Android apps. Cheetah is designed to help
software developers detect insecure information flows in
their applications within seconds, with minimal disruption
to their workflow. In particular, Cheetah supports software
developers by providing the following features:

• seamless integration in Eclipse,
• reporting warnings using decluttered views,
• ensuring the validity of each warning,
• covering the full codebase,
• highlighting stale analysis information, and
• providing quick feedback on a particular warning.

II. Overview of Cheetah

A JIT analysis uses the notion of layering to gradually
perform computations by expanding its scope, which al-
lows it to quickly report its first results. On the other hand,
traditional batch-style analyses typically order results us-
ing a post-processing module after the analysis is done [7].
Our JIT framework [8] enables easy transformation of a
distributive dataflow analysis [9] to its corresponding JIT
with minimal changes to its transfer functions. A JIT
analysis computes the same dataflow propagations as its
base analysis, but it delays some propagations in favor
of others by pausing and resuming them later at trigger
statements. Each trigger is associated with a priority that
determines the layer at which the JIT analysis resumes its
computation. This approach enables a JIT analysis to run
in the background of the IDE, returning few warnings at
a time and computing further results while the developer
processes the initial ones. This mechanism of computing
the analysis results avoids the wall of bugs effect [1] and
reduces the perceived analysis latency, which helps improve
the overall usability of a JIT-based analysis tool.

Table I presents the analysis layers in Cheetah, where
triggers are method calls. Cheetah runs on the initial layers
that are closer to the current edit point of the developer,
and resolves more distant method calls in later layers.
This layering by locality enables Cheetah to return more
relevant results first. Those results are typically closer to
the current context of the developer and are easier to
understand and fix. Initial results typically have shorter
traces and are more likely to be true positives compared to,
for example, results that Cheetah reports for polymorphic
calls in L7. Other mechanisms can be used to define the
layers of a JIT analysis.

https://www.youtube.com/watch?v=i_KQD-GTBdA
https://www.youtube.com/watch?v=i_KQD-GTBdA

TABLE I: The analysis layers in Cheetah.

Layer Name Description

L1 Method Cheetah propagates the dataflows in the same method as the current edit point.

L2 Class Cheetah propagates the dataflows along calls to methods in the same class as the current edit point.

L3 Class Lifecycle Cheetah propagates the dataflows in lifecycle methods in the same class as the current edit point.

L4 File Cheetah propagates the dataflows along calls to methods in the same file as the current edit point.

L5 Package Cheetah propagates the dataflows along calls to methods in the same package as the current edit point.

L6 Project Monomorphic Cheetah propagates the dataflows along the monomorphic calls in the project.

L7 Project Polymorphic Cheetah propagates the dataflows along the polymorphic calls in the project.

L8 Android Lifecycle Cheetah propagates the implicit dataflows in lifecycle methods in the whole project.

1 public class A {
2 void main(C b)
3 s.f = secret (); // source
4 t = s;
5 if(...) u = s;
6 sendMessage(u);
7 b.sendMessage(t);

8 leak(s.f); // sink A
9 }

10 void sendMessage(String x) {

11 leak(x.f); // sink B
12 }
13 }
14 public class B extends C {
15 void sendMessage(String y) {

16 leak(y.f); // sink C
17 }
18 }

Fig. 1: An example illustrating the workflow of Cheetah.

III. Running Example

A taint analysis tracks sensitive dataflows from sources
to sinks to either detect privacy leaks [10]. The program in
Fig. 1 contains three privacy leaks from the source (line 3)
to the sinks A (line 8), B (line 11), and C (line 16).
While a batch-style analysis computes all three warnings in
no particular order, Cheetah prioritizes them according to
their proximity to the current edit point. If the developer
edits main, Cheetah first reports A , because it is local to
main, then B , because it is further away from the edit
point (in the same class but not the same method), and
finally C , because it is located in a different class.

IV. Main Features of Cheetah

We built Cheetah on top of the Soot analysis frame-
work [11] and the Heros IFDS solver [12]. Fig. 2 highlights
the main features of Cheetah.

Seamless Integration with Eclipse. To enable a
smooth integration with Eclipse, Cheetah hooks into
the Eclipse incremental builder. Whenever the project
is saved, Cheetah starts running at the method that
currently holds the focus. Every run of Cheetah kills any
previous analysis instances, invalidating previous results

Fig. 2: The graphical user interface of Cheetah.

until the current instance of Cheetah confirms or refutes
them.

Decluttered Views. In early prototypes, users com-
plained that Cheetah showed all warnings in one single
view, so we redesigned the user interface to show the
warnings in two separate views to declutter the reported
information. The Overview view provides a list of all
reported warnings, and the Detail view displays a trace
of the selected warning. This trace represents an evidence
that there exist a path from the source to the sink,
ensuring the validity of the reported warning.

Full Code Coverage. Unlike traditional analyses, Chee-
tah aims at supporting software developers who may be
working on unreleased features that are not reachable yet
in the codebase. While traditional analyses typically ignore
unreachable code, Cheetah analyzes the full codebase,
including unreachable code, to report warnings about
those unreleased features to the developer. This is a useful
feature for development scenarios where developers work
on incomplete programs or programs that may mot even
have a main method.

Color-codedWarnings. In early prototypes, users found
it confusing that Cheetah removed, and possibly re-
ordered, the previous results in the Overview view. There-
fore, we redesigned Cheetah to use different colors to
indicate the state of each warning. A warning in Cheetah
can be: active (confirmed by the latest Cheetah run),

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

T
im

e
 (

s
e

c
o

n
d

s
)

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

Result 1 Result 2 Result 3 Last Result BASE

T
im

e
 (

s
e

c
o

n
d

s
)

Fig. 3: Time to report results (in log
scale) for Cheetah and Batch, start-
ing at SPB (top) and SPS (bottom).

0

10

20

30

40

50

60

70

80

90

100

W
a

rn
in

g
s
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

L1 L2 L3 L4 L5 L6 L7 L8 Timeout

W
a

rn
in

g
s
 (

%
)

Fig. 4: Percentage of warnings re-
ported at each layer in Cheetah with
SPB (top) and SPS (bottom).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

T
ra

c
e

 L
e

n
g

th
 (

#
 s

ta
te

m
e

n
ts

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

L1 L2 L3 L4 L5 L6 L7 L8

T
ra

c
e

 L
e

n
g

th
 (

#
 s

ta
te

m
e

n
ts

)

Fig. 5: Trace length of the warnings
reported at each layer in Cheetah with
SPB (top) and SPS (bottom).

pending (found by a previous run of Cheetah but not yet
confirmed or refuted by the latest run), or fixed. Cheetah
shows active warnings in black and pending warnings in
gray. Fixed warnings are grayed out during the current
run, and are removed the next time Cheetah runs, allowing
developers to quickly check if their fix was effective.

Descriptive Icons. Similar to icons for compilation errors
in Eclipse, Cheetah adds source and sink icons to the left
gutter. Cheetah grays out those icons if the selected warn-
ing is pending, providing quick feedback to the developer.
Cheetah also uses tooltips provide additional information
about each statement in the trace of the selected warning.

Other features. To clarify the presentation of its results,
Cheetah highlights the trace of the selected warning in the
code. Additionally, Cheetah uses unique identifiers to help
users keep track of the reported warnings.

V. Evaluation

We empirically evaluate Cheetah by comparing it to its
traditional batch-style counterpart (referred to as Batch).
We ran all our experiments on a 64-bit Windows 7 laptop
with a dual-core 2.6 GHz Intel Core i7 CPU running
Java 1.8.0-102, and limited the Java heap space to 1 GB.

A. Benchmark Evaluation

To compare the performance of Cheetah and Batch, we
use a benchmark suite of 14 real-world Android apps from
F-Droid [13]. We ran two experiments for each app. In the
first experiment, Cheetah starts at 20 randomly selected
methods that we collected using Boa [14] (referred to as
SPB). In the second experiment, Cheetah starts at sources
of known data leaks (referred to as SPS). While SPS
represent cases when the user is investigating a particular

bug, SPB represent cases when the user is not necessarily
using Cheetah during code development. Batch has one
starting point: a dummy main method that acts as the
entry point to the Android app [10].

Fig. 3 shows that Cheetah reports the first result in a
median time less than Nielsen’s 1 second recommended
threshold for interactive user interfaces [15]. However,
Cheetah takes more time than Batch to report all warn-
ings, because, unlike Batch, it analyzes the full codebase.
Fig. 4 shows that when Cheetah starts at SPS, it reports
more warnings at the initial layers, especially L1 and L3.
For those cases, Fig. 5 shows that the median length of the
reported traces is less than 11 statements, making them
easier to interpret. Across all apps, Cheetah has less than
1% timeouts, due to the process of computing the trace.

B. User Study

To compare the integration of Cheetah into the workflow
of developers to that of Batch, we conducted a user
study that involves 18 participants, half of which are
professional developers. Given 10 minutes, the participants
had to remove code duplicates in a real-life Android ap-
plication from F-Droid [13], while minimizing the number
of reported warnings. The participants then responded to
29 questions to assess the merits of both tools. We then
interviewed them to provide further details about their
experience using Cheetah and Batch.

Measuring usability using the aggregated System Us-
ability Score (SUS) [16], 12 participants found Cheetah
more usable for code development than Batch. Using
a two-tailed Wilcoxon Signed-Rank test [17] (p < 0.05),
compared to Batch, participants less likely found that
Cheetah is unnecessarily complex or cumbersome (-0.6
mean response). Additionally, participants are more likely

to use Cheetah frequently (+0.7 mean response), and
found its functions well-integrated (+0.5 mean response).
Nevertheless, two participants raised concerns about CPU
overhead, because Cheetah re-analyzes the whole program
at each save, cancelling the previous run of the analysis.
We plan to overcome this issue by transforming Cheetah
into an incremental analysis.

VI. Related Work

Significant work has been done to make static analyses
more responsive. For example, Solstice [18] runs an offline
analysis on a replica of the developer’s workspace, and
reports results in a non-disruptive manner. In contrast,
Cheetah is an interactive analysis that operates on the
original codebase, reporting its results in a timely fashion.

Incremental analyses, such as Reviser [19], ASIDE [20]
and ECHO [21], re-analyze only the recent code changes
and updates the relevant analysis results. While Cheetah
re-analyzes the whole program at every run, it consistently
reports its first results fast, unlike incremental analyses
whose first run is typically slower. Additionally, Cheetah
returns its results in a specific order. We plan to incremen-
talize Cheetah to leverage the best of both approaches.

Parfait [7] runs different analyses in layers of increasing
order of complexity and decreasing order of efficiency.
Unlike Parfait, Cheetah layers a single analysis, making
it more responsive in general. Moreover, later analyses in
Parfait may invalidate the results that the initial analyses
have already reported. On the other hand, later layers in
Cheetah do not refute the results that have been reported
by earlier analysis layers.

VII. Conclusion

We have presented Cheetah, a JIT taint analysis tool
for Android apps that interleaves code development and
static analysis execution. Our empirical results show that
Cheetah helps software developer detect data leaks, with
minimal disruption to their workflow. The setup and
raw data of our experimental results and user study is
available online, as well as a technical report detailing the
tool’s implementation [8]. Cheetah is open-sourced [8] and
available under the EPL license [22].

Acknowledgments

This research was supported by a Fraunhofer Attract
grant as well as the Heinz Nixdorf Foundation. This ma-
terial is also based upon work supported by the National
Science Foundation under grant number 1318323.

References

[1] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and
Robert W. Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In International Conference on
Software Engineering (ICSE), pages 672–681, 2013.

[2] Maria Christakis and Christian Bird. What developers want
and need from program analysis: an empirical study. In Interna-
tional Conference on Automated Software Engineering (ASE),
pages 332–343, 2016.

[3] William R. Bush, Jonathan D. Pincus, and David J. Sielaff.
A static analyzer for finding dynamic programming errors.
Software–Practice & Experience (SPE), 30(7):775–802, 2000.

[4] PREfast. https://msdn.microsoft.com/en-us/library/
ms933794.aspx.

[5] HP Fortify. http://www8.hp.com/us/en/software-
solutions/static-code-analysis-sast/.

[6] Coverity. http://www.coverity.com/.
[7] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan Hawes, and

Manuel Valdiviezo. Transitioning Parfait into a Development
Tool. IEEE Security & Privacy, 10(3):16–23, 2012.

[8] Cheetah. https://blogs.uni-paderborn.de/sse/tools/
cheetah-just-in-time-analysis/.

[9] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise
Interprocedural Dataflow Analysis via Graph Reachability. In
Principles of Programming Languages (POPL), pages 49–61,
1995.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. FlowDroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Programming Language Design and Imple-
mentation (PLDI), pages 259–269, 2014.

[11] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
Java Bytecode Using the Soot Framework: Is It Feasible? In
Compiler Construction (CC), pages 18–34, 2000.

[12] Eric Bodden. Inter-procedural data-flow analysis with IFD-
S/IDE and Soot. In International Workshop on State of the
Art in Java Program Analysis (SOAP), pages 3–8, 2012.

[13] F-Droid. Free and Open Source Android App Repository.
https://f-droid.org.

[14] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N.
Nguyen. Boa: a language and infrastructure for analyzing ultra-
large-scale software repositories. In International Conference on
Software Engineering (ICSE), pages 422–431, 2013.

[15] Jakob Nielsen. Usability Engineering. Elsevier, 1994.
[16] John Brooke et al. SUS-A quick and dirty usability scale.

Usability Evaluation in Industry, 189(194):4–7, 1996.
[17] Frank Wilcoxon. Individual comparisons by ranking methods.

Biometrics Bulletin, 1(6):80–83, 1945.
[18] Kivanç Muslu, Yuriy Brun, Michael D. Ernst, and David Notkin.

Making offline analyses continuous. In Foundations of Software
Engineering (FSE), pages 323–333, 2013.

[19] Steven Arzt and Eric Bodden. Reviser: efficiently updating
IDE-/IFDS-based data-flow analyses in response to incremental
program changes. In International Conference on Software
Engineering (ICSE), pages 288–298, 2014.

[20] Jing Xie, Heather Richter Lipford, and Bei-tseng Chu. Evaluat-
ing interactive support for secure programming. In Conference
on Human Factors in Computing Systems (CHI), pages 2707–
2716, 2012.

[21] Sheng Zhan and Jeff Huang. ECHO: Instantaneous in Situ Race
Detection in the IDE. In Foundations of Software Engineering
(FSE), pages 775–786, 2016 (to appear).

[22] Eclipse Public Licence. https://eclipse.org/legal/
eplfaq.php.

https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://msdn.microsoft.com/en-us/library/ms933794.aspx
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www.coverity.com/
https://blogs.uni-paderborn.de/sse/tools/cheetah-just-in-time-analysis/
https://blogs.uni-paderborn.de/sse/tools/cheetah-just-in-time-analysis/
https://f-droid.org
https://eclipse.org/legal/eplfaq.php
https://eclipse.org/legal/eplfaq.php

