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Abstract

In this paper I report on experiences gained from more than
five years of extensively designing static code analysis tools—
in particular such ones with a focus on security—to scale to
real-world projects within an industrial context. Within this
time frame, my team and I were able to design static-analysis
algorithms that yield both largely improved precision and
performance compared to previous approaches. I will give
a number of insights regarding important design decisions
that made this possible.

In particular, I argue that summary-based static-analysis
techniques for distributive problems, such as IFDS, IDE and
WPDS have been unduly under-appreciated. As my expe-
rience shows, those techniques can tremendously benefit
both precision and performance, if one uses them in a well-
informed way, using carefully designed abstract domains.
As one example, I will explain how in previous work on
BoOMERANG we were able to decompose pointer analysis, a
static analysis problem that is actually not distributive, into
sub-problems that are distributive. This yields an implemen-
tation that is both highly precise and efficient.

This breakthrough, along with the use of a demand-driven
program-analysis design, has recently allowed us to imple-
ment practical static analysis tools such as the crypto-misuse
checker CogniCrypt, which can analyze the entire Maven-
Central repository with more than 200.000 binaries in un-
der five days, although its analysis is flow-sensitive, field-
sensitive, and fully context-sensitive.
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1 Precision and Performance

Designing static analyses is not an easy task. I myself have
been working on and with static analyses since 2003, so a
little over 15 years. In hindsight, in the early days I have
made lots of beginner’s mistakes, but I also perceive that
still today many others are struggling as well in finding the
optimal design for the particular static analysis they want
to build. Because so many people struggle, one can easily
get to the point of also drawing wrong conclusions, one of

which I find to be the following.

There seems to be a general perception that static analyses, as
they are designed to become more precise, will also become
less efficient: “precision costs performance”. I have found
this to be wrong. If carefully designed, the opposite becomes
true: higher precision yields better performance.

This has to do with the fact that an analysis that lacks
precision generally suffers from a problem in the literature
sometimes described as “overtainting” [20]: due to the im-
precision, the analysis will propagate information to unduly
large parts of the program, in particular into program parts
where that information does not belong. This is true at all lev-
els: An imprecise call-graph analysis will cause information
to flow into callees that cannot actually be called at runtime.
An imprecise pointer analysis will cause information to be
propagated into aliases that cannot occur at runtime, etc.

Michael Hind has previously described this problem as
one of abstraction vs. approximation [2]: much previous
work on program analysis in general, and as Hind points
out on pointer analysis in particular, has focused on lossy
approximations rather than on more clever abstractions that
carefully determine which information can be ignored safely
without impeding precision. This paper here is exactly about
such abstractions.

A problem with the predominant perception “more precise
= slower” is that many people have come to accept the fact
that if they find their analysis to not scale, they should lower
its precision, for instance by selecting a cheaper-to-compute
call-graph or a cheaper-to-compute pointer analysis. In prac-
tice, however, I have found that, while this certainly buys
time in the early phases of the analysis, it wastes so much
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time and precision later on that one eventually ends up with
an analysis that is still inefficient and now also imprecise.

For this reason, in the past few years we have been con-
sequently developing static analyses that attempt to only
compromise on precision as a last resort. One important
point here is that, in order to be able to conduct a precise and
efficient client analysis (such as a taint analysis, typestate
analysis, shape analysis, etc.), one must also make sure that
the underlying pointer analysis is equally precise. This is
because if that is not the case, imprecision from the pointer
analysis will end up creeping into the client analysis, not
only causing it to report false information but also to waste
effort in computing unhelpful information.

Precise pointer analyses are key: In the past years we have
been developing highly precise pointer analyses that are
flow-sensitive, field-sensitive, and fully context-sensitive.
The largely added precision of those analyses has helped us
to drastically boost both the precision and performance of
the client analyses.

2 Coping with all those “sensitivities”

One important question, of course, is how to design such
analyses, both pointer and client analyses, in such a way that
they actually maintain efficiency when applied to large code
bases despite the many “sensitivities” I mentioned above.
Context-sensitive analyses are notorious for creating mil-
lions if not billions of contexts for larger code bases, which
leads to obvious efficiency problems. Flow-sensitive analyses
do not compute a global program state but instead must as-
sociate potentially different analysis states with every single
program statement, for possibly every single calling con-
text, increasing the efficiency challenge even more. Field-
sensitivity largely increases the analysis’ abstract domain:
where a field-based analysis represents both field accesses
al.f and a2.f as A. f (assuming both a1 and a2 have type
A), and a field-insensitive analysis represents both field ac-
cesses a.f and a. g as the same a. *, a field sensitive analysis
must keep both abstractions separate. In practice, however, I
have found that such highly precise analyses can be designed
to also be highly efficient if one incorporates the following
ingredients.

The combination of a demand-driven analysis design and
an efficient, distributive static-analysis framework can yield
analyses that are both highly precise and efficient. Added
performance can be achieved through concise procedure
summaries.
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3 Demand-driven analysis

A demand-driven analysis only analyzes parts of a program,
in response to a given query. [22-25] Demand-driven analy-
ses are not the right tool for every application context. Let
us assume, for instance, that we are designing an analysis
to detect potential data races. In essence, without any fur-
ther information, such a race could occur at every single
field-write, of which you will find thousands and thousands
in large applications. In such scenarios, a demand-driven
analysis would have to inspect every single such field-write,
and start a demand-driven analysis from there. Those are sit-
uations in which it may actually well be simpler and faster to
instead conduct a whole-program analysis in the first place,
that simply computes through the entire program in one
large, uniform iteration.

My group, however, has devised static code analyses in par-
ticular to uncover security vulnerabilities. As we observed,
20 out of the SANS 25 vulnerabilities (the most commonly
observed vulnerabilities, as reported by SANS) [3] can be
casted as taint-analysis or typestate-analysis problems. Both
types of analysis have in common that they reason about
API calls, and relationships between them. A taint analysis
typically seeks to identify flows from a given source API to
a sink API, which have not passed to an appropriate sani-
tization API Typestate analyses on the other hand seek to
determine whether one uses APIs incorrectly by issuing calls
to objects in incorrect orders or with incorrect arguments.

But both types of analyses share another common trait:
they can both benefit from very quickly “homing in” on some
few calls to the relevant APIs, and then conducting a pre-
cise, demand-driven analysis from there. In practice we have
found that even in situations where we have complex rule
sets that concern dozens of (for instance security-relevant)
classes, these classes are typically only used in small parts
of the program. Finding those use sites is cheap, requiring
nothing more than a syntactic pattern matching. Moreover,
if the demand-driven analysis then bootstrapped from those
sites is highly precise, it can restrict its own computation to
only small parts of the program, typically just a few methods.

Another advantage of demand-driven analysis is also a
positive effect on precision: whole-program analyses have
a larger probability of encountering program constructs at
which coarse-grain approximations must take place. The im-
precision this causes can then propagate to other parts of the
analysis. As a demand-driven analysis inspects smaller parts
of the program, they are less vulnerable to this problem. [4]

This way of conducting analyses has one limitation that
my team and I have learned to accept: since, in essence,
the analysis tries to infer as much information as possible
locally, around the sites of “interesting calls”, one lacks the
information about whether or not those calls will actually be
reachable at runtime. In essence this means that an analysis
designed that way has the tendency to report vulnerabilities
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also in potentially dead code. Some might perceive this as an
issue, but my personal opinion is that vulnerabilities should
not exist anywhere, including in dead code, as this code
may become alive eventually. Large software development
companies are with me on this issue, for instance SAP SE,
which follows a “zero vulnerability” policy. [18]

Another caveat of demand-driven analyses is that in some
corner cases the analysis for an individual query might—
despite all efforts—still compute a long time. In those cases it
is common to abort queries after a given time frame or bud-
get has expired. [22-25] In those cases, faced the challenge
of whether and how to nonetheless provide the client with
some answer to the query. Some so-called refinement-based
approaches opt for soundness in those cases, returning more
imprecise results of a simpler to compute analysis. [23, 25]
Others accept unsoundness by returning incomplete infor-
mation.

Demand-driven analysis has the benefit of being efficient,
to a large extent, irrespectively of the size of the overall
program. This is because, if designed precisely, it can restrict
its own computation to the set of local areas in that large
program that actually matter to the analysis.

4 Summary-based analysis frameworks

If we accept that demand-driven analysis is useful in some
application contexts such as software security, what is the
added benefit of summarization and distributivity? Proce-
dure summaries are important for a very simple reason: they
avoid the repeated re-analysis of identical code, in particular
of the same procedures. For decades, ever since the founda-
tional paper by Sharir and Pnueli [19], researchers have been
making inter-procedural static analyses context-sensitive by
one of the two following means:

1. In the call-strings approach, one basically conducts a
regular context-insensitive analysis in the monotone
framework [5] but lifts it to a context-sensitive one
by annotating data-flow facts with context informa-
tion, typically k-limited calling-context strings, i.e.,
sequences of method calls that resemble the call stack.
The call-strings approach typically goes without sum-
marization.

2. Inthe functional approach, one obtains context-sensitivity

by computing, at the first time a call to a procedure
p is encountered, a reusable summary resembling the
effects that a call to p will have in terms of the static
analysis. This summary is then applied anew in every
further calling context, i.e., at every other call to p.

To illustrate the benefit of summarization, consider the
example in Listing 1. Assume we wish to conduct a taint
analysis that ought to warn us when private keys are writ-
ten to log files. As we can see, the program does handle a

1 void main() {

2 byte[] pri = privateKey();

3 byte[] pub = publicKey();

4 byte[] priAlias = foo(pri); //context ci

5 byte[] pubAlias = foo(pub); //context c2
6 ..

7 log (pub);

8}

9

10 byte[] foo(bytel[]l ba) {

11 //some hard-to-analyze code omitted

12 return ba;

13 3

Listing 1. Taint analysis benefiting from summarization

private and public key, and logs a key but that key is actually
the public one. To make that distinction, however, as both
the private and public key are passed to foo, one requires a
context-sensitive analysis. Such an analysis can be conducted
both using the call-strings and the functional approach.

In the call-strings approach, one would analyze the pro-
cedure foo twice, once for context c1 and one for context
c2. While this would yield the correct, precise result “pri
does not leak to log”, it wastes computation: irrespective
of what parameter object foo is called with, it returns that
same object. If we assume that foo has no further side-effects,
but does contain some hard-to-analyze code, then we would
end up analyzing foo twice, without gaining anything, but
wasting precious analysis time. Analyzing a method twice
does not cost that much time, but due to method-call nesting,
such an approach can easily incur an exponential blowup,
which is the reason for why also current papers that describe
approaches built on top of the call-strings approach typically
report the need to create millions if not billions of contexts
for realistic program. Every single such context means the
re-analysis of a potentially hard-to-analyze procedure!

Now next let us consider the summary-based approach
instead. There are many summary-based approaches, includ-
ing IFDS [14], IDE [17], WPDS [15] and VASCO [13], but if
used correctly, all of them would behave the same on this
simplified example. Upon encountering the first call site c1,
the analysis would analyze foo but summarize its effects. For
the sake of this example let us assume that the summary is
simply:

ba > <ret>

This summary indicates that the procedure returns its ar-
gument ba, no matter what that argument actually is. Impor-
tantly, this summary is reusable: upon encountering call site
c2, the analysis will map also the argument object pub to
ba, and would see that a summary for ba has already been
computed. It would then simply apply that summary at c2,
propagating information from pub to pubAlias, without hav-
ing to re-analyze foo.
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By avoiding the repeated re-analysis of callee procedures for
different calling contexts, the use of procedure summaries
can drastically reduce the complexity of the static analysis.

Note that procedure summaries such as the one above
actually represent summary functions. Such functions can
have representations that are either extensional or inten-
sional. An extensional summary defines a function by asso-
ciating inputs with outputs. An extensional definition of the
increment-function could look like this:

O0—1,1—>2,2—3,...
As can easily be seen, extensional summary definitions have
at leats two problems: First they are very verbose, making
it hard to store them compactly. Second, to be finitely rep-
resentable at all, they typically must be restricted to a finite
subset of inputs.

An intensional definition of the increment function simply
looks like this:

Ax. x> x+1

Note the following differences: Firstly this definition is much
more compact than the extensional one. Secondly, it rep-
resents all possible inputs to the function. This is because
the intensional definitions abstracts from concrete parame-
ters through its input variable x, and explicitly describes the
function’s effect on x.

When designing procedure summaries, one should strive for
intensional (opposed to extensional) summary definitions,
as they are compact and represent the entire possible input
space.

The summary “ba > <ret>” for the example from Listing 1
is compact because it is effectively intensional: concrete input
variables such as a1 and a2 are abstracted away and compactly
represented by foo’s formal parameter ba.

In the past, many fellow researchers and I myself have un-
consciously neglected this guideline, resulting in summaries
that were effectively extensional. As I will explain in the
following, this causes problems with summary reuse.

When applying summary-based techniques such as IFDS,
IDE, WPDS and VASCO to static-analysis problems blindly,
without the proper understanding of the summarization ef-
fects, this can quickly void all advantages that summarization
would normally give. One reason for this is that in such cases
summaries are frequently extensional.

As an example, let us consider the example in Listing 2.
Assume that this time we wish to conduct a flow-sensitive
and context-sensitive points-to analysis. Typical points-to
analyses use so-called store-based abstractions [6], i.e., model
objects through allocation sites. The example contains two
such sites: alloc1 and alloc2.

Eric Bodden

14 void main() {
A al = new A(); //allocl
A a2 = new A(); //alloc2
17 A alAlias = foo(al);
A a2Alias = foo(a2);

//context c1
//context c2

21 <T> T foo(T o) {

22 //some hard-to-analyze code omitted

23 return o;

24}

Listing 2. DPointer analysis benefiting from

summarization

Unfortunately, when propagating allocation-site informa-
tion through the program blindly, with a summarizing algo-
rithm such as IFDS, IDE, WPDS and VASCO, this can easily
destroy all summarization. For the example, assume that be-
fore line 17 we are tracking the two pieces of information
(a1, {alloc1}) and (a2, {alloc2}), denoting that the objects re-
ferred to by a1 and a2 could have been created by alloct and
alloc2 respectively, i.e., points-to any object created at the
respective statement. Now upon encountering the first call to
foo at c1, the analysis would analyze the callee procedure and
would, in fact, create a summary, indicating the following
mapping:

(0, {alloc1}) > (<ret>, {alloc1})

Note how this summary contains not only information that
is local to the callee foo (the identifier o and the return value
<ret>) but also information that is context-dependent: the
allocation site alloc1 matters in this particular calling context
c1 and (in this program) no other. This is a bad smell.

Procedure summaries should contain only information that
has a local meaning to the procedure being summarized. Typ-
ically this information relates to variables and pointers that
are in scope at this place. Store-based heap abstractions [6]
are not a good fit, as they tend to propagate non-local infor-
mation.

The problem with the above summary is that—despite
being a valid summary—it is not very much reusable. It can
only be reused in cases where foo again is called with the very
same points-to set. Even in cases where individual elements
were added or removed from the points-to set the summaries
would not match, and could not be reused. This is also for
a good reason, as any changes to the points-to set could
change the effect that the call to foo has on the computation,
which should then actually result in a different summary.

This is also what would happen in the example in Listing 2:
At c2, the analysis would analyze this time the procedure foo
with an initial analysis information of (o, {alloc2}), which
does not match the left-hand side of the already-created
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summary—due to the differing points-to sets. Hence, the
analysis would re-analyze foo again, essentially resulting in
an equivalent, yet still slightly different, second summary:

(0, {alloc2}) > (<ret>, {alloc2})

The important point about summary-based analyses is not
to create summaries but to reuse them. Hence, much care
must be taken to use abstract domains that are likely to yield
reusable summaries.

As alluded to earlier, one key problem with those two sum-
maries is that they are effectively extensional: by naming
allocl and alloc2 they are explicitly enumerating the pro-
cedure’s input space (and hence also that of the summary
function).

5 Storeless heap models with access paths

The definition of an appropriate abstract domain really is the
key to making summary-based analyses useful. In the above,
example the use of a store-based heap model, incorporating
allocation sites, was obviously not a good idea, since it causes
the allocation sites to be propagated throughout the program,
to places where they do not belong, where they have no
meaning: within procedure foo, the statements alloc1 and
alloc2 are not even in scope, they have no meaning there.

The trick is therefore to find different representations, in
particular heap representations, that allow for local reasoning.
Luckily, a number of such representations exists, and they all
fall into the category of what others have previously called
storeless heap representations. [6] Essentially, one way or the
other, all those representations encode what in the literature
is known as access paths. An access path has the following
form:

1.f.g.h

Here 1 is a local variable, and f.g.h is an example of a se-
quence of field accesses through which one can access the
object in question, given 1. The length of an access path is
given by the length of the sequence of fields. For example,
the access path 1.f.g.h has length of 3, the access path 1 with
an empty field sequence has length 0.

An important invariant that heap representations based on
access-paths should enforce is that all access paths are locally
valid: for each access path rooted in a local variable 1, this
access path should only ever be associated with statements
at which 1 is in scope.

The above property is a litmus test for any flow-sensitive
static-analysis implementation: if you find yourself propa-
gating access paths to where they are out of scope then you
are very likely doing something wrong.

Now with access paths in mind, let us again consider the
example from Listing 2. In recent work we have designed,

implemented and evaluated a flow-sensitive pointer analysis
called BOOMERANG, that for the first time uses a heap abstrac-
tion solely comprising locally meaningful information, in
the form of access paths. In the example, the analysis would,
at c1, represent the object pointed to by a1, and therefore also
pointed to by the formal parameter o, not by its points-to
set but instead solely by the access path o. This then causes
the summary-based analysis to instead create the following
concise summary:

0 — <ret>

Note that this summary isreusable. At call site c2, the analysis
will map a1 to o as well, and this o matches the left-hand
side of the summary rule, causing the analysis to skip any
further inspection of foo, and to directly apply the summary
instead. Note how this summary also comprises method-
local information only: both o and <ret> are in scope within
foo.

Access paths have one inherent limitation: to obtain a
finite domain, their length must be bounded. This can be
achieved through simple k-limiting. A better approach, how-
ever, is to encode access paths through so-called access
graphs. [7] Access graphs are essentially finite-state ma-
chines whose induced regular language represents an infinite
set of access paths. This allows one to efficiently represent
access paths for instance of the form 1. (next.prev)x, which is
obviously very beneficial when dealing with recursive data
structures.

My previous explanation of the example in Listing 2 left
open one important question: some client analyses require
information not just about pointer relations but actually
also about allocation sites, for instance to determine the
possible runtime type of a pointer in call-graph analysis. In
BOOMERANG this is achieved by actually creating a new IFDS
solver for each allocation site, while the various IFDS solvers
all share the same set of procedure summaries. This provides
access to the allocation sites where required.

6 Distributive analysis frameworks

An important limiting factor of summary-based static analy-
ses is that not all static analyses can be compactly summa-
rized. In general, a callee procedure can apply arbitrarily com-
plex operations to the values the static analysis reasons about,
and in arbitrarily complex combinations of those operations.
As soon as loops or recursion are involved, it might thus not
only be hard but impossible to summarize just any effect
that a callee procedure may have. The static-analysis frame-
work VASCO does allow one to conduct a context-sensitive
analysis by creating summaries for any static-analysis prob-
lem that fits the monotone framework, but those summaries
always comprise the entire abstract state reaching the callee
procedure: if D is the domain of data-flow facts, then VASCO
computes summaries of the form 2° — 2P. The problem
with this is that as soon as even the tiniest fragment of that
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25 void main() {

26 Pair<String> pl1 =
makePair (secretKey (), secretKey());
27 Pair<String> p2 =

makePair (secretKey (), publicKey());

30 <T> T makePair(T a, T b) {

31 Pair<T> ret = new Pair<T>();
32 ret.left = a;

33 ret.right = b;

34 return ret;

35 %}

Listing 3. Example illustrating the advantage of
pointwise summaries

abstract state, i.e., an element within the input set, changes
from one call to the next, the computed summary cannot
be reused any more, hence necessitating a re-analysis of the
callee procedure, and the creation of another summary for
the newly encountered abstract state.

6.1 The effect of distributive flow functions

Reps et al. have shown with IFDS that one can very efficiently
create procedure summaries in cases where the analysis is
distributive over the merge operator, i.e., where for all flow
functions f and abstract domain values x, y it holds that
f(x)U f(y) = f(x Uy), and where the problem is a subset
problem, i.e., where LI is defined as set union. For problems
that have this property, one gains the big advantage of being
able to produce independently reusable pointwise summaries
of the form D — D:

To understand the effect this has, consider the example
in Listing 3, again with a taint analysis tracking the value
of the secretkey(). At the first call to makePair, an approach
such as VASCO, that does not assume distributivity, would
create a procedure summary such as:

{a,b} > {<ret>.left,<ret>.right}

This summary indicates that after the call both <ret>.left
and <ret>.right are tainted, as {a,b} were tainted before the
call. Now at the second call to makePair, the abstract inputs
to the callee are different: this time only the first parame-
ter is tainted, but not the second parameter b. Because the
summary is not point-wise, it can only be reused as a whole,
which in this case is not applicable. VASCO would hence
have to re-analyze the callee, producing a second summary:

{a} P {<ret>.1eft}
IFDS, IDE and WPDS are frameworks that assume dis-
tributive flow functions, but thereby allow the creation of
point-wise summaries. In the same example, at the first call

to makePair, such frameworks would create two independent
summaries, as follows:

Eric Bodden

{a} o {<ret>.1left}

{b} > {<ret>.right}
Now at the second call to makePair, where only a is tainted but
not b, the analysis can nonetheless reuse the first of the two
summaries: it states that as soon as a is tainted, so becomes
<ret>.left—independently of everything else.

Distributive frameworks have the advantage of being able
to produce point-wise summaries that are highly reusable,
because summaries can be reused on the level of individual
elements of the abstract domain.

6.2 Distributive framework = precise solution

But distributive frameworks have another big advantage:
optimal precision. The optimal solution to any static analysis
problem is the so-called meet-over-all-paths solution, also
called MOP. [5] In practice, this solution can usually not
be computed: Rice has shown that any non-trivial static
analysis problem is undecidable, and hence its MOP-solution
cannot be computed. [16] This is exactly why practical static
analyses approximate the MOP solution through a maximal-
fixed-point solution, also called MFP. The MFP solution is
hereby guaranteed to be a sound over-approximation:
MOP C MFP

This relationship is guaranteed by the requirement that
within the monotone framework that is used to compute
the MFP solution all flow functions must be monotone: for
all flow functions f and abstract domain values x, y it holds
that:

fE)Ufy E flxuy)
As already explained above, for any distributive analysis
problem the following stronger condition holds:

fEUfy) = flxuy)
From this it also follows directly that for such problems:
MOP = MFP

This is very important to note:

If one can manage to precisely encode a problem in a distribu-
tive framework, then one can solve it with full precision!

6.3 A distributive encoding of pointer analysis

Unfortunately, though, not all problems are distributive. Prob-
lems generally become non-distributive when the result of
computing a flow function depends on more than one in-
put value. In constant-propagation this occurs at statements
such as a = b+c, where the analysis can precisely compute
the result a only when knowing b and c. Very unfortunately,
points-to analysis is also non-distributive: when encounter-
ing an assignment such as a.f = o then the analysis must
associate o not just with a. f but all its aliases. For this reason,
for a long time it has been believed that it is impossible to
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36 void main(){

37 x = new 0();

38 y = new 0();

39 z = new 0();

40 foo(x,y,z); //cl
41 u = new 0();

42 vV = u;

43 foo(u,v,z); //c2
44}

45
46 <T> T foo(T a, T b, T c){

47 a.f = c;
48 return b.f;
19 3}

Listing 4. Example illustrating unsoundness of
pointwise summaries

precisely encode pointer analysis in a distributive framework.
Again in our recent work on BOOMERANG we showed that
this is not entirely so:

To a large degree, one can precisely encode pointer analysis
as a distributive static-analysis problem.

I invite the interested reader to refer to details in our ECOOP
publication on BOOMERANG [22]. For here, suffice it to say
that the trick is to encode in a distributive framework—in this
case in IFDS—everything but the processing of those state-
ments that require a non-distributive treatment, in this case
heap assignments. For most of its computation, BOOMERANG
uses IFDS with efficient, pointwise procedure summaries
over access graphs. This allows it to not only compute results
very efficiently but also with maximal precision. BOOMERANG
is also demand-driven, and itself makes use of this fact: at
heap assignments of the form a.f = o, BOOMERANG calls itself
to recursively compute all aliases of a.! Once the result of this
query has been computed, it is incorporated back into the
IFDS solver, which continues its own efficient distributive
analysis. Also note:

When designing demand-driven summary-based analyses,
it is beneficial to define summaries in such a way that they
can be also reused across different (but similar queries).

BooMERANG follows this idea: it allows one to reuse sum-
maries across partial pointer-assignment chains.

Heap assignments are just one of several such “points of indirection”. Our
original paper on Boomerang [22] lists all the ones that are relevant for Java.
Languages with more flexible pointer accesses, such as C, require additional
points of indirection.

Unsoundness in using summaries

BOOMERANG’s distributive encoding of points-to relation-
ships comes with a caveat, though, with respect to the sound-
ness of some computed summaries. To illustrate, consider
the example code in Listing 4. Here main calls foo at the two
calling contexts c1 and c2. At c1, the variables x, y and z point
to separate objects, at c2 u and v, and therefore formal param-
eters a and b in foo alias. Now if a summary-based analysis
were to use for this example the distributive encoding pre-
sented above, this could have the following effect. Suppose
the analysis first processes call site c1. Since at c1 we have
no aliasing, one would compute for ¢ in foo this simple sum-
mary:
cH> {c, a.f }

In particular, this summary indicates—correctly—that the
return value does not depend on c. Now suppose the analysis
processes call site c2. Since it has processed foo with the
information “c” before, it finds that it should simply reuse
the summary we had computed already at c1. This is unsound,
however: a sound summary for c at c2 would look like this:

¢ {c, a.f,b.f, <ret>}

In particular, it would have to indicate a tainted return value
contains a copy of the pointer c.

Such unsoundness might be unacceptable to some client
analyses, which is why in our implementations we have in-
cluded the options to disable summaries. Our experiments
show that even without summaries the concise domain that
the distributive encoding provides lowers the analysis time
significantly in comparison to analyses that use more com-
plex encodings—while providing superior precision.

Also, my group has a strong focus on developing security
code analyses to find security vulnerabilities, and in this
application context, we have learned that developers greatly
prefer approaches that indicate actual vulnerabilities rapidly
and with high precision over approaches that are sound
but suffer from false positives and lack efficiency. In such
scenarios, the above distributive encoding hence makes a
lot of sense even with summaries, despite a potential for the
unsoundness this may entail.

The unsoundness could be avoided by using more complex
summaries that forego being reused in contexts in which they
would be unsound to use, but at the obvious expense of losing
some reuse potential, and with this efficiency. Another way
to limit the unsoundness is to share summaries only when
they relate to the same abstract objects. This is a technique
that we implemented in Boomerang.

7 Demand-driven analysis as a design
paradigm
The general idea of demand-driven analyses carries, in my

view, a huge potential: in recent work on a static-analysis tool
called CogniCrypt [8, 9] (http://www.cognicrypt.org/), we
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were able to show how one can chain a number of different
demand-driven, distributive computations such that jointly
they solve a complex real-world static-analysis problem. Cog-
niCrypt is a tool to identify misuses of cryptography APIs,
and it does so through a combination of a demand-driven
value analysis, typestate analysis and pointer analysis. Cog-
niCrypt combines those analyses in the following way: First
the tool syntactically scans the program’s code for method
calls of interest. Typically the tool must then analyze the
order in which those calls are issues on certain objects, and
the parameter value passed to these calls.

CogniCrypt thus uses a demand-driven typestate analysis
to identify call sequences, and a demand-driven value analy-
sis to determine possible parameter values. Both are imple-
mented in a distributive way, and both, when encountering
a heap access, use BOOMERANG to efficiently and precisely
compute pointer information.

While CogniCrypt resembles one concrete instantiation
of this methodology, with IDE* we have presented a general
framework to implement such analyses in this fashion. [21]
IDE# in particular allows anyone to easily implement field-
sensitive static analyses in IDE, without having to worry
about aliasing: IDE# automatically takes care of propagating
information into aliases and of applying strong updates [10]
where possible.

(We have recently succeeded in creating even complex client|
analyses in a very precise and efficient way by implement-
ing them as a combination of multiple distributive, demand-
driven analyses that call each other recursively. This has
many advantages over previous approaches that attempt
to solve multiple problems within one single analysis us-
ing a complex abstract domain with non-distributive flow
functions: every single demand-driven analysis has a small
abstract domain restricted to “its” analysis problem, often

\facilitating a distributive encoding and concise summaries. )

Implementing analyses that way has many nice proper-
ties: First, the abstract domain of each individual analysis
(typestate, value, pointer) is concise, and hence can yield
highly reusable summaries. Second, each individual imple-
mentation is distributive, meaning that those summaries are
point-wise, increasing their reuse potential. Third, also be-
cause of distributivity, the results obtained are highly precise.
As explained at the beginning of this paper, this precision, in
turn adds even more efficiency. Combined with the demand-
driven nature of the analyses, one arrives at a very efficient
solution. Again the key to success here is the use of storeless,
i.e., access-path-based abstractions.

Of the three distributive frameworks IFDS, IDE and WPDS,
weighted pushdown systems (WPDS) is the most general
one. IFDS is essentially restricted to computing summaries
in the form of simple mappings. This is sufficient for taint
analysis such as the one in Figure 1 because here the domain
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is very simple and restricted to static program constructs,
namely variables and field accesses. More complex analyses
such as constant propagation reason about runtime values.
Those analyses are better expressed in the IFDS extension
IDE. If one were to express constant propagation in IFDS,
this would be possible only with extensional summaries,
with all the aforementioned problems those incur. In IDE,
one can express distributive summary functions such as the
increment function I mentioned earlier: Ax. x +— x + 1. The
WPDS framework has an identical expressiveness to IDE.
Yet, WPDS allows for a more compact representation of the
static-analysis data structures and also allows for a relatively
simple synchronization of multiple analyses. With WPDS,
essentially the entire static analysis can be computed within
stack automata. In recent, unpublished work we have mi-
grated Boomerang and IDE? from IFDS, respectively IDE to
WPDS and have in many cases observed significant speedups,
which were obtained by representing both context-matching
and field-write/read-matching as WPDS problems.

8 A note on sparse analyses

A large number of recent works has recently presented so-
called sparse analyses [1, 11, 12, 25]. The idea behind sparse-
ness is to conduct data-flow analyses not along the regular
program’s control-flow graph (CFG) but rather along a more
compact definition-use graph, also called value-flow graph
(VFG). In my eyes, this compactness is also the only major
advantage of the technique. Hence, while sparseness cer-
tainly allows for a more efficient analysis in general, one
must also account for the fact that the creation of the VFG
from the CFG does not come for free. So far, it seems that
all approaches that have used sparseness, and have benefit-
ted from it, were based on the call-strings approach and/or
used store-based heap abstractions, thereby hindering sum-
marization effects as I explained above. Since the approach
described in this work follows a fundamentally different phi-
losophy, so far we did not see the need to make our analyses
sparse. Also, due to the demand-driven nature of most of
the analyses that we build, it is unclear whether the time
to build the VFG would not outweigh the time savings the
sparse analysis might yield—an interesting open research
question.

9 Conclusion

In this work I have shown that—using the right design tricks—
one can arrive at a very effective design, providing both high
efficiency and precision, in particular for such static analyses
that are not exhaustive but instead can safely focus on some
relevant parts of a given program. The first essential idea is
to execute the analysis in a demand-driven way, the second
to use small, concise abstractions within in a distributive
framework such as IFDS, IDE or WPDS. As I have shown,
one can successfully encode within those frameworks also
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non-distributive problems such as pointer analyses to some
large extent. Concise abstractions yield small domains, which
in turn allows one to store highly reusable procedure sum-
maries. Such summaries can speed up the computation even
more, but sometimes at the expense of soundness.

Demand-driven analyses become particular powerful when
used in combinations: the possibility an analysis can at any
point compute additional information on demand, either
by calling other demand-driven analyses or by calling itself
recursively, opens up many possibilities that one does not
easily obtain with traditional algorithms.
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