
Self-adaptive static analysis

Eric Bodden
Paderborn University & Fraunhofer IEM

eric.bodden@upb.de

ABSTRACT

Static code analysis is a powerful approach to detect quality deficien-

cies such as performance bottlenecks, safety violations or security

vulnerabilities already during a software system’s implementation.

Yet, as current software systems continue to grow, current static-

analysis systems more frequently face the problem of insufficient

scalability. We argue that this is mainly due to the fact that current

static analyses are implemented fully manually, often in general-

purpose programming languages such as Java or C, or in declarative

languages such as Datalog. This design choice predefines the way

in which the static analysis evaluates, and limits the optimizations

and extensions static-analysis designers can apply.

To boost scalability to a new level, we propose to fuse static-

analysis with just-in-time-optimization technology, introducing

for the first time static analyses that are managed and inherently

self-adaptive. Those analyses automatically adapt themselves to

yield a performance/precision tradeoff that is optimal with respect

to the analyzed software system and to the analysis itself.

Self-adaptivity is enabled by the novel idea of designing a dedi-

cated intermediate representation, not for the analyzed program

but for the analysis itself. This representation allows for an au-

tomatic optimization and adaptation of the analysis code, both

ahead-of-time (through static analysis of the static analysis) as well

as just-in-time during the analysis’ execution, similar to just-in-time

compilers.
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1 INTRODUCTION

Over the past decades, static code analysis has made significant

progress, and has seen many novel applications: originally used

mainly for the purpose of ahead-of-time program optimization [18,

19], it has now become also a common tool for program under-

standing as well as for finding software quality defects, in particular

security vulnerabilities [2, 10, 22]. This success is due to decades

of static-analysis research, which yielded the discovery of novel
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algorithms, data structures and design principles that make static

analyses more precise and scalable than ever before. [9, 15–17, 21]

Yet at the same time, the size of software systems has grown

immensely. Hence, while the progress in static-analysis research

is significant in absolute terms, one must fear that nevertheless

the technology will always lack behind the software applications’

increase in size and complexity. To break this barrier, one requires

nothing short of a breakthrough in static-analysis technology.

Such a break-through is currently hindered by the fact that, so far,

all known static-analysis tools have been implemented by hand, and

in general-purpose programming languages such as Java or C/C++,

or in some cases partly in Datalog. Most static analyses require

only a limited expressiveness, and thus often can be expressed as

pushdown-problems [13] or even graph-reachability problems [12],

certainly most often do not require a Turing-complete language.

Since optimizations for pushdown automata and graph algorithms

are well studied, one would think it possible to just apply powerful

automated optimizations to such analyses. Yet, the current state

of the art is to implement static analyses themselves in general-

purpose programming languages. In our view, those languages are

too expressive: they are, in fact, Turing complete, which greatly

hinders powerful automated optimizations of the static analyses.

In this work we propose a novel fusion of static-analysis and

just-in-time-optimization technology, yielding static analyses that

are inherently self-adaptive, and use this self-adaptivity for self-

optimization. Current analyses are not self-adaptive because their

evaluation strategy is, at least for the most part, hard-coded. While

analysis implementations might select among a set of multiple pre-

defined evaluation strategies depending on the analysis problem

and analyzed application at hand, the possible choices and the

selection strategies themselves are fixed. Moreover, once a strategy

has been selected, it is executed by instantiating pre-defined static-

analysis components.

We instead envision a solution that produces for each concrete

analysis problem a highly customized and optimized static-analysis

implementation, specifically tailored to the problem at hand. More-

over, the solution should have the ability to re-adapt and thus

further optimize this implementation based on an introspection

into the analysis’ own execution. This is what we mean when we

speak of self-adaptivity, and this is where lessons learned from

research on just-in-time optimization will be useful. Enabling such

self-adaptivity requires one to design and implement the analy-

sis according to a completely novel engineering methodology, a

description of which is the core contribution of this paper.

Developing a working system fully implementing the idea we

propose is a multi-person-year effort. In this paper we restrict our-

selves to explaining the core idea and to posing the main research

challenges one needs to address to obtain a working solution. That

way we hope that the software engineering research community

will join us in our quest for an optimal solution strategy.
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Section 2 presents the core concepts and challenges of our pro-

posal, while Section 3 situates the proposal into related work. Sec-

tion 4 concludes.

2 CORE CONCEPTS AND CHALLENGES

The main objective of this work is to enable self-adaptive, self-

optimizing static analyses. This, in turn, requires one to design and

implement the analysis according to a completely novel engineer-

ing methodology, yielding an architecture outlined in Figure 1. The

architecture fuses a number of concepts known from the area of

static program analysis with those of just-in-time program opti-

mizations, as we know it from application-level virtual machines.

Importantly, though, the concepts have been fused such that not

the program under analysis is the one that’s being optimized but

instead the just-in-time-optimization targets the static analysis itself !

In the following we outline the various core concepts and objec-

tives that Figure 1 presents.

1 Declarative definition language for static analysis. At the core

of our proposal is the following paradigm shift: to represent the

program analysis itself not in a general-purpose programming lan-

guage such as Java or C/C++, (nor a general-purpose logic program-

ming language such as Datalog) but rather in a domain-specific

language that is optimally amenable to domain-specific optimiza-

tions, i.e., optimizations that are only correct when taking into

account specific knowledge about the domain of static program

analyses. To give an example, some data-flow functions are dis-

tributive with respect over the merge operator, in which case one

can solve them more efficiently if this fact is recognized. [12] The

challenge in designing such a language is that it must have exactly

the right level of expressiveness: it must be expressive enough to

cover a reasonably broad set of possible static-analysis clients, yet

at the same time its expressiveness must be restricted enough such

as to allow for powerful automated domain-specific optimizations.

Moreover, the language must be easy enough for static-analysis

users, i.e., typically for software developers, to write and under-

stand, yet at the same time must be machine-readable as well. Using

the language, it should be possible to conveniently express also

large sets of static-analysis rules, as is common, for instance in secu-

rity code analysis tools, which commonly check programs against

hundreds of vulnerability patterns.

Challenge 1: The design and implementation of a domain-

specific language (DSL) for expressing static-analysis rules.

2 High-level intermediate representation. While the DSL above

must be easy for humans to understand, to enable automated op-

timizations of the static analysis we instead envision a dedicated

domain-specific intermediate representation (IR) of the static anal-

ysis, which is not designed to be optimally understandable by hu-

mans, but instead to be optimally amenable to domain-specific

optimizations, i.e., optimizations that are only correct when taking

into account specific knowledge about the domain of static program

analyses. The focus of the proposed high-level intermediate repre-

sentation is on optimizing static-analyses ahead of time, i.e., prior

to their execution. Similarly to query optimizations in database

research, such an IR will allow one to exploit synergies between

similar analysis rules, and to find an optimal evaluation strategy—at

this point independent of the analyzed program.

Challenge 2: The design, and implementation of a high-level

intermediate analysis representation, with the goal to allow ahead-

of-time analysis optimizations.

3 Low-level intermediate representation. The above ahead-of-

time optimizations have the goal to improve analysis performance

(while maintaining precision) without taking the analyzed program

into account. Yet, previous experience shows that the analyzed

program can have a great influence on what is the optimal con-

figurations for a static analysis of that program. [3, 15] We hence

desire a mechanism to allow domain-specific optimizations that

take program characteristics into account, allowing the analysis

configuration to be optimally tuned to the analyzed program while

the analysis is being conducted. This requires one to alter the analy-

sis execution just-in-time, or at least from one execution to the next.

While in theory this might be able by altering its high-level interme-

diate representation (Challenge 2), it is likely that one can benefit

from an additional low-level representation that is less declarative

but closer to the analysis’ actual execution. This also gives one

the opportunity to combine in the same representation not just as-

pects of the analysis but also aspects of the program to be analyzed.

Opposed to the high-level IR, to allow for just-in-time adaptation,

for the low-level IR it must be possible to alter the analysis repre-

sentation in place, potentially re-generating analysis code in the

fly, similarly to how current virtual machines re-generate program

code at runtime.

Challenge 3: The design, and implementation of a low-level

intermediate representation for just-in-time optimizations during

analysis execution, combining both aspects of the analysis and

the program to be analyzed.

4 Static-analysis profiler. A self-optimizing static analyzer, but

also a human static-analysis expert, will require deep insights into

the analysis’ own execution, and in particular its performance

hotspots. The fact that the analysis is self-adaptive actually makes

this harder than normal, as the analysis code that actually executes

is not code hand-written by the analysis designer, but instead code

generated from the analysis’ intermediate representation. Such a

self-adaptive design thus threatens to lose the link between the

analysis definition and its execution. To address this challenge, we

identify the objective of designing, implementing and evaluating a

dedicated profiling tool for self-adaptive static analyses. The profil-

ing tool is meant to automatically identify execution hotspots that

cause the analysis performance to degrade, for instance regions of

the analyzed program that cause the analysis to iterate for exceed-

ingly long times, or cause it to consume unusually large amounts or

memory. The profiler should moreover link back those performance

hotspots to the relevant fragments of the static analysis responsible

for those parts of the analysis execution, in the different IRs as

well as in the original analysis definition in our novel DSL. The

profiler also directly links back to our JIT analysis engine, which

we describe next.
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Figure 1: Workflow of the envisioned self-adaptive static analysis

Challenge 4: The design and implementation of a profiling tool

for static-analysis runs, providing traceability into the different

analysis representations.

5 Automated just-in-time optimization. The final step to towards

our main objective is to develop an optimization engine that uses

domain knowledge about the static analysis it executes, paired with

information from the profiled analysis run, to determine more op-

timal analysis execution strategies, and to trigger those strategies

through an automated self-adaptation. We envision this engine to

effectively implement a control loop, in which profiling information

is continuously processed to determine the optimality of the cur-

rent strategy, and to determine other strategies that might be more

efficient (or which may save more memory) during the remainder of

the execution and/or during the next analysis run. One challenge in

this space is to find the right machine learning algorithms to create

a reasonable situational awareness of the executing analysis, and

to draw the right conclusions from the observed profiles. Another

challenge lies in the analysis adaptations. Some simple adaptations

are implemented easily. For instance one can change a taint analysis

from forward to backward if encountering in a program signifi-

cantly more sources than sinks, thus yielding an analysis runs with

a comparatively low number of taints. Or else, when computing a

constant propagation, if observing that parts of a program conduct

linear arithmetic only, one can use an efficient IFDS-based [12]

tabulation solver to solve a linear-constant propagation problem

for those program parts. Some adaptations, however, might involve

more low-level adaptations of the executing analysis. For instance,

one might think of actually implementing parts of the analysis

using certain data structures, either tuned for runtime or memory

efficiency, depending on where more efficiency is required. To this

end, the optimization engine must be able to closely interact with

the low-level intermediate representation (Challenge 3).

Challenge 5: An optimization engine that gradually optimizes a

given analysis problem for precision and performance, based on

profiled analysis runs.

3 STATE OF THE ART AND RELATEDWORK

We next describe how related work from the state-of-the-art litera-

ture can fuel the research we propose here. Space restrictions force

us to only discuss the most related areas of research.

Application-level virtual machines. In terms of its architecture,

the solution we propose here has a strong similarity with the archi-

tecture of application-level virtual machines such as the Java virtual

machine (JVM). Their just-in-time compilers (JIT) profile the hosted

applications’ execution to optimize that very same execution on the

fly. Some virtual machines further include ahead-of-time optimiza-

tions and pool optimized code for efficient reuse on later runs.[5]

And also here one can observe a tradeoff between automation and

understandability: debugging and optimizing virtual machines is

notoriously hard, which is why researchers have developed ded-

icated tools for this purpose.[20] Those tools typically visualize

the executing program’s code in the different intermediate repre-

sentations on which the JVM itself operates. The main difference

between a JVM and its JIT to our proposal is that here we are not

executing general-purpose Java code but instead a specific static

analysis. Moreover, we seek to have domain-specific representa-

tions of this static analysis at all levels of its execution. Thus, while

one might, in fact, reuse ideas regarding the architecture and de-

sign of application-level virtual machines, the specific intermediate

representations, the transformations between them, and the opti-

mizations within them will greatly differ from those of existing

approaches.

Declarative languages used for static analysis. Not all static analy-

sis are implemented in Turing-complete general-purpose languages.

The static-analysis framework Doop [4], for instance, implements

its static analyses in the logic programming language Datalog. Us-

ing Datalog gives users the great advantage that the implemented

static-analysis rules are relatively simple to write, read and reason

about. The declarative nature of the language also means that—in

theory—users need to not be concerned with how the rules are

evaluated, as this decision is entirely left to the Datalog engine. Yet,

as past experience with Doop and similar approaches has shown,

to make Datalog-based analyses truly efficient, one still requires

optimizations on two levels.

First, automated optimizations on the level of the Datalog lan-

guage itself. Doop is frequently used in combination with highly

optimized Datalog solvers such as LogicBlox [1] or Souffle[6]. The

latter is a Datalog solver specifically designed for the purpose of

supporting static analyses: it translates the datalog rules into C code

implementing a highly optimized Datalog solver for the particular

rule set at hand. To some extent Souffle is thus similar to what we
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propose here, but the main difference of Souffle and all other Dat-

alog engines, compared to what we propose here, is that Datalog,

albeit being a logic programming language, is still a general-purpose

language. It is not domain-specific, and thus has no domain-specific

constructs that would make the static-analysis solution particu-

larly efficient to compute. In result, while users benefit from the

declarative nature of the language, they only benefit from auto-

mated general-purpose Datalog optimizations, which are limited

because they lack domain knowledge. A particular limitation of

Datalog, namely the lack of being able to express fixed-point it-

erations, which are commonplace in static analysis, triggered the

incarnation of the novel logic programming language Flix [11]. Flix

is essentially an extension of Datalog with certain primitives that

allows analysis writers to directly express fixed-point computa-

tion. Yet, the tool that currently implements Flix is, again, nothing

more but a general-purpose solver for the Flix language. It is not

a static-analysis tool, and does not support any kind of further

domain-specific optimizations.

Conceptual analysis frameworks. Some domain-specific optimiza-

tions that a just-in-time optimizer should consider for static analysis

can be obtained by choosing the optimal analysis framework. By

analysis framework we here mean a framework in the conceptual

sense. For instance, two major conceptual frameworks are known

to compute correct solutions for context-sensitive inter-procedural

analysis problems: the so-called call-strings approach and the func-

tional approach [14]. The call-strings approach has the advantage

that it can be applied to pretty much any static data-flow analysis,

specifically any such analysis that fits the monotone framework [7].

Yet, it has the drawback that it could analyze callee procedures

while distinguishing more contexts than necessary, thus unneces-

sarily wasting computation time. Moreover, one must bound the

amount of context the analysis uses, and choosing the bound poorly

might jeopardize performance, precision and even correctness [8].

The functional approach has the advantage of providing unlim-

ited context-sensitivity (hence no bound is required), yet is only

tractable for analysis problems whose merge operator is set union

and whose flow functions distribute over this merge operator—

so-called IFDS or IDE problems[12]. In cases where the analysis

problem fits such a framework, one has the advantage that one

can compute precise solutions (equivalent to the theoretically opti-

mal but generally uncomputable MOP solution [8]), and moreover

that highly efficient solution algorithms exist. Moreover, in recent

work, we were able to show that it is sometimes possible to decom-

pose such analysis problems that are actually not distributive, for

instance pointer analysis or general constant propagation, into sub-

problems that are, in fact, distributive. Thus they can be efficiently

solved using IFDS or IDE solvers, assuming some extra analysis

code that then composes the results of individual distributive com-

putations to the final analysis result. One goal of the optimization

engine we seek to develop here will be to identify the potential for

such a decomposition of analysis problems automatically.

4 CONCLUSION

We have presented the novel idea of enabling self-adaptive, self-

optimizing static analyses, by developing a dedicated domain-specific

language and multiple dedicated domain-specific intermediate rep-

resentations (IR) not to express programs but to express the analysis

itself. A novel low-level IR, in particular, is meant to represent how

a particular analysis executes on a particular program. This en-

ables just-in-time optimizations making use of both static-analysis

and program properties. We have presented an overall solution

architecture that has some resemblence to application-level just-

in-time optimizers, and have highlighted the core challenges the

community will face in developing a concrete solution.

REFERENCES
[1] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and
implementation of the LogicBlox system. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 1371–1382.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In PLDI 2014. ACM, 259–269.

[3] Eric Bodden, Laurie Hendren, and Ondrej Lhoták. 2007. A staged static program
analysis to improve the performance of runtime monitoring. In ECOOP 2007.
Springer-Verlag, 525–549.

[4] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifi-
cation of sophisticated points-to analyses. ACM SIGPLAN Notices 44, 10 (2009),
243–262.

[5] Peter F Haggar, James A Mickelson, and David Wendt. 2005. Single-instance
class objects across multiple JVM processes in a real-time system. (Jan. 11 2005).
US Patent 6,842,759.

[6] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis
of program analyzers. In CAV 2016. Springer, 422–430.

[7] John B Kam and Jeffrey DUllman. 1977. Monotone data flow analysis frameworks.
Acta Informatica 7, 3 (1977), 305–317.

[8] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. 2009. Data flow analysis:
theory and practice. CRC Press.

[9] Johannes Lerch, Johannes Späth, Eric Bodden, and Mira Mezini. 2015. Access-
Path Abstraction: Scaling Field-Sensitive Data-Flow Analysis With Unbounded
Access Paths. In ASE 2015. 619–629.

[10] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking Load-time
Configuration Options. In ASE 2014. 445–456.

[11] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From datalog to flix: A
declarative language for fixed points on lattices. In PLDI 2016. ACM, 194–208.

[12] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In POPL 1995 (POPL ’95). ACM, 49–61.

[13] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005. Weighted
pushdown systems and their application to interprocedural dataflow analysis.
Science of Computer Programming 58, 1-2 (2005), 206–263.

[14] Micha Sharir and Amir Pnueli. 1978. Two approaches to interprocedural data
flow analysis. (1978).

[15] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your
Contexts Well: Understanding Object-sensitivity. In POPL 2011. ACM, 17–30.

[16] Johannes Späth, Karim Ali, and Eric Bodden. 2017. IDEal: Efficient and Precise
Alias-aware Dataflow Analysis. In OOPSLA/SPLASH 2017. ACM Press. To appear.

[17] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In ISSTA 2012. ACM, 254–264.

[18] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical Virtual Method
Call Resolution for Java. In OOPSLA 2000. ACM, 264–280.

[19] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. 2000. Optimizing Java bytecode using the Soot
framework: Is it feasible?. In Compiler Construction (CC). Springer.

[20] Christian Wimmer, Michael Haupt, Michael L Van De Vanter, Mick Jordan, Lau-
rent Daynès, and Douglas Simon. 2013. Maxine: An approachable virtual machine
for, and in, java. ACM Transactions on Architecture and Code Optimization (TACO)
9, 4 (2013), 30.

[21] Xiao Xiao and Charles Zhang. Geometric encoding: forging the high performance
context sensitive points-to analysis for Java. In ISSTA 2011. ACM, 188–198.

[22] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas Rountev. 2014.
LeakChecker: Practical static memory leak detection for managed languages. In
CGO. ACM.

48


