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Runtime Verification of Crypto APIs:
An Empirical Study

Adriano Torres , Pedro Costa , Luis Amaral , Jonata Pastro , Rodrigo Bonifácio , Marcelo d’Amorim ,
Owolabi Legunsen , Eric Bodden , and Edna Dias Canedo

Abstract—Misuse of cryptographic (crypto) APIs is a note-
worthy cause of security vulnerabilities. For this reason, static
analyzers were recently proposed for detecting crypto API
misuses. They differ in strengths and weaknesses, and they
might miss bugs. Motivated by the inherent limitations of static
analyzers, this article reports on a study of runtime verification
(RV) as a dynamic-analysis-based alternative for crypto API
misuse detection. RV monitors program runs against formal
specifications; it was shown to be effective and efficient for
amplifying the bug-finding ability of software tests. We focus
on the popular JCA crypto API and write 22 RV specifications
based on expert-validated rules in a static analyzer. We monitor
these specifications while running tests in five benchmarks. Lastly,
we compare the accuracy of our RV-based approach, RVSec,
with those of three state-of-the-art crypto API misuses detectors:
CogniCrypt, CryptoGuard, and CryLogger. Results show that
RVSec has higher accuracy in four benchmarks and is on par
with CryptoGuard in the fifth. Overall, RVSec achieves an
average F 1 measure of 95%, compared with 83%, 78%, and 86%
for CogniCrypt, CryptoGuard, and CryLogger, respectively. We
highlight the strengths and limitations of these tools and show
that RV is effective for detecting crypto API misuses. We also
discuss how static and dynamic analysis can complement each
other for detecting crypto API misuses.

Index Terms—Security vulnerability, crypto API misuse, run-
time verification

I. INTRODUCTION

DEVELOPERS often use cryptographic (crypto) APIs to
protect sensitive data [1], but incorrect usage of crypto

APIs can make software vulnerable to attack. For example,
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using an insecure block cipher crypto schema (e.g., AES al-
gorithm with the ECB mode of operation)1 might compromise
system security [2], [3]. This article is motivated by the observa-
tion that developers often struggle to comprehend the low-level
requirements that are needed to correctly use crypto APIs [1],
[4], [5]. Also, even though recently proposed static analyzers
are quite effective in detecting crypto API misuses [6], [7], [8],
we show in this article that they are still limited for detecting
certain types of misuses.

The threat posed by security vulnerabilities in today’s world
is serious enough to warrant research on complementary ap-
proaches for crypto API misuse detection. So, in this article,
we study the use of runtime verification (RV) as a dynamic-
analysis-based approach for detecting crypto API misuses and
compare its accuracy with those of state-of-the-art static and
dynamic analyzers. RV inputs are formal specifications, the
code to be checked, and input data on which to run the code.
An RV tool instruments the specifications into the code so that
related program events are signaled at runtime and checked
against the specifications. RV then outputs violations if the
program violates any specifications.

As with any dynamic analysis, RV offers two main advan-
tages over static analysis tools for crypto API misuse detection.
First, it may be feasible to use RV to find crypto APIs misuses
during testing. RV is effective and efficient for amplifying the
bug-finding capability of existing software tests [9], [10], [11],
[12], [13]. Second, RV can complement static analysis—which
has good coverage but often over-approximates the program
behavior, leading to false alarms [14]. Instead, a bug-free RV
tool with perfect specifications generates no false positives but
may have poor coverage.

The benefits of using RV for crypto API misuse detection
must be balanced with the costs of writing formal specifications
and of runtime overheads. We amortize formal specification
costs by writing specifications for widely-used crypto APIs. So,
a crypto API specification can be checked without modification
on all clients of that API. We also measure the runtime over-
heads of using RV to check one version of programs, but, in
practice, techniques exist that can be used to significantly speed
up RV during software evolution [9], [10].

1A block cipher requires a mode of operation to encrypt plain text of
arbitrary length.
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Evaluating the accuracy of RV is particularly challenging
because manually writing specifications is notoriously difficult
[15], [16], [17]. In particular, translating crypto recommen-
dations, informally available in crypto standards, CVEs, and
CWEs, for a specific crypto API and RV implementation re-
quires a thorough validation process. Moreover, although spec-
ification miners exist [18], they are often imprecise [19] and
can infer API misuses as specifications [20]. Unfortunately, our
research also reveals that existing datasets of crypto API uses
and misuses in the literature [21] contain test cases that fail to
execute—and thus, without fixes, are inadequate to conduct ex-
periments using dynamic analysis—and mislabel many pieces
of secure code as vulnerable. These problems with existing
datasets might have led to inflated performance numbers of
some static analysis tools in prior work.

To obtain RV specifications, we use 22 CrySL rules [6], [20]
that were previously validated by independent security experts.
We manually translate these CrySL rules into 22 JavaMOP
specifications. JavaMOP is a natural choice for our investiga-
tion, particularly because it is flexible to model the specifica-
tions supported by existing crypto static analyzers. For example,
all 22 specifications that we write define a combination of con-
straints on object state, parameters, and ordering on method
calls.

We were not able to check ordering constraints using the
CryLogger tool [22]. CryLogger is a recently-proposed dy-
namic analysis for detecting crypto API misuses. However,
CryLogger’s design relies on API code instrumentation, instead
of client code instrumentation, leading to crypto API warn-
ings that one could hardly integrate into empirical assessments.
Furthermore, unlike our JavaMOP approach, CryLogger lacks
the capability to verify ordering constraints on method calls.
This limitation hinders the CryLogger’s ability to detect specific
crypto API misuses, such as Missing Cryptographic Step (CWE
325) [23].

To obtain ground truth for comparison, we adapt five pub-
licly available Java benchmarks [21], [24], [25], [26] from the
literature and security organizations such as the US National Se-
curity Agency (NSA) and the Open Web Application Security
Project (OWASP). These benchmarks were originally curated to
compare static crypto API misuse detectors. Altogether, these
benchmarks contain 801 test cases, consist of more than 350K
lines of code (LOC), and are a mix of small Java programs
(14–52 LOC) and open-source programs (ranging from 6,788
to 164,335 LOC). Some of these programs involve tricky and
complex uses and misuses of crypto APIs, and we manually
inspect and (re)label all the crypto API uses and misuses in the
benchmarks.

We compare the Precision, Recall, and F1 score of our RV-
based approach (RVSec) with those of state-of-the-art static
analyzers—CogniCrypt and CryptoGuard—on these bench-
marks. We also evaluate the runtime overhead of RVSec and
the impact of code coverage on its accuracy. Overall, RVSec
achieves an average F1 measure of 95%, compared with 83%,
78%, and 86% for CogniCrypt, CryptoGuard, and CryLogger,
respectively (see Section IV, Table III). On a larger benchmark,
RVSec overhead while monitoring test case executions varies

Fig. 1. Example trivial crypto API misuse from Apache Meecrowave [21].

between 8.64% and 56.86% (see Section VI-A, Table VII). Note
that we did not apply recent optimizations that speed up RV by
5x during software evolution [9], [10].

Our findings show that RV and static analyzers are comple-
mentary. That is, we found crypto misuses that only RVSec
detected. The converse is also true: some misuses were detected
by the static analyzers and not by RVSec. We also compare
RVSec with CryLogger. Since CryLogger instruments the code
of the APIs, making it hard to integrate CryLogger results into
our experiments, we extend the CryLogger implementation to
log program stack traces whenever calls to methods of a crypto
library occur. Also, our CryLogger comparison considers quan-
titative and qualitative aspects of both dynamic approaches.

We make the following contributions:
(a) An in-depth study that compares RVSec with state-of-the-

art tools for detecting crypto API misuses (CogniCrypt,
CryptoGuard, and CryLogger). We enumerate strengths
and limitations of these tools concerning their crypto API
misuse detection capabilities.

(b) We highlight that static and dynamic analyses comple-
ment each other for crypto API misuse identification. In
particular, we discuss situations where RVSec identified
misuses that static analyzers miss (and vice-versa).

(c) A set of JavaMOP specifications for checking correct us-
age of the JCA crypto API in Java and Android programs.
Our JavaMOP prototypes and dataset are available online:
https://github.com/PAMunb/rvsec

(d) Findings that led to fixes in CogniCrypt and revisions to
ground truth datasets that are used in the literature on
crypto API misuse detection. We also make available an
experimental package2 for comparing static and dynamic
tools for crypto API misuse detection.

II. EXAMPLE

This section illustrates the problem of crypto API misuse and
discusses how static and dynamic analyses detect them.

An example of crypto API misuse. Fig. 1 shows a crypto
API misuse from the Apache project Meecrowave [21]. The
code snippet encrypts data using the Cipher class from the
Java Cryptography Architecture API (JCA) [27]. The code ini-
tializes a Cipher with the DESede algorithm, an implemen-
tation of the Triple DES Encryption algorithm [28] that should
no longer be used in production [2], [29].

In summary, to correctly use a Cipher, developers should
[27], [30], [31] (1) use a secure cryptographic configuration to
obtain a Cipher instance (Line 3); (2) initialize the cipher

2https://github.com/PAMunb/RVSec-replication-package.git
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object using a key that is consistent with the Cipher algo-
rithm being used (Line 4); and (3) use a certain order of method
calls (lines 3–5). Departure from these conditions on Cipher
can result in security vulnerabilities.

Static detection of crypto API misuses. Simple static
analyses (or even grep) can detect the crypto API misuse on
line 3 in Fig. 1 because it passes a hard-coded string as the
parameter to getInstance. In practice, however, checking
crypto API usages can be non-trivial. For example, one must
check whether or not the order of method calls is valid and that
certain values do not propagate to certain locations.

For these reasons, recent static analyzers of Crypto API mis-
uses, such as CogniCrypt [20] and CryptoGuard [7], were pro-
posed. Unfortunately, even advanced static analysis tools can
fail to predict the program behavior adequately—producing ei-
ther false positives or false negatives. For instance, considering
the code snippet in Fig. 2, CryptoGuard raises a “Found broken
hash function” warning in the method withMD5(). However,
this is a false positive warning since the main program does not
call the withMD5() method that configures the MDHelper
instance to use the non-recommended MD5 hash algorithm.

CogniCrypt does not raise any alarm, though, even if we
instead use the MDHelper class with a hypothetical call to MD-
Helper.instance().withMD5().digest(str) (not
shown in the code snippet). In this case, CogniCrypt would lead
to a false negative.

Dynamic detection of crypto API usage. This article
investigates runtime verification (RV) as a dynamic-analysis-
based alternative for detecting crypto API misuses and com-
pares RVSec with state-of-the-art tools that detect Crypto API
misuses: CogniCrypt, CryptoGuard, and CryLogger. An RV
tool uses formal specifications to instrument the code. Then,
at runtime, it synthesizes monitors that check sequences of
runtime events, such as method calls or field accesses, against
the specification. Monitors are typically automata and the event
sequences are often called traces. We use JavaMOP for Java
[15], [32], [33] as the RV tool in this article. JavaMOP was
used to find hundreds of additional bugs during unit testing of
many open-source projects [11], [12], [13].

Fig. 3 shows an RV specification in the JavaMOP syntax;
we wrote it based on the CrySL specification for the JCA
Cipher class. (CrySL is the CogniCrypt specification lan-
guage [6], [20]). Fig. 3 shows the three main parts of JavaMOP
specifications: event definitions (lines 6 to 13), property (line
15), and handlers (line 17). An event definition specifies what
event should be signaled at runtime and where the event should
be instrumented. For example, lines 6 to 7 specify that calls
to Cipher.getInstance(String) whose arguments are
valid encryption/decryption algorithms (condition on line
7) should be signaled. The instrumentation point should be after
(line 6) any call to the Cipher.getInstance(String)
method.

Properties are logical formulas over events; they describe
when a trace violates or validates the specification. The Ex-
tended Regular Expression (ERE) formula on line 15, Fig. 3,
defines the property; it matches traces where events g1 or g2
occur exactly once, followed by one or more init events,

Fig. 2. Example MessageDigest usage. It is only safe to call digest()
after configuring the helper class by calling withSHA384().

and exactly one doFinal event. We mainly use EREs while
writing the RVSec specifications because it is the property
specification language that CrySL uses. Still, JavaMOP can
monitor properties written in other formalisms, such as Context
Free Grammar (CFG), Finite State Machine (FSM), or Linear
Temporal Logic (LTL). In a few cases where the specification
involved many events, we considered the FSM formalism a bet-
ter alternative, leading to an easier-to-understand specification
in those cases.

Handlers allow specifying arbitrary Java code that executes
when a trace violates or matches the property. For example, the
@fail handler on line 17 indicates that when a trace does not
match the ERE, an error should be reported and the monitor
should be reset. JavaMOP specifications are parametric [34],
[35]. So, one monitor will be synthesized for every unique set
of specification parameters. Since Cipher is the only speci-
fication parameter (line 1, Fig. 3), JavaMOP synthesizes one
monitor per instance of the Cipher class during execution.
Although RVSec and the two static analyzers correctly detect
the crypto API misuse in the code of Fig. 1, RVSec has better
precision and recall when analyzing the code in Fig. 2.

As we mentioned, in this article we also compare RVSec with
CryLogger, a dynamic analysis approach for detecting crypto
API misuses. Overall, CryLogger involves two main compo-
nents: a new implementation of the JCA classes that logs usage
information of the API and a Python module that processes
the log files and outputs crypto API misuses. We changed both
components to allow a fair comparison with CryLogger in our
research. First, we changed the implementation of the JCA
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Fig. 3. Example of a JavaMOP specification for the JCA Cipher class.

TABLE I
BENCHMARKS IN OUR STUDY

Benchmark Used In TCs SLOC Misuses

MASCBench [24] 30 0.5K 28
SmallCryptoAPIBench [21], [38], [39] 187 3.7K 130
OWASPBench [40], [41], [42] 482 47.5K 259
JulietBench [43], [44] 102 6.8K 102
ApacheCryptoAPIBench [21], [38], [39] - 303.3K 74

classes to log not only usage information of the crypto API,
but also the JVM stack trace. Second, we changed the Python
module to output not only the existence of a crypto API misuse,
but also the client methods that might originate a call to a crypto
API. Without these changes, we would not be able to integrate
the outputs of CryLogger into our study settings.

III. STUDY SETTINGS

We study the strengths and weaknesses of RVSec for de-
tecting crypto API misuses. In particular, we quantitatively
compare the accuracy of RVSec and state-of-the-art tools based
on static and dynamic analyses (CogniCrypt, CryptoGuard, and
CryLogger), and qualitatively assess the main reasons for in-
accuracy. Our goal is to investigate whether RVSec is more
beneficial than existing tools for detecting misuses of crypto
APIs and to characterize reasons why RVSec and the other tools
generate false positives or miss to detect crypto API misuses.

A. Benchmarks

Table I shows the benchmarks that we used in our evaluation.
MASCBench contains 30 small Java programs with crypto API
misuses [24]. The programs are from open-source Android apps
and Apache Qpid Brokerj [36]; they are minimized to only show
crypto API misuses. SmallCryptoAPIBench contains 187 test
cases for legal and illegal usages of crypto APIs. We obtain
SmallCryptoAPIBench by removing 16 non-JCA test cases
from the Afrose et al. [21] benchmark. OWASPBench contains
482 test cases related to crypto APIs. The test suite is curated by
OWASP (https://owasp.org) [25]. We use the tests that are re-
lated to JCA and cover the common crypto API misuses CWE-
327 (Use of a Broken or Risky Cryptographic Algorithm) and

TABLE II
DETAILS OF THE APACHECRYPTOAPIBENCH, HIGHLIGHTED IN TABLE I

Project Module Revision TCs SLOC Misuses

Artemis Artemis-commons 5ab187b 110 11,737 15
Dir. Server Apacheds-kerberos-codec 155bd94 376 42,185 19
ManifoldCF Mcf-core 9573dc4 5 21,281 3
DeltaSpike Deltaspike-core-impl d95abe8 155 13,515 2
Meecrowave Meecrowave-core 3780f1c 19 6,788 3
Spark Spark-core_2.11 9ff1d96 2,045 164,335 27
Tika Tika-core 6f33bae 222 23,207 0
Wicket Wicket-util dbd86d9 237 20,220 5

CWE-328 (Reversible One-Way Hash). JulietBench contains
102 test cases curated by the US National Security Agency
(NSA) [26], [37]. The breakdown of tests per CWE is: 17 CWE-
325 (Missing Cryptographic Step), 34 CWE-327, and 51 CWE-
328. ApacheCryptoAPIBench contains real-world crypto API
misuses from Apache projects [21]. The original benchmark
involves eight Apache projects with different degrees of test
coverage. Those projects include a total of 3169 test cases, but
not all of them are JCA-related. We present more details of
the ApacheCryptoAPIBench in Table II. The CryLogger execu-
tions do not finish for three ApacheCryptoAPIBench projects:
Artemis, Spark, and Tika.

B. Procedure and Metrics

To evaluate the accuracy of the tools, we compute Precision,
Recall, and F1 score—metrics that are typically used in related
work [21], [39]. We compute them as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2× Precision × Recall

Precision + Recall
(3)

Besides accuracy, we conduct further analysis using
ApacheCryptoAPIBench only. ApacheCryptoAPIBench
comprises open-source systems, which allows us to better
understand the RVSec implications on overhead in more
realistic scenarios. For instance, to estimate the overhead
of RVSec while executing the test suites, we run the
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ApacheCryptoAPIBench tests ten times with and without
RV, and average the execution times. TRV and TBase
are the average time to run the test cases with RV and
without it, respectively. The overhead of RV corresponds
to the percentage increase of time of TRV over TBase
(=100×(TRV −TBase)/TBase).

We also measure statement, branch, and method coverage in
ApacheCryptoAPIBench using the JaCoCo tool [45]. Our goal
is to investigate how code coverage impacts the accuracy and
overhead of RVSec for detecting crypto API misuses.

C. RV of the JCA Crypto API Using JavaMOP

We write JavaMOP JCA specifications to check the correct
usage of the API. Fig. 3 is an example of JavaMOP specification
that we write. To write JavaMOP specifications, we use an
existing set of CrySL JCA specifications as our starting point
for three main reasons. First, the CrySL JCA specifications have
been validated by crypto experts. Second, there are similari-
ties between the CrySL and JavaMOP specification languages.
Third, a test suite provided by the CogniCrypt development
team (with 31 JUnit test classes and over 200 test methods)
allowed us to more easily validate the JavaMOP specifications
that we write.

We create a custom infrastructure for performing RV during
unit testing, so that we could reuse the CogniCrypt test suite
almost as-is. The few fixes that we make on the CogniCrypt
test suite relate to incorrect configuration of keys, cipher al-
gorithms, and operation modes (e.g., decrypt or encrypt) that
caused runtime exceptions.

The CrySL repository [46] provides 47 rules for JCA [20].
Still, previous studies show that a subset of 12 JCA classes
(including MessageDigest, Cipher, Signature, and
KeyGenerator) is more frequently used and leads to most
crypto API misuses [20], [47]. So, we start writing JavaMOP
specifications for these 12 JCA classes and ended up with ten
additional JavaMOP specifications the core classes depend on.
In total, we wrote 22 JavaMOP specifications used in our study.

IV. ACCURACY OF TECHNIQUES

This section presents quantitative results to compare the ac-
curacy between RVSec and the other crypto API misuse de-
tectors, CogniCrypt, CryptoGuard, and CryLogger. Table III
reports the performance of each technique on the five bench-
marks.

A. MASCBench: For MASCBench, all four tools have 100%
Precision; the “0s” in the “FP” columns are an indication
that no technique reports a false positive. RVSec also did not
miss any crypto API misuse (leading to a Recall of 100%),
while CogniCrypt, CryptoGuard, and CryLogger missed five,
nine, and eight misuses, respectively. The false negatives in
CogniCrypt and CryptoGuard are due to different limitations
in the static analyses they implement. For instance, if a call
to keyGenerator.getInstance() returns the unsafe
crypto schema, “AES” (mapped to the schema “AES/ECB/P-
KCS5Padding”), both static analysis tools fail to identify
the crypto misuse in statements with the code Cipher.

TABLE III
ACCURACY RESULTS. NOTE: THIS TABLE DOES NOT PRESENT THE

CRYLOGGER ACCURACY RESULTS FOR THE

APACHECRYPTOAPIBENCH—ESSENTIALLY BECAUSE THE

CRYLOGGER EXPERIMENT FINISHED ONLY FOR FIVE

(OUT OF EIGHT) APACHECRYPTOAPIBENCH PROJECTS

TP FP FN Precision Recall F1

MASCBench
RVSec 28 0 0 1.00 1.00 1.00
CogniCrypt 23 0 5 1.00 0.82 0.90
CryptoGuard 19 0 9 1.00 0.67 0.80
CryLogger 20 0 8 1.00 0.71 0.83

SmallCryptoAPIBench
RVSec 122 6 8 0.95 0.93 0.94
CogniCrypt 106 24 24 0.81 0.81 0.81
CryptoGuard 114 18 17 0.86 0.87 0.86
CryLogger 98 13 32 0.88 0.75 0.81

OWASPBench
RVSec 259 1 0 0.99 1.00 0.99
CogniCrypt 259 201 0 0.56 1.00 0.72
CryptoGuard 219 27 40 0.89 0.84 0.86
CryLogger 317 53 0 0.82 1.00 0.92

JulietBench
RVSec 100 0 2 1.00 0.98 0.99
CogniCrypt 102 60 0 0.62 1.00 0.77
CryptoGuard 85 0 17 1.00 0.83 0.90
CryLogger 86 7 16 0.92 0.84 0.88

ApacheCryptoAPIBench
RVSec 39 1 12 0.97 0.76 0.85
CogniCrypt 48 10 3 0.82 0.94 0.88
CryptoGuard 20 14 31 0.58 0.39 0.47

Average
RVSec 0.98 0.93 0.95

CogniCrypt 0.76 0.91 0.83
CryptoGuard 0.87 0.72 0.78

CryLogger 0.90 0.82 0.86

Fig. 4. Example misuse due to wrongly instantiating the class IvParam-
eterSpec using a constant byte array.

getInstance(keyGenerator.getInstance());.
False negatives in CryLogger occur because the tool fails to de-
tect when an Initialization Vector Parameter Spec is initialized
using a constant array of bytes (accounting for four CryLogger
false negatives). See an example in Fig. 4. Three other CryLog-
ger false negatives are due to test cases that incorrectly seed
secure random (see an example in Fig. 5). We provide more
details in Section V.

B. SmallCryptoAPIBench: Although RVSec does not
achieve optimal performance (i.e., F1=1.0) in this benchmark,
its accuracy is still superior compared to the other tools. Seven
(of eight) misuses that RVSec misses relate to the use of hard-
coded passwords for loading key stores (e.g., lines 3 and 6 in
Fig. 6).

Failure to handle hard-coded strings is a limitation of
RVSec—we cannot check at runtime whether a variable has
been initialized to a hard-coded string constant. The Cry-
Logger false positives in the SmallCryptoAPIBench are due
to overly strong constraints. For instance, CryLogger signals
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Fig. 5. Example misuse due to incorrectly seeding secure randoms.

Fig. 6. Example misuse due to a hard-coded password that RVSec misses,
but CogniCrypt and CryptoGuard detect.

Fig. 7. OWASPBench code where CryptoGuard reports a false positive.

warnings even for safe Cipher crypto-schemes (a string in the
format ALGORITHM/MODE/PADDING such as AES/CBC/
PKCS5Padding.). Further, CryLogger was the tool that gen-
erated the highest number of false negatives for the Small-
CryptoAPIBench. The main reason is that CryLogger does not
identify the use of predictable seeds and credentials in strings.
We further exemplify and analyze the false positives and false
negatives from all tools in Section V.

C. OWASPBench: Recall from Table I that OWASPBench is
the benchmark with the highest number of test cases manifest-
ing API misuses. RVSec again achieves the highest accuracy
(F1 score = 0.99) in this benchmark, compared to the other
tools. RVSec, CogniCrypt, and CryLogger did not miss any
crypto API misuse. However, CogniCrypt reports 201 false
positives on this benchmark, severely affecting its Precision
(56%). We observe that test classes in OWASPBench often
contain a control flow path that does not execute all sequences of
method calls that CogniCrypt expects (according to the CrySL
rules); CogniCrypt reports a false positive warning for all these
cases. Differently, CryptoGuard reports 27 false positives; they
are all related to test cases that load a crypto schema using a
configuration file. Fig. 7 shows an illustrative code snippet.

At runtime, the call to the getProperty method in Fig. 7
retrieves the valid crypto schema AES/GCM/NoPadding,
even though CryptoGuard wrongly approximates that
an alternative value, AES/ECB/PKCS5Padding, is
being assigned. Similarly, CryptoGuard assumes valid
algorithms that appear as alternatives to invalid ones in a

Fig. 8. A configuration file that OWASPBench uses at runtime.

configuration file, leading CryptoGuard to miss 40 crypto
misuses. For instance, CryptoGuard detects from the statement
ps.getProperty("hashAlg1", "SHA512") that the
secure algorithm SHA512 is in use. However, OWASPBench
uses a configuration file assigning an unsafe hashing algorithm,
MD5, to the string "hashAlg1" as shown in Fig. 8.

We observe that the use of configuration files is a major
source of CryptoGuard imprecision, leading to many false pos-
itives and false negatives in OWASPBench. Instead, the Cry-
Logger assessment did not reveal any false negatives (recall
of 100%), though it generated 53 false positives. Our manual
analysis revealed that these false positives are also motivated
by overly strong constraints on the CryLogger rules that raise
warnings for safe crypto schemes.

D. JulietBench: RVSec also achieves higher F1 score than
static techniques on JulietBench. For Recall, RVSec misses
two misuses while CryptoGuard misses 17 misuses, CryLogger
misses 16, and CogniCrypt does not miss any. After a manual
analysis, we find that the two crypto API misuses that RVSec
misses are due to non-determinism in the choice of the hash-
ing algorithm used; one is secure and the other is not. Our
experiments execute the secure choice and missed the misuse.
Research on dealing with test non-determinism (or flakiness) is
receiving a lot of attention [48], [49], [50], [51]; these results
could be used in the future to mitigate the impact of non-
deterministic runs during RVSec. CryLogger suffers from the
same limitation, and five CryLogger false positives are due to
non-deterministic choices that lead the program examples to
execute an insecure path labeled as secure in the benchmark
ground truth.

The 17 misuses that CryptoGuard misses relate to CWE-
325 (Missing Required Cryptographic Step). CryptoGuard has
no support for detecting misuses that are due to an invalid or
incomplete method-call sequence. Similarly, all 16 CryLogger
false negatives are due to incomplete method-call sequences. Fi-
nally, RVSec and CryptoGuard do not report any false positive,
even though CogniCrypt reports 60; all of them related to CWE-
327 (Use Broken Crypto). The reason for false positives is that
CogniCrypt does not consider secure the code idiom below:

that instantiates a key byte array using the getEncoded()
method in the SecretKey class. All false positives that Cog-
niCrypt reports for JulietBench are due to this idiom.

E. ApacheCryptoAPIBench: Unfortunately, the provided
ground truth in ApacheCryptoAPIBench misses essential
information that we need to compute Precision and Recall.
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TABLE IV
SUMMARY OF WARNINGS TECHNIQUES REPORT ON

APACHECRYPTOAPIBENCH

Tool Full Data Set Curated Data Set

RVSec 64 40
CogniCrypt 72 58
CryptoGuard 56 36

For example, many true positives in the original ApacheCryp-
toAPIBench ground truth do not specify the Java class in which
a crypto API misuse occurs. We also found and shared with
the authors of the ApacheCryptoAPIBench possible situations
where the labels assigned to the warnings in the ground truth
were incorrect. Posteriorly, they agreed with almost all obser-
vations we shared and changed the benchmark.

Despite these threats in the original ApacheCryptoAPIBench
ground truth, the ApacheCryptoAPIBench benchmark can still
be a valuable source of data about how RVSec compares
with the other tools on real-world open-source projects—where
the static detectors were previously evaluated. For this rea-
son, we manually inspect all warnings generated by RVSec,
CogniCrypt, and CryptoGuard on ApacheCryptoAPIBench and
generate our own ground truth. We count as unique all warnings
from a given class/method. This decision is necessary because
the techniques may generate different numbers of warnings for
a given misuse.

In the end, we obtain 192 unique warnings. Of these, we
remove (a) 44 warnings that originate from third-party libraries,
and (b) 14 warnings that RVSec reports in JUnit test code (to
make a fair comparison with CogniCrypt and CryptoGuard,
which do not analyze test classes). Our final dataset contains
134 warnings, summarized in Table IV. Creating our own
ground truth may introduce threats to validity, but doing so
allows us to avoid inconsistencies that we found in the pro-
vided ApacheCryptoAPIBench ground truth. The reason that
led us not to consider the CryLogger outputs to build our
ApacheCryptoAPIBench ground truth is twofold. First, the Cry-
Logger execution finished for only five out of eight projects
in the ApacheCryptoAPIBench. Second, CryLogger generated
thousands of warnings for the ApacheCryptoAPIBench, many
reporting crypto API misuses in the standard Java classes—and
not in the application classes. It is unfeasible to manually val-
idate these warnings without implementing additional features
to CryLogger.

Table III shows the Precision, Recall, and F1 score us-
ing the ground truth dataset that we curate for ApacheCryp-
toAPIBench. Although RVSec has the highest Precision, when
we consider F1 score, CogniCrypt performs better. Since the
CryLogger experiment does not finish the execution for three
ApacheCryptoAPIBench projects, CryLogger leads to the high-
est number of false negatives (34) in our investigation. This
number of false negatives would be lower if CryLogger had
finished the execution for all projects. Conversely, the number
of false positives CryLogger reports is somewhat high: eight
false positives in total. This number would likely increase if
CryLogger had finished the execution for all projects. So, we
do not summarize these results in Table III.

Fig. 9. Code snippet from the Tika project. In this case, a Cipher is being
just prepared to future usage.

Regarding CryptoGuard false positives, the tool implements
fewer rules than CogniCrypt, which is the main reason that leads
CryptoGuard to find only 58% of the ApacheCryptoAPIBench
misuses. RVSec misses 12 of 48 misuses that CogniCrypt de-
tects. We find that these false negatives are due to (a) lack
of test cases necessary to reveal the issues, and (b) lack of
RV specifications for less frequently used JCA classes (e.g.,
SecretKeyFactory and TrustManagerFactory). We
will specify additional rules for RVSec in future work.

With respect to false positives, RVSec reports one, while
CogniCrypt, CryptoGuard, and CryLogger reports 10, 14 and
13, respectively. Thirteen false positives from CryptoGuard re-
sult from a rule that approximates the java.util.Random
class to be insecure. Nonetheless, java.util.Random is
often used in non-cryptographic contexts. After careful manual
analysis, we find no instance of the java.util.Random
class in the ApacheCryptoAPIBench that leads to a vulner-
ability. After confirming this conclusion with the authors
of the ApacheCryptoAPIBench [21], we mark these exam-
ples as false positives. If we consider these usages of the
java.util.Random true positives, CryptoGuard Precision
on ApacheCryptoAPIBench would be higher at 0.95. We
keep these warnings in our dataset because previous research
wrongly labeled them as true positives, causing misleading
results to be published [21], [39]. Similarly, the safe usage
scenarios of java.util.Random are the main source of
false positives for CryLogger in the ApacheCryptoAPIBench.

Our manual inspection reveals that the 10 false positives that
CogniCrypt reports involve tricky situations. For example, in
Tika, code that prepares a Cipher may not explicitly call
methods such as update or doFinal as shown in Fig. 9. Cur-
rently, CogniCrypt reports an error, but we find that developers
intend for such missing calls to be made by clients of the code—
what happens at runtime. We label these as false positives. We
summarize our findings on accuracy below.

Summary: Results shows that RVSec is very accurate
(F̄1=0.95), compared to CryLogger (F̄1=0.85), Cog-
niCrypt (F̄1=0.83), and CryptoGuard (F̄1=0.78).
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TABLE V
ACCURACY (F1 SCORE) OF THE TOOLS WITH RESPECT TO CWEs (COMMON WEAKNESS ENUMERATION)

CWE RVSec CogniCrypt CryptoGuard CryLogger

321 - Use of Hard-coded Cryptographic Key 0.86 0.94 0.22 0.00
325 - Missing Cryptographic Step 1.00 0.15 0.00 0.10
327 - Use of a Broken or Risky Cryptographic Algorithm 0.99 0.90 0.91 0.90
328 - Use of Weak Hash 0.99 0.97 0.88 0.94
337 - Predictable Seed in Pseudo-Random Number Generator 1.00 0.00 0.85 0.00
338 - Use of Cryptographically Weak Pseudo-Random Number Generator 1.00 1.00 0.47 0.67
341 - Predictable from Observable State 0.93 0.94 0.89 0.00
798 - Use of Hard-coded Credentials 0.84 0.84 0.88 0.90
916 - Use of Password Hash With Insufficient Computational Effort 0.84 0.84 0.67 0.93
1204 - Generation of Weak Initialization Vector (IV) 0.97 1.00 0.90 0.65
1240 - Use of a Cryptographic Primitive with a Risky Implementation 0.75 0.89 0.00 0.00
1391 - Use of Weak Credentials 0.77 0.86 0.75 0.77

V. WHAT ARE THE CAUSES OF INACCURACY?

This section discusses the causes of inaccuracy (i.e., false
positives and false negatives) for RVSec (§V-A), for the static
analyzers CogniCrypt and CryptoGuard (§V-B), and for Cry-
Logger §V-C. Table V summarizes the accuracy of the tools
with respect to CWEs.

A. Sources of Inaccuracy: RVSec

As expected for a dynamic analysis approach, the precision
of RVSec is very high. The rare cases of false positives (8 in 556
reports; Table III) are due to an overly constrained specification
that expects at least 10 thousand iterations when using Password
Based Encryption—differently, the ground truth for SmallCryp-
toAPIBench labels at least 1000 iterations as secure (CWE-
1391). Overall, of the 22 false negatives associated with RVSec
(Table III, column “FN”), ten can be attributed to a lack of
test inputs to exercise the crypto API misuses in ApacheCryp-
toAPIBench and twelve can be attributed to inherent limitations
of dynamic analysis (e.g., RVSec fails to detect the use of
constant strings to initialize cryptographic primitives).

1) Lack of Test Inputs: It is expected that low-quality
test suites in RV can lead to false negatives, whereas over-
approximation by static analysis can lead to false positives.
The handcrafted benchmarks MASCBench, SmallCryp-
toAPIBench, OWASPBench, and JulietBench contain suites of
test cases that directly execute code with and without crypto
API misuses. As such, the high coverage of test suites in
these benchmarks might justify the high accuracy of RVSec.
Regarding these four handcrafted benchmarks, every crypto
API usage appears in one test scenario—leading to a complete
coverage of the code that use the JCA crypto API.

Accordingly, we further investigate the problem about lack
of test inputs with a coverage assessment on the ApacheCryp-
toAPIBench open-source projects. To this end, we measure
four test suite metrics: Number of Test Cases (TCs), average
Instruction Coverage (IC), average Branch Coverage (BC), and
average Method Coverage (MC)—the last three are coverage
criteria that we measure using the Java Code Coverage Library
(JaCoCo), which we integrated into the build process of the
ApacheCryptoAPIBench projects. After running the test suites,
JaCoCo exports test coverage measurements for each class of a
project, from which we computed the average coverage (i.e.,

TABLE VI
SUMMARY OF THE TEST SUITE METRICS

Apache Module TCs IC BC MC
Dir. Server 376 73.79 44.7 71.19
Artemis 110 29.41 31.24 35.46
ManifoldCF 5 8.29 6.56 9.27
Meecrowave 19 65.01 46.36 56.56
DeltaSpike 155 69.86 61.23 84.1
Spark 2,045 23.25 17.03 22.13
Tika 222 48.63 49.92 50.28
Wicket 237 39.55 37.63 40.98

instruction, branch, and method level coverage) presented in
Table VI.

We find the coverage of test suites to be moderate on
the ApacheCryptoAPIBench: average of 44.72% instruction
coverage (IC). Since we do not augment the test suites in
ApacheCryptoAPIBench, we expected that RVSec would only
find a substantially smaller number of warnings than Cog-
niCrypt and CryptoGuard find. However, RVSec misses only 12
of 51 crypto API misuses in the ApacheCryptoAPIBench, re-
gardless of the moderate coverage in the benchmark. The main
reason for RVSec’s 0.76 recall on ApacheCryptoAPIBench—
despite the 44.72% instruction coverage—is that crypto API is
confined to a few of the projects’ classes, which are covered by
the tests. We find a lower RVSec recall in projects where crypto
API usage is not covered by tests. For example, RVSec missed
all 3 API misuses from project ManifoldCF (Table II) because
that project did not contain tests executing the methods with
crypto API misuses.

Effect of Test Coverage in RVSec’s perfor-
mance: RVSec achieves 0.76 recall on
ApacheCryptoAPIBench although the tests cover
only 44.72% of the instructions, on average. That
happens because usage of the crypto API is confined
to a few covered classes, which are exercised by the
tests.

2) Inherent Limitation of RVSec: Seven (out of eight)
RVSec’s false negatives in SmallCryptoAPIBench are due to the
use of hard-coded passwords for loading key stores. According
to CWE-798, hard-coded passwords can be a threat since “hard-
coded credentials typically create a significant hole that allows
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Fig. 10. An example false negative from RVSec.

an attacker to bypass the authentication that has been config-
ured by the software administrator” [52]. It is very difficult to
write a specification that allows RVSec to check at runtime if the
string being used as a password was hard-coded at initialization
(see Lines 6 and 8 in Fig. 10). The recommended best-practice
is to retrieve the passwords from an external and protected file
or database [52]. This is a situation where we could benefit from
complementing RVSec with static detectors like CogniCrypt
and CryptoGuard.

Main reason for false negatives in RVSec: It is
hard to write RVSec specifications for checking if a
variable was assigned a hard-coded constant string at
initialization.

B. Sources of Inaccuracy: Static Analyzers

Fig. 11 shows a crypto API misuse that neither CogniCrypt
nor CryptoGuard detected, but which RVSec and CryLogger
detected. There, Cipher is instantiated by calling the
getAlgorithm method of class KeyGenerator.
In the example, getAlgorithm returns the String
"AES"—since keygen is instantiated using a call
to KeyGenerator.getInstance("AES"). But,
instantiating the Cipher c in this way is similar to
calling Cipher.getInstance("AES"), which specifies
just the cipher algorithm, and not its operation mode and
padding. The vulnerability occurs because the default mode
and padding configuration for AES is ECB/PKCS5Padding,
which might result in disclosing of sensitive information
[29]. So, creating a Cipher as shown is insecure, but
CogniCrypt and CryptoGuard do not detect this misuse
(CWE-327). However, if one passes the "AES" string to the
Cipher.getInstance method directly, instead of calling
KeyGenerator.getAlgorithm(), both tools detect the
misuse. To know that keygen.getAlgorithm() returns
"AES", both CogniCrypt and CryptoGuard should be enriched
with field sensitive data flow analysis or by explicitly modeling
this API call manually.

CogniCrypt and CryptoGuard also miss crypto API misuses
in the scenarios that use multiple method calls to initialize a
Cipher class. Fig. 12 presents an example, where the test
case initializes a Cipher c instance using the insecure “DES”
algorithm (CWE-327). Note that CryptoGuard does not report
any issue with the test case of Fig. 12. Although CogniCrypt
also misses the first error in this test case (Line 13), it cor-
rectly detects the second one (Line 19). Extending CryptoGuard

Fig. 11. Program in MASCBench that yields false negatives in CogniCrypt
and CryptoGuard.

Fig. 12. Example of CryptoGuard false negative for MASCBench.

and CogniCrypt with a more advanced inter-procedural data
flow analysis might reduce these inter-procedural false negative
scenarios in both tools. For instance, FlowDroid is able to
detect source-sink flows using different method calls and string
manipulations [53].

Both static analyzers (CogniCrypt and CryptoGuard) report
false positives for the SmallCryptoAPIBench path-sensitive
programs. Fig. 13 shows an example. There, choice is initial-
ized to the constant value 2, so the condition on line 6 is always
true and the secure SHA-256 algorithm is always used on line
7, as expected. But the over-approximation that CogniCrypt
and CryptoGuard employ make them flag lines 8 and 9 of Fig.
13 as places where the md instance of the MessageDigest
class may be using an insecure implementation (CWE-328). It is
questionable whether code similar to the one in Fig. 13 appears
in real-world projects.

CogniCrypt reports 201 false positives in OWASPBench. We
manually analyze 20 of these false positives, selected randomly.
In all the cases we analyze, there is a path in the source code
examples that does not satisfy the expected sequence of events
that CrySL rules specify for the Cipher or MessageDigest
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Fig. 13. Path sensitive example that leads to false positives in both Cog-
niCrypt and CryptoGuard.

Fig. 14. OWASPBench code where CogniCrypt reports false positives.

classes (CWE-325). The code in Fig. 14 illustrates the situation,
for which CogniCrypt reports a warning like:

�
IncompleteOperationError: violating CrySL rule for
java.security.MessageDigest. Operation on object
of type java.security.MessageDigest ob-
ject not completed. Expected call to digest or
update.

Removing the if statement on line 2 in Fig. 14 will
cause CogniCrypt to no longer report a warning. In this
case, the resulting path calls the update and digest
methods of the MessageDigest class, which matches the
expected sequence of method calls in the CrySL rule for Mes-
sageDigest. CryptoGuard also performs poorly in detecting
CWE-325 misuses (Missing Cryptographic Step). The main
reason is that there is no CryLogger rule for detecting this crypto
API misuse.

Considering OWASPBench, CryptoGuard reports 27 false
positives and 40 false negatives—all these misclassifications are
related to wrong assumptions that CryptoGuard makes when an
invalid algorithm identifier can flow to the instantiation of a JCA
crypto primitive (e.g., a Cipher or a MessageDigest). We
also isolate these problems in small test cases (see listings in
Figs. 15 and 16). So, assuming we setup a configuration file
with the following content:

cipher01=AES/GCM/NoPadding
cipher02=AES/ECB/PKCS5Padding

Since CryptoGuard does not account for configuration files
(this is a challenge for static analysis in general), it wrongly
labels the code in Fig. 15 as a crypto API misuse (accord-
ing to the OWASPBench ground truth). For the same rea-
son, CryptoGuard wrongly classifies the code in Fig. 16 as
secure—the call to ps.getProperty() returns AES/ECB/
PKCS5Padding, which is not recommended (CWE-327).
CogniCrypt does not assume anything when the crypto algo-
rithm definitions come from configuration files, so it does not
raise any warning about Cipher instantiations in Figs. 15
and 16.

Fig. 15. Scenario for which CryptoGuard wrongly assumes that the unsafe
algorithm configuration AES/ECB/PKCS5Padding flows to the call to the
Cipher.getInstance method. This is an example of CryptoGuard false
positive.

Fig. 16. Scenario for which CryptoGuard wrongly assumes that the safe
algorithm configuration AES/GCM/NoPadding flows to the call to the
Cipher.getInstance method. This is an example of CryptoGuard false
negative.

Scenarios involving (a) method calls with string ma-
nipulation, (b) path and field sensitivity, and (c) the
use of configuration files are the main causes of inac-
curacy for the static detectors.

C. Sources of Inaccuracy: CryLogger

Our assessment reports that CryLogger generates 53 false
positives for the OWASPBench. After a careful analysis, we
conclude that most of the CryLogger false positives are due
to rules that raise warnings when using safe crypto schemes,
such as “RSA/ECB/OAEPWithSHA-512AndMGF1Padding”
and “AES/CBC/PKCS5PADDING”. Other CryLogger false
positives are due to non-deterministic test cases in the Juli-
etBench (similar to what we observed during the RVSec
experiments).

Conversely, the warnings CryLogger misses (false negatives)
in the JulietBench are due to incomplete usage of a crypto-
graphic primitive (CWE-325). Fig. 17 shows an example. In
this case, there is a call to the digest method without a
call to the update method of the MessageDigest class.
CryLogger rules do not address this particular kind of vulner-
ability, named Missing Cryptographic Step (CWE-325) [23].
CryLogger also fails to identify the incorrect initialization of
seeds from constant arrays of bytes and the use of the string
to keep credential information (CWE-321, CWE-337, CWE-
1391). These are the main source of warnings that CryLogger
misses in the SmallCryptoAPIBench.

The execution of the CryLogger experiment did not complete
for three ApacheCryptoAPIBench projects—leading to 32 false
negatives in total. The reason for not completing it varies. In
multiple attempts, after executing the CryLogger experiment
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Fig. 17. JulietBench code where CryLogger misses a vulnerability.

of the Artemis project for less than five minutes, the memory
consumption achieves a peak, and the operating system kills the
corresponding process Differently, the execution of the CryLog-
ger experiment for Spark and Wicket did not conclude within a
time limit of 24 hours. It seems that CryLogger does not scale
well for large projects. In particular, including the stack traces
to the outputs of CryLogger led to huge log files. Unfortunately,
logging the stack traces was necessary to enable us to compare
the outcomes of CryLogger with the results of the other tools
and the benchmarks’ ground truths.

VI. DISCUSSION

In this section we discuss the impact of RVSec on the ex-
ecution of the ApacheCryptoAPIBench test cases (overhead)
(§VI-A), lessons learned and future work (§VI-B), and threats
to validity (§VI-C).

A. RV Overhead

Comparing a dynamic analysis approach like Runtime Ver-
ification with static analyses necessitates a discussion of the
overhead of RV for crypto API misuse detection. More so, using
RV to simultaneously monitor many specifications like we do is
known to be more costly than monitoring only one specification
[54], [55], [56].

Table VII shows the runtime (in seconds) of the tests in
ApacheCryptoAPIBench projects without (the “TBase (s)” col-
umn) and with (the “TRV (s)” column) RV. It also shows the
RVSec overhead (the “Overhead (%)” column). RVSec over-
head on these projects ranges from 8.64% (ManifoldCF) to
56.86% (Wicket), with an average of 25.90% and median of
18.32%.

We believe that these RVSec overheads may be acceptable,
but they will likely grow as more tests are added to improve
coverage. Also, we only measure RVSec overhead on one revi-
sion for each project because our focus is on comparing RV with
other approaches for detecting crypto API misuses. However,
recent evolution-aware techniques were proposed that reduce
RV overhead by up to 10x (average: 5x) when running RV
across several revisions of a project, e.g., during continuous
integration or regression testing [9], [10]. So, using evolution-
aware RV to detect crypto API misuses as software evolves
could have even lower runtime overheads.

TABLE VII
RVSEC OVERHEAD RESULTS FOR

APACHECRYPTOAPIBENCH AND AVERAGE RUNNING TIME

OF THE STATIC ANALYZERS

Project TRV (s) TBase (s) Overhead (%)

Dir. Server 21.30 15.00 42.00
Artemis 39.80 35.90 10.86
ManifoldCF 23.90 22.00 8.64
DeltaSpike 47.10 39.80 18.34
Meecrowave 48.40 34.40 40.70
Spark 1,319.70 1,115.40 18.32
Tika 28.00 25.10 11.55
Wicket 24.00 15.30 56.86

B. Lessons Learned and Future Work

Complementary nature of dynamic and static analy-
ses. Our analysis reveals blind spots for RVSec and the static
analyzers, CogniCrypt and CryptoGuard. For example, RVSec
should be complemented with static analysis tools to find
whether a string is hard coded at initialization. Also, static ana-
lyzers could benefit from RVSec to reduce false negatives when
analyzing sequences of method calls or string manipulation.
Lastly, RVSec can help static analyzers to reduce false positive
warnings in the presence of configuration files during testing,
e.g., by using the recently proposed configuration testing frame-
work, CTests [57].

Recommendations for better usage of RV in crypto
API misuse detection. During our research we also identified
design recommendations for implementing dynamic analysis
tools for detecting crypto API misuses. In particular, we argue
that it is important to instrument the client code of the crypto
APIs, instead of instrumenting the API code as CryLogger does
[22]. First, instrumenting the client code allows a tool to report
relevant information of a crypto API misuse (such as where the
misuse happens). This kind of information is essential to help
a developer understand and fix a misuse. We partially fix this
CryLogger limitation by changing some of its components in
order to enrich the log files with stack trace information—which
substantially increases the log files’ size. Second, instrumenting
the client code using a JavaMOP-like specification language
also makes it easy to consider only misuses that appear in
the system under test, or to ignore misuses that happen in
some classes (e.g., classes in the Java standard library). Our
experience in using CryLogger shows that it does not allow such
flexibility. Since our CryLogger extension does not fix this par-
ticular issue, we have to remove from the analysis many issues
CryLogger reports that appear in the Java standard library.

Issues with existing benchmarks. Several test cases in the
SmallCryptoAPIBench contain code that cause runtime excep-
tions. We detect these problematic code while executing the
test cases and implement small fixes to make these tests useful
for dynamic analysis. For instance, in ten tests, we increase
the size of byte arrays that are used to configure the initializa-
tion vectors of ciphers (Fig. 18). This fix is necessary because
the initialization vectors require at least 128 bits (16 bytes).
SmallCryptoAPIBench also refers to invalid key stores using
a URL. We also fix this problem in nine tests (as we show in
Fig. 19). Several classes in ApacheCryptoAPIBench needed a
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Fig. 18. A fix needed to correctly configure initialization vectors on the
SmallCryptoAPIBench.

Fig. 19. A fix needed to correctly explore key stores in the SmallCryp-
toAPIBench.

fix, though, fortunately, these classes have no use of the JCA
library. These fixes are necessary to build the projects and run
their tests. We share all these fixes in our replication package.
Our experience setting up the OWASPBench and JulietBench
was more positive than the other benchmarks.

C. Threats to Validity

We only study the correct usage rules for JCA. So, our results
may not generalize to misuse detection in non-JCA crypto APIs.
However, future work can evaluate the use of JavaMOP spec-
ifications for detecting misuses of other crypto APIs as well.
Also, other researchers used RV to find misuses and bugs in
non-JCA and non-crypto APIs [11], [12], [13].

Our choice of benchmarks might pose an additional threat to
validity. However, the five benchmarks in this article contain
a wide variety of JCA usage scenarios. To the best of our
knowledge, this is the first study that combines benchmarks
curated by researchers (MASCBench, SmallCryptoAPIBench,
and MASCBench) and by independent organizations (OWASP-
Bench and JulietBench) for comparing dynamic and static
crypto API misuse detectors.

Other than ApacheCryptoAPIBench, the benchmarks were
designed for comparing static detectors of crypto API misuses.
We re-use these benchmarks almost as is, but we fix several
bugs to allow us to execute the programs, which is necessary for
RVSec and CryLogger. These benchmarks help to understand
the limits of crypto API misuse detectors, but some examples
may be fictitious and rare in real-world systems. Indeed, the
OWASPBench documentation acknowledges that:

The tests are derived from coding patterns observed
in real applications, but the majority of them are
considerably simpler than real applications.... Al-
though the tests are based on real code, it is possible
that some tests may have coding patterns that do not
occur frequently in real code.

So, these benchmarks help us understand the strengths and
weaknesses of RVSec, CogniCrypt, CryptoGuard, and CryLog-
ger, but we do not claim that these results would generalize to
real systems, except possibly for ApacheCryptoAPIBench.

We revise the ground truth for ApacheCryptoAPIBench, after
careful manual analysis of RVSec, CogniCrypt, and Crypto-
Guard reports. Doing so may add threats to validity, but it
improves the benchmark and allows for fairer comparison of
RVSec, CogniCrypt, CryptoGuard, and CryLogger—which re-
port crypto API misuses with different levels of detail. We con-
tacted the authors of ApacheCryptoAPIBench, and they agree

Fig. 20. Snippet of the outcome of the original CryLogger for MASCBench.

Fig. 21. Snippet of the outcome of our CryLogger implementation for
MASCBench.

on the most critical modifications (e.g., our recommendation for
treating all uses of java.util.Random as secure).

Although many violations (from RVSec, CogniCrypt,
CryptoGuard, and CryLogger) are associated with critical
CVE/CWE warnings, we do not yet investigate the developers’
perceptions of these warnings. Doing so in an in-depth way
requires many careful considerations (e.g., adherence to
user agreement policies [58] and open-source vulnerability
disclosure policies [59]). So, we leave the important work of
user validation for future work.

Finally, we re-implemented two core components of Cry-
Logger in order to integrate the tool into our study. Our new
implementation was necessary because CryLogger only reports
which crypto API rules a system execution violates. Fig. 20
shows a snippet of the outcome of the original CryLogger for
the MASCBench. Unfortunately, it is not feasible to compute
accuracy metrics using the information present in Fig. 20. In-
stead, our new CryLogger implementation records all crypto
API violations together with the stack trace of the program
when a violation happens (see Fig. 21), allowing us to trace
the client code that originates the crypto API misuse.

As we mentioned, this new implementation was necessary to
integrate CryLogger into our study. Our new implementation
generates large log files, which might have led to failing to
complete the assessment in three ApacheCryptoAPIBench
projects, compromising the CryLogger assessment to this
benchmark. Besides that, the original version of CryLogger
also does not conclude its execution for the Spark project
(one of the ApacheCryptoAPIBench projects). So, even the
original CryLogger version might suffer from scalability
issues. We contacted the CryLogger authors, asking them
for any replication package that could indicate alternatives to
compare CryLogger with other tools. Unfortunately, according
to the authors, no replication package of previous CryLogger
studies is available for sharing.
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VII. RELATED WORK

This section discusses work that is most related to ours,
including research that focuses on crypto API misuses and the
combination of static and dynamic analysis to identify software
vulnerability in general.

A. Static Crypto API Misuse Detection

Several static analyses [60] were proposed to assist de-
velopers in early detection of vulnerabilities due to crypto
API misuses [8], [60], [61], [62], [63], [64]. CogniCrypt [20]
and CryptoGuard [7] are two prominent examples of such
static analyzers in the literature. CogniCrypt uses rules writ-
ten in a domain-specific language (DSL) called CrySL to
check crypto API usages. CryptoGuard uses optimized slicing-
based algorithms to find crypto API misuses. We use the
CrySL rules as a basis for developing RVSec specifications
because (1) the rules were validated with security experts,
(2) the authors provide an extensive test suite that allow us
to develop our specifications in a test-driven manner, and (3)
the rules are defined as EREs over method call sequences
and JavaMOP has native support for ERE as a specification
language. As a dynamic analysis-based alternative, we find
that RVSec produces fewer false positives and false negatives.
So, RVSec can complement static analyses during software
development.

B. Dynamic Crypto API Misuse Detection

Dynamic techniques exist for detecting crypto bugs in spe-
cific domains. SMV-Hunter [65] and AndroSSL [66] detect
SSL/TLS misuses, but they only work for Android. Similarly,
iCryptoTracer [67] detects misuses of crypto functions in iOS.
K-Hunt [68] finds insecure crypto keys in binaries, so it is
not a development-time aid. Unlike these techniques, RV is
general and it can be used at development time and across
domains—RV was applied to Android [69], [70], [71], cyber-
physical systems [72], [73], operating systems [74], [75], and
even hardware development [76]. But, RV’s generality comes
at the cost of writing specifications.

Closer to our study, CryLogger [22] uses 26 rules to detect
crypto API misuses. It monitors usage of crypto APIs and
logs values of relevant parameters in a file. Then, CryLog-
ger analyzes the logs offline to find violated rules. Differently
from CryLogger, RVSec (1) can check inter-class relationships
among crypto APIs, (2) monitor the entire life cycle of the
instances involved in crypto API usages (and not just values
that they use), and (3) pinpoint code locations where RVSec
violations occur. RVSec instruments the client code of the APIs,
so it generates useful reports for debugging detected crypto
API misuses by pinpointing the location of the misuse. Such
pinpointing allows for a fair comparison of dynamic and static
crypto API misuse detectors. On the other hand, CryLogger
only reports that a crypto API misuse was detected, so it was
necessary to change the CryLogger implementation to incorpo-
rate it into our research.

C. Use of Static and Dynamic Analysis to Detect Other Types
of Vulnerability

Combining static and dynamic analysis to identify vulnera-
bility has been explored before. In particular, several research
works explore the possible benefits of integrating both pro-
gram analysis approaches to identify system vulnerability via
anomaly detection.

For instance, Xu et al. [77] propose a probabilistic reasoning
framework that models the program’s behavior and context as
a joint probability distribution. This distribution captures the
dependencies between the program’s events and the contextual
factors, enabling more accurate anomaly detection. Differently,
Shu et al. [78] designed a method for modeling the behavior
of a program over a long period and detecting attacks on the
program based on the model. The method uses a graph-based
representation of the program’s behavior, whose nodes repre-
sent program states and the edges represent transitions between
states. The graph is then analyzed to identify behavior patterns
that indicate possible attacks.

Furthermore, Cheng et al. [79] also propose an approach
for detecting anomalies in cyber-physical systems (CPS), using
event-aware program analysis techniques. The approach first
defines a set of events that are expected to occur in a CPS, and
then analyzes the program code to identify program states as-
sociated with these events. At runtime, the system is monitored
for the occurrence of these events, and if they do not occur as
expected, it is deemed as an anomaly and flagged for further
investigation.

Ahrendt et al. [80] present a different technique to ensure
the correctness of software by combining static and runtime
verification to check data and control properties of the system.
They propose a formalism that models software systems and
properties to be verified, allowing for the expression of data and
control-related aspects. The framework defines a set of rules
that guide the combination of static and runtime techniques,
ensuring consistency and coherence in the verification process.
Static verification is used to prove that the system satisfies
some invariants and preconditions, while runtime verification is
used to monitor the system’s behavior and detect any violations
of post-conditions and temporal properties. The article also
introduces a framework and a toolset that support the proposed
approach and allow the specification, verification, and monitor-
ing of software systems in a unified way. Differently from our
work, their research aims to monitor the systems in production.
Instead, our goal with RVSec is to identify crypto API misuses
during the execution of test cases. It is a matter of future work to
explore techniques that might fix crypto API misuses at runtime.

Handrick et al. [81] present an in-depth analysis related to
the combination of static and dynamic analysis to identify An-
droid malware—using the Android Mining Sandbox Approach
[82], [83]. The authors bring evidence that static and dynamic
analysis complement each other, improving the overall accuracy
of Android malware classification. Our work differs from this
literature because we target crypto API misuses, a specific and
pressing source of software vulnerability. However, we believe
the related work we presented in this section might give possible
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directions for integrating static and dynamic analysis tools that
detect crypto API misuses.

VIII. CONCLUSIONS

We evaluate the use of RV for detecting crypto API misuses.
To do so, we implemented RVSec after translating specifica-
tions CrySL rules [6], [20] into JavaMOP specs [32] and use
RVSec to identify misuses of the Java Cryptographic Architec-
ture (JCA) API. We compare the accuracy of RVSec with the
state-of-the-art tools CogniCrypt [6], [20], [84], CryptoGuard
[7], and CryLogger [22] on five benchmarks (three from the
literature and two from independent organizations).

The results show that, on average, the accuracy (F1 score) of
RVSec (0.95) is higher than the accuracy of CogniCrypt (0.83),
CryptoGuard (0.78), and CryLogger (0.86). We analyze the
strengths and weaknesses of RVSec, CogniCrypt, CryptoGuard,
and CryLogger and provide evidence that static and dynamic
analyses can be complementary for identifying crypto API mis-
uses. Our work resulted in fixes to CogniCrypt, leading to an
improvement in its precision, and also to the benchmarks that
are commonly used to evaluate crypto API misuse detectors.

In the future, we plan to run RVSec in Android apps. Ad-
ditional engineering effort is required to run JavaMOP on An-
droid. We also plan to explore model-based test generation of
JavaMOP specifications to augment the ability of existing test
suites to catch bugs.
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