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Abstract

Mobile phones have become important daily companions for millions of people which help to organize both their
private and their professional lives. Having access to data such as the calendar or the address book anywhere,
anytime, has become commonplace. Sensor data such as the phone’s GPS location and accelerometer help users
navigate through the physical world. Users can furthermore extend the functionality of their phone using small
programs called apps from various developers and vendors in an open ecosystem. Undoubtedly, having all this data
merged on a device that is always-on and always-connected and that can easily be extended with new software
greatly improves user convenience. On the other hand, it also poses new questions with regard to privacy and
security. Apps may misuse the data stored on the phone or obtained from the sensors to infringe upon the user’s
privacy. In fact, companies already now use location data and app usage statistics to build user profiles for the
purpose of targeted advertisement. The user is oftentimes unaware of these data leaks originating from his phone
and has little means for analyzing the actual behavior of a given app with regard to privacy.

Static data flow analysis has been proposed as a means for automatically enumerating the data flows inside
a program. Still, either do not support Android’s platform-specific semantics or fall short on precision, recall, or
scalability. In this thesis, we therefore propose techniques for efficiently and precisely performing static data flow
analysis on real-world binary-only Android apps with large code sizes. We present the FLOWDROID tool and show
that it can detect data leaks in popular apps such as Facebook, Paypal, and LinkedIn. The FLOWDROID reports
improve the user’s digital sovereignty by allowing his to asses the behavior of the app before installing it on his
device and thereby entrusting it with his personal data. We allow the user to verify which of his data leaves the
device and how. On the DROIDBENCH micro-benchmark suite, we show that FLOWDROID achieves a precision of
more than 87% and a recall of over 84%, thereby outperforming state-of-the-art tools from academia and industry.
Additionally, FLOWDROID has already been used as a building-block for many other works in the field.
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Zusammenfassung

Smartphones sind für Millionen von Menschen zu täglichen Begleitern geworden, mit den sie sowohl ihr privates
als auch ihr geschäftliches Leben organisieren. An jedem Ort und zu jeder Zeit Zugriff auf Daten wie den Ter-
minkalender oder das Adressbuch zu haben, gilt heute als selbstverständlich. Sensordaten wie die GPS-Position
und der im Gerät verbaute Kompass helfen Benutzern, durch die reale Welt zu navigieren. Mit zusätzlichen Pro-
grammen, sogenannten Apps, können Benutzer die Funktionalität ihres Geräts zudem erweitern. Apps werden in
einem offenen Ökosystem von verschiedensten Anbietern und Entwicklern vertrieben. Alle Daten an einem Ort zu
haben, auf einem Gerät, das immer verfügbar und immer verbunden ist, bietet dem Benutzer zweifellos ein hohes
Maß an Komfort. Auf der anderen Seite wirft es jedoch auch neue Fragen zu Datenschutz und Privatsphäre auf.
Tatsächlich nutzen Firmen bereits heute Daten von mobilen Endgeräten, um Benutzerprofile für zielgruppenorien-
tierte Werbung zu erzeugen. Der Endnutzer ist sich dieser Datenextraktion von seinem Gerät oftmals nicht bewusst
und verfügt auch kaum über Möglichkeiten, sich darüber zu informieren, wie Apps mit seinen Daten tatsächlich
umgehen.

Statische Datenflussanalyse ist eine Technik, mithilfe derer automatisiert Datenflüsse in Programmen erkannt
werden können. Bisherigen Techniken fehlt jedoch entweder die Unterstützung für die spezifische Semantik der
Android-Plattform oder sie liefern keine hinreichenden Ergebnisse in Beziug auf Genauigkeit, Vollständigkeit, Ska-
lierbarkeit oder Geschwindigkeit. In dieser Doktorarbeit stellen wir daher Technken zur statischen Datenflussana-
lyse vor, mit denen reale Android-Apps mit großen Codemengen effizient analysiert werden können, auch wenn
diese nur im Binärcode vorliegen. Wir präsentieren das FLOWDROID-Werkzeug, welches präzise und weitestgehend
vollständige Datenflüsse aus populären Apps wie Facebook, PayPal und LinkedIn extrahiert. Die Ergebnisberichte
von FLOWDROID verbessern die digitale Souveränität des Benutzers, da dieser sich nun selbst ein Bild davon machen
kann, wie eine App mit seinen Daten umgeht, bevor er die App auf seinem Gerät installiert und ihr somit seine Da-
ten anvertraut. Mit FLOWDROID kann der Benutzer nachvollziehen, welche Daten von seinem Gerät erhoben und an
Dritte gesendet werden. Auf der DROIDBENCH Micro Benchmark-Suite liefert FLOWDROID mehr als 87% aller erwar-
teten Ergebnisse. 84% aller gemeldeten Ergebnisse sind korrekt. Diese Werte liegen deutlich über den Ergebnissen
der bisher aktuellen Analysewerkzeuge, sowohl aus dem akademischen als auch aus dem industriellen Kontext.
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2 Introduction

Today, most people use smartphones on a daily basis to perform various tasks. The smartphone has not only repla-
ced the traditional cellphone, but also the printed calendar, the paper notebook, the camera, the alarm clock, and
many other devices. For many people, the smartphone has become the indespensable single device for both private
and professional use. The sales numbers of smartphones have greatly exceeded those of traditional PCs [123] and
many services are now used through smartphones more often than through traditional desktop computers. Google,
for instance, reports that mobile use of their search engine has surpassed desktop uses [59]. For Facebook, the
number of mobile-only users has supassed the number of desktop-only users already in 2013. From 2015 on, there
are also more mobile-only users than users who access the site both through a desktop computer and a mobile
device [26]. These numbers indicate that this trend is likely to continue, driving more users to mobile devices.
In economics, this has lead to the buzzword mobile-first being invented for companies that actively target their
business model at mobile customers [52].

The popularity of smartphones is not only due to their built-in feature sets, but, even more important, due to
their extensibility. Users can download and install programs, called apps, that run on their smartphone and extend
its basic functionality. Some of these apps are developed by the same company that also developed the mobile
phone’s operating system, others are provided by the mobile network carriers or independent software companies,
and yet others were developed by private people. In essence, even the basic functions of a modern smartphone
such as the calendar or the notebook are, from a technical point of view, only pre-installed apps. There are apps
available for practically every common need, and thousands of apps get published every day. Though all smartphone
operating systems ship mobile web browsers, these browser apps are usually not the main channel through which
web services such as social media, weather forecasts, or news agencies are accessed. Instead, most of these service
providers offer specialized app optimized for the screen size and user interface of the smartphone. An average user
of the Android operating system has 95 apps installed, 35 of which are used on a daily basis [133].

As a consequence of these trends, more and more data is processed on smartphones, including confidential and
privacy-sensitive data. Users make purchases through smartphones and enter their credit card data into the device.
They organize their calendars containing the names of customers they meet and projects they work on. Some also
read and write business e-mails or manage their bank accounts and stocks on their phone. While it is convenient to
have access to all this data and features on the go, anytime and anywhere, it also makes mobile phones interesting
targets for attackers. In comparison to traditional desktop computers, smartphones are centralized data storage and
processing hubs. Most apps synchronize their data with the cloud; no matter whether a new appointment is added
through the calendar app or the provider’s web application, it will quickly end up in the app’s data storage on the
phone. This centralization offers increased convenience for the user as all his data is accessible in one location, but
also makes protecting this single location very important.

This is aggravated by the fact that many apps are personalized. A stock management app, for instance, not
only offers to search for stock prices, but also to save certain stock the user is interested in. He can then get quick
overviews over all his stock or receive alerts if prices change beyond a certain threshold. This is not only convenient
for the rightful user, but also for an attacker. If an adversary manages to compromise the stock management app,
he knows all of the user’s stock, and potentially the banking details used to buy and sell the stock. Furthermore,
smartphones not only process data entered by the user or synchronized from the cloud. These devices are also
equipped with various sensors apps can make use of such GPS receivers and acceleration meters. For all this sensor
data, there is a borad variety of benign use cases: For navigating on a map, the app needs to obtain the user’s
physical location to give correct and efficient routing information. For some games, the user has to tilt his phone to
move objects which is implemented using the phone’s acceleration sensor. Sensors are crucial to the modern mobile
experience. On the other hand, these sensors can also be exploited by adversaries. If an attacker is able to receive
regular updates on the phone’s location, he obtains an accurate picture of the whereabouts and movements of its
owner. This allows him to track the user through the pyhsical world. From this location data, more information
can be derived: If the phone is connected to the charger at a specific location every night, this is probably the
user’s home location. If the phone is always in the same area during working hours, this is probably the user’s
office location. From these two pieces of data, an attacker can then approximate the wealth of the user using
public census data. Google actively promotes this services for their advertisement business: “Target locations by
demographics to reach groups of people based on their location’s approximate average household income. Based
on publicly available data from the US Internal Revenue Service (IRS), advertisers are able to target ads to certain
areas according to their average household income.” [58]
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We note that for the purpose of targeted advertisement, companies not only collect data from the users while they
interact with the respective company’s services, but also from other sources. Facebook, for instance, collects user
data whenever the user visits a website that contains the Facebook library for liking or sharing content, regardless
of whether the user actually clicks on these buttons. Furthermore, many mobile apps include the Facebook SDK for
displaying advertisements on their own, which gives the company even more data to build user profiles. Facebook
actively promotes this data collection to advertisers: “You can even target your ad to people based on what they
do off of Facebook.” [44]. With mobile user data, the precision and completeness of such profiles for targeted
advertisement are greatly improved, at the cost of user privacy and often unbeknownst to the user. With their
combined data from the social network and other sources for data collection, Facebook can already now target
advertisements based on location, demographics (including age and gender), interests, behaviors (“Behaviors are
activities that people do on or off Facebook that inform on which device they’re using, purchase behaviors or intents,
travel preferences and more”, [45]), or similarity to existing customer profiles (“lookalike audiences”). The location
data is obtained from various sources, including the GPS data from apps that run the facebook app. In their official
FAQ, the question “How does Facebook know when people are in the locations I’m targeting?” is answered with
“Facebook uses information from multiple sources such as current city from profile, IP address, data from mobile
devices and aggregated information about the location of friends.” [44]. For Google’s advertisement services, mobile
data also plays a crucial role when targeting advertisements to potential customers based on demographics. On their
support pages they write, “This targeting feature uses an advertising identifier linked to a customer’s mobile device
to remember which apps the person has used. We might associate the identifier with a demographic category based
on web browsing and app activities on a mobile device.” [57] Statistics on which apps are used how by which
categories of people allow Google to more precisely associate an unknown user with a demographic category
without openly asking the user for any information he might not consciously want to provide. We notice that user
data, especially the data provided through always-on mobile device equipped with sensors, is a valuable currency
to the advertisement companies. For many seeminly free services, the user in fact pays with his data.

Technically, the user must consent to such data collection by accepting the respective companies’ data collection
policies or terms of service. Usually, these terms are displayed upon first use of a service or app. However, given
that these documents are long, written in legal speech, and perceived as a hurdle in front of the user’s actual goal,
namely using the app or service, many users simply click on the “accept” button without reviewing the policies
in detail. Albeit obtaining and using as much data as legally possible without making the user too aware of the
extent and implications of this business model, the renowed app developers and service providers are commonly
careful to at least comply with the data protection regulations of the countries in which they operate. For smaller
independent developers, this is not necessarily the case. In an earlier study [113], we found numerous cases
in which such developers fail to provide even the minimum technial data protection standards. For the user, it is
therefore critical to know how the apps installed on his phone actually process his data, be it from storage (calendar,
address book, etc.) or from sensors such as GPS. This problem cannot be solved with regulations and policies alone,
and the user cannot necessarily trust the data collection policies (if any) issued by the app developers.

In summary, smartphones offer a new way of interacting with information through a device that is not only
always on, always up-to date, and personalized, but also context-aware through its sensors. Users increasingly
depend on the services that are enabled by these features. On the other hand, this reliance also comes with a risk
of misuse or, more generally, unwanted data leakage. Whenever a user installs an app on his phone, this app may
enhance the features of his phone, but it may also contain (additional) malicious code that exploits the phone’s
features for an attacker’s benefit. For a user, such unwanted behavior is hard to detect. Assume he installs a gaming
app which actually behaves like a game, but additionally also sends out his location data in the background. For
the user, there is no visible indication of this data leak. Even if the code is not outright malicious, it might serve
the interests of other entities such as advertisement providers. A normal and perfectly legit app can still violate
the user’s reasonable expectation of privacy through advertisement libraries embedded into the app. Even the app
developer might not be fully aware of the concrete data collections performed by the advertisement SDK that
he embeds into his app as a binary-only library. In both cases (malware and targeted advertisement), the user is
usually not aware of the data that is being collected about him, and might not consent to the data collection if
he were asked openly. Additional technical measures are required to ensure user privacy and prevent data misuse,
while still retaining the benefits of modern smartphones. The user must be given a means to find out how an app
processes his sensitive data and to where this data (or data derived from it) is leaked. Only then, he can make an
informed decision as to whether an app is trustworthy enough to be installed on his phone (and thus be entrusted
with his personal data) or not.
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(a) Install-Time Permission Re-
quests in Android 5

(b) On-Demand Permission
Requests in Android 6

Figure 1: Android Permission Requests Pre- and Post-Lollipop (Android 6.0)

2.1 Existing Techniques for Protecting User Privacy

The smartphone operating systems (including, but not limited to Android) already provide various techniques to
mitigate the risk of data theft and misuse. Many other techniques have been proposed in academic research papers,
both on the system level and on the application level. This section presents the most common and influencial ap-
proaches for protecting user privacy on Android. We show that these techniques are insufficient for truly protecting
the user’s privacy and argue that they mus tbe complemented with efficient and precise data flow tracking. We will
show that the user must be informed not only that his data is bing used, but where it is passed and leaked, which
goes beyond traditional access control techniques.

2.1.1 Permissions

The Android operating system enforces an explicit permission model. Sensitive operations such as reading out
the current GPS position are guarded by permission checks. An app must declare a list of all permissions that
it will ever use during its execution. In the traditional Android permission model (up to version 5), this list is
presented to the user when he installs the app as shown in Figure 1(a). If the user does not want to grant the
app any one of these permissions, he can abort the app installation and completely refrain from using the app.
There is no possibility to deny individual permissions and still install the app. Apps are guaranteed to never use any
permissions they haven’t declared. Therefore, an app is always limited to the permissions granted by the user at
install time. Nevertheless, this model does not prevent data leakage for multiple reasons. Firstly, many users do not
carefully inspect the permission list, but instead simply accept it as their only other chance would be to refrain from
using the app at all [48]. Even those users who read and inspect the permission list often fail to correctly map the
requested app permissions to potential security and privacy threats [73]. Secondly, permissions are coarse-grained.
If an app requests the permission to connect to the Internet, this does not restrict the remote servers to which
connections are made and to which data is potentially transferred. Approaches for fine-grained permissions have
been proposed in the literature [69], though. Lastly, permissions only control access, but not usage. If an app is
granted access to the phone’s GPS location, there is no further restriction on what the app can do with this data.
A benign app could display the position to the user on a map whereas a malicious app could silently leak the data
to a remote adversary. The user cannot distinguish these cases once he grants the permission to access the GPS
location. Therefore, allowing the user to remove permissions as proposed by Do et. al [39] or as implemented in
AppGuard [16] is not a solution either.
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In the most recent Android versions (starting from 6.0), the permission model was switched to an on-demand
permission check [3]. Users are no longer requested to accept or deny all permissions as an all-or-nothing operation
at install time. Instead, whenever an app tries to perform an operation guarded by a permission, a corresponding
request is presented to the user as shown in Figure 1(b). This gives the user more contextual information, i.e., he
can decide whether this very action matches his expected app behavior at this time. If a timetable app for public
transport, for instance, suddenly requests his GPS position, this is supicious and should likely be denied - unless
there is a good reason such as a find nearest bus stop feature on which the user just clicked. Even on-demand
permissions are not a complete solution to the problem of data leakage, though. Firstly, the decision as to whether
a certain permission request is expected or not, can be hard to make. If the timetable app, for instance, displays
the nearest bus stop right away without any prior user interaction, it might not be clear why it asks for the GPS
location directly on startup. Furthermore, even on-demand permission requests do not restrict the use of the data
once it has been obtained by the app. This is especially important for apps that rightfully request sensitive data
such as a GPS navigation app. For the user, there is a good reason to always grant this app access to his location
while using it. In addition to the benign route planning feature, the app is, however, still free to maliciously leak
the data to an adversary without being noticed by the user.

Researchers have evaluated whether combinations of permissions are effective to mitigate privacy issues [40].
If an app wants to leak the GPS data, it conceptually needs two permissions: One to access the GPS data and
one to send it out to the Internet. One could, therefore, disallow apps that have such dangerous combinations
of permissions. In practice, however, these combinations can also occur in benign applications such as the GPS
navigation app mentioned above: It needs the user’s location for routing and Internet access for downloading
maps. Furthermore, even the absence of the Internet permission is no guarantee that no data is leaked to the
Internet as researchers have shown [134]. In total, the permission system alone is insufficient to ensure user
privacy and prevent data leakage from smartphones. Instead of pure access control on sensitive information, data
flow control is needed to check for misuses of legally obtained data.

2.1.2 Context-Sensitive Access Control

The Pegasus system [30] associates events with permission-protected API calls to form a Permission Event Graph.
The idea is that a user encodes his expectations of when certain APIs are used as policies. The Pegasus tool then
uses a combination of static and dynamic checks to detect violations of that policy. While this approach can detect
malicious behavior or unexpected private data leaks in the presence of precise specifications, it is not readily appli-
cable to arbitrary apps. The authors present simple application-independent policies such as “Sensitive operations
must be guarded by user interaction”. An arbitrary user interaction does, however, not automatically induce con-
sent on an arbitrary follow-up operation conducted by the app. Approaches such as Pegasus therefore fail to inform
the user about the concrete sensitive operation (e.g., data leak) to which he is consenting. Creating fine-grained
policies that capture such semantics, on the hand, is a time-consuming and non-trivial task that cannot be expected
from an end-user. Together, these issues limit the practicality of the approach in real-world scenarios.

2.1.3 Mock Data

Some researchers have proposed to transparently replace the actual sensitive data items stored on the phone with
fake mock data [20]. A malicious app would then still be able to leak this data, but since all data is randomly
generated, it is useless to an attacker and does not infringe upon the user’s privacy. This technique works under
the assumption that such data accesses are not central to the app’s core functionality. If a GPS navigation app also
leaks the user’s location data in the background, a mocking approach cannot help. Replacing the GPS location with
fake data would also lead to a wrong map display and unhelpful routing instructions and therefore destroy the
app’s core features. Other approaches such as AppFence [65] combine mock data with traffic blocking. Certain
data items can be declared as mocked, others as app-local. The latter are available to the app in their original form,
but attempts to send this data to remote entities are blocked. This, however, already requires knowlege of the data
flows inside an app to notice the transmissions to be blocked. Again, data flow tracking appears to be central to
protecting user privacy on smartphones.

2.1.4 Store-Based Policy Enforcement

Another approach to mitigating privacy risks on smartphones is to control the app distribution. If malicious apps
are not available for installation, they cannot cause harm to users. Such control is possible, because the distribution
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of apps is largely centralized which is a major difference to traditional computer software which can be obtained
through various channels (CDs/DVDs, download from various websites, etc.) All big developers of smartphone
operating systems have created ecosystems around their systems and the apps offered for them. At the center of
such an ecosystem, there is a store. For the Android operating system, Google offers the Google Play Store, for iOS by
Apple, there is the Apple App Store. These stores the main distribution points of apps. Developers can upload their
new apps to the store and manage their updates and patches through it. Users can search the stores to find a suitable
app for their particular needs, usually through the store app pre-installed on all of the respective manufacturer’s
phones. This store app then also manages the installation of the app and notifies the user of available updates.

App store providers can filter which apps they allow into their stores and ban those apps that have been identified
as malicious. This, however, imposes additional effort on the store operator. Worse, a binary decision of whether to
allow or reject a newly uploaded app also requires a shared understanding of wanted and unwanted apps between
store operator and smartphone user. While a store operator might accept apps that create and leak user profiles
for advertisement purposes as part of his own revenue model, such data leaks may nevertheless be considered
unwanted by the smartphone user. Furthermore, especially the Android ecosystem is not restricted to the official
Google Play Store. Users can optionally chose to also install apps from other sources. There are various third-party
app stores run by network carriers or independent third-party organizations. In some countries such as China, the
Google Play Store, for instance, is not even available, forcing users to obtain their apps through other stores. Each
store has different policies on what kinds of app behavior are acceptable and not even all third-party app stores
perform malware checks at all. Therefore, traditional binary assessments at the store level (i.e., allow an app into
the store or reject it) are not a full remedy against privacy violations either.

Instead, new techniques for detecting and enumerating flows of potentially sensitive user data are required.
The user not only needs to be informed which kinds of data are accessed by an app, but also where this data is
transferred to. If an app reads out his GPS location, what happens with this data after it leaves the protection
of the smartphone operating system such as Android’s permission model? Judging the behavior of the app based
on this information is and needs to be the task of the well-informed user as only he knows his personal privacy
requirements.

2.1.5 Data Flow Analysis6

Other researchers have also identified the need for data flow analysis on mobile apps and created various analyzers,
both before and after the work described in this thesis was made available as open-source projects. In this section,
we will discuss those works that are closest to our own work in the area. Section 5.5 will give a broader overview
over the area of static data flow analysis in general and will also discuss related work on some of the important
building blocks necessary for analyzing Android apps.

Note that confidentiality and integrity are dual problems from for a data flow analysis. Both are essentially flows
between API calls. In one case, confidential data flows to untrusted sinks, in the other case untrusted data flows to
sensitive sinks. In this area of integrity, CHEX [91] is an approach for finding component hijacking vulnerabilities in
Android. Although not built for the task, CHEX can, in principle, be used for taint analysis. CHEX does not analyze
calls into Android framework itself but instead requires a (hopefully complete) model of the framework. In our
work, such a model is optional and mainly used to increase performance. We also provide for techniques to create
library models which is missing from CHEX. Furthermore, CHEX is limited to at most 1-object-sensitivity, while the
demand-driven alias analysis of the work presented in this thesis allows for contexts of arbitrary lengths (using a
default of 5). We found 1-object-sensitivity to be too imprecise in practice.

LeakMiner [153] appears similar to the work presented in this thesis from a technical point of view. It is based on
Soot, uses SPARK for callgraph generation, implements the Android lifecycle, and the paper states that an app can
be analyzed in 2.5 minutes on average. However, the analysis is not context-sensitive which precludes the precise
analysis of many apps as we will point out in later sections of this thesis. AndroidLeaks [55] also states the ability
to handle the Android Lifecycle including callback methods. It is based on WALA’s [141] context-sensitive System
Dependence Graph with a context-insensitive overlay for heap tracking, but is not as precise as our work, because
it taints the whole object if tainted data is stored in one of its fields, i.e., is neither field nor object sensitive. This
precludes the precise analysis of many practical scenarios. SCanDroid [54] is another tool for reasoning about data
flows in Android applications. Its main focus is the inter-component (e.g. between two activities in the same app)
and inter-app data flow. This poses the challenge of connecting intent senders to their respective receivers in other
applications. SCanDroid prunes all call edges to Android OS methods and conservatively assumes the base object,

6 This section is partially taken from our 2014 PLDI paper on FLOWDROID [9].
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the parameters, and the return value to inherit taints from arguments. This is much less precise than our work
which can use automatically-generated precise library summaries for modeling calls to framework methods, or,
alternatively, analyze the framework code together with the app. Our approach currently models intent sending as
sink and intent reception as source, yielding a sound treatment of inter-app communication. We also desribe how
our work has already been extended to provide for true inter-component and inter-app modeling and data flow
analysis.

More recent approaches such as DroidSafe [60] tackle many of the precision and recall issues of prior work.
Especially DroidSafe, however, requires substantial human labor as it needs stub implementations of the com-
plete Android framework, including all the Java base classes. Furthermore, we found DroidSafe to suffer from
serious scalability issues even on small micro-benchmarking apps. We were therefore not able to analyze all apps
we initially inteded with DroidSafe. JoDroid [97] is an extension that adds support for Android apps to the Joa-
na [56, 61] object-sensitive analyzer for Java. Like the original Joana work, it is based on program dependence
graphs (PDGs) [50]. This program representation allows for very precise reasoning on data flows including impli-
cit flows, but can also be costly to construct. Our approach in this thesis is based on taint tracking based on an
inter-procedural control flow graph. ScanDal [75] is a static data flow analyzer based on abstract interpretation.
Unfortunately, the implementation tool is not publicly available for a direct comparison.

Other approaches like CopperDroid [115] dynamically observe interactions between the Android components
and the underlying Linux system to reconstruct higher-level behavior. Special stimulation techniques are used
for exercising the application to find malicious activities. Attackers, however, can easily modify an app to detect
whether it is running inside a virtual machine and then leak no data during that time [93, 106, 139]. Alternatively,
data leaks might only occur after a certain runtime threshold or when a specific sequence of events has been
triggered. The limited code coverage is a well-known problem of dynamic approaches that require event simulation.
A recent comparative study of test input and event generation tools for Android [31] shows that even those tools
that achieve the highest coverage can only yield a statement coverage of less than 50% on average. In other words,
more than half of the statements are never triggered when automatically exercising an Android app and all behavior
inside that part of the app remains hidden to the dynamic analysis tool. Aurasium [147] and DroidScope [149]
largely suffer from the same shortcomings in comparison to static leak detection.

TaintDroid [41] is one of the most sophisticated taint tracking systems for Android to date. As a dynamic ap-
proach, however, it yields some quite different tradeoffs compared to the work presented in this thesis. For instance,
TaintDroid has no problem tracking taints through reflective method calls, as TaintDroid is implemented as an ex-
tension to the execution environment, for which it does not matter whether methods are invoked through reflection
or not. On the other hand, if used for triaging malware before installation time, then TaintDroid can successfully
detect malware only if paired with a dynamic testing approach that yields decent code coverage. Obtaining such
coverage is, as mentioned above, a research challenge on its own, for which no satisfactory solutions exist yet.
Static ahead-of-time analyses like our work do not share this shortcoming because they, by their nature, cover all
execution paths. Secondly, a dynamic approach such as TaintDroid can be fooled by a malicious apps that recognize
that it is being analyzed in which case the app could simply refrain from performing any malicious activities [93,
106, 139]. While this is not problematic if the dynamic analysis is installed on the end user’s mobile phone (in that
case, the malware would effectively be tamed), it is problematic if the dynamic analysis is only used for ahead-of-
time triaging of malware that could then later on be installed on a system not protected by the dynamic analysis
(in which case the app could resume its malicious activities). Static approaches such as ours do not share this
particular shortcoming as they never actually execute the app.

F4F [130] is a framework for performing taint analysis of framework-based applications using a specification
language called WAFL for describing the functional behavior of the respective framework. While originally created
for web applications, it might also be extended to model the Android framework by adding a WAFL generator for
Android. The dummy-main generation technique we propose in this thesis has the big advantage to only include
components and callbacks that are indeed accessed by the app. This, however, requires a semantic model of the
app’s manifest, the layout XML files, the compiled resources file and the appâĂŹs source code, which are all inter-
leaved. F4F could at best be used to give a coarse approximation modeling the common denominator of all possible
apps.

While many of the approaches presented above are important steps towards the goal of informing the end-user
about the data flows inside an Android app, none of them solves the challenge completely. For a data flow analysis
to be usable in practice, it must be efficient and simple to use. The dynamic analyses such as TaintDroid, Aurasium,
and DroidScope require the user to fully exercise the app in the analyzer, which is infeasible. We therefore propose
static analysis to fully capture the behavior of an app while avoiding the code coverage problem. The existing static
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analysis tools, on the other hand, suffer from low precision, which requires the user to review a large number of
flows in the end, many of which are false positives and do not model actual behavior of the app. Approaches based
on PDGs have the potential to be more precise, but suffer from high computational cost. In fact, as we show in
Section 7.2.5, some of the tools time out on relatively small benchmarks app with less than one megabyte of total
size and only a handful of lines of actual user code. Other tools require significant human effort, which is infeasible
if one wants to analyze a complete app store. In the case of a user who is not an expert on (static) analysis on his
own, such a requirement may also be impossible to meet. Yet other tools claim interesting properties, but are not
publicly available for indepedent validation of their claims and a fair comparison with new ideas and approaches. In
summary, there is still the need for a static data flow tracker that efficiently, precisely, and as completely as possible,
analyzes real-world Android apps. In this thesis, we propose FLOWDROID exactly as such a tool, which we make
available as an open-source project for other researchers to try out, extend, build upon, and independently validate
our claims. We purposely design the tool with many interfaces for easily replacing algorithms and techniques with
new approaches in an attempt to provide the community with a testbed for individual building blocks.

2.2 Thesis Statement

In this thesis, we explore whether static data flow analysis can be effectively and efficiently used to detect privacy
leaks in Android apps. We aim to construct a tool (or a suite of tools) that covers all necessary steps in the analysis
process such that a user can input an app and is, as a result, presented with a list of data flows of potentially
sensitive information inside the given app. To be useful in practice, the tool must be scalable and fast enough such
that it can be applied to popular real-world apps from major app stores, which also happen to have large code sizes
for the examples we have observed. Secondly, the analysis must discover a high percentage of the leaks that exist
inside the app to be analyzed, because each missed leak is a potential privacy violation the user is not aware of.
Lastly, the tool must be as precise as possible to not overwhelm the user with false reports on data flows or privacy
leaks that actually cannot occur in practice. In the following sections of this thesis, we show that such an analysis is
indeed possible and present a design and implementation of a highly precise and efficient static data flow tracker as
well as techniques for capturing Android-specific semantics and handling large libraries. Our final result has gained
significant popularity in the research community and has been used as a component in many derived works.

Note that we do not judge the discovered data flows in this thesis, i.e., do not decide whether a given data flow
violates the user’s privacy or is his reasonable assumptions about what data an app will share and what it will
keep private. We do not reason about flows being benign or malicious either. We acklowedge that such decisions
are important and need to be made, but leave this as a separate research question. Still, because such judgement
is an important next step in order to increase the helpfulness of the work presented in this paper for real-world
end users, we shortly present a few approaches developed by other researchers. The same holds for defining the
sources of sensitive data in the Android environment and the sinks that may potentially leak this data to untrusted
outsiders. In this thesis, we survey techniques for obtaining this required configuration, but do not present own
approaches.

Android has long since become the most popular smartphone operating system with a market share of about
86% [131]. Furthermore, the Android operating system is available as an open-source project, which makes An-
droid readily available for research and scholarly inspection. Other operating systems such as iOS and Windows
Phone instead require a great deal of reverse engineering effort for understanding their inner workings. For these
reasons, the system-specific parts of this thesis are centered around Android. Note that the general concepts can
be applied to Java programs completely unrelated to the mobile domain which we will also highlight in the later
sections of this thesis.

2.3 Contributions

This thesis is a step toward better protecting the users’ privacy by detecting potentially undesired data flows in
apps. We present techniques aiming towards this goal as well as infrastructure components that make the analysis
itself feasible. In summary, this thesis presents the following original contributions:

• We design and implement a static data flow tracking tool that is both efficient and highly precise. This tool,
called FLOWDROID [9] consists of a generic, platform-independent data flow tracker and platform-specific
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extensions. This design not only allows to the tool to be applied to multiple platforms such as Java and
Android, but also allows for its integration into other research projects. The tool is presented in Section 47.

• We design and implement extensions to FLOWDROID that faithfully model the properties of the Android ope-
rating system. Our model includes the Android lifecycle, callbacks, and UI elements. As Android is a highly
dynamic platform, we carefully chose trade-offs for the static approximations of Android runtime behavior.
The Android extensions to FLOWDROID are presented in Section 5.

• We design and implement a technique called STUBDROID [5] for automatically generating method summaries
from a binary distribution of a library. We further implement techniques for making these libraries available
to FLOWDROID. As a result, FLOWDROID can skip analyzing these libraries every time anew when processing an
app. Instead, the pre-computed summaries are plugged in. We demonstrate that the use STUBDROID summa-
ries for the Java collections API on Android and Java reduces the runtime of the data flow analysis by over
90%. STUBDROID is presented in Section 6.

• We design a test suite called DROIDBENCH for assessing the precision and recall of static and dynamic data
flow analysis tools. This suite helps in comparing various approaches from academia against each other
and against commercial products in the field using reproducible experiments on publicly available data.
DROIDBENCH consists of over 100 small Android apps with challenges such as aliasing or data propagation
over the Android lifecycle. DROIDBENCH is presented in Section 7.

• We show that, while FLOWDROID is neither totally sound nor totally precise, the tool delivers useful results
in practice with a precision of more than 86% and a recall of more than 79% on realistic micro-benchmarks
from DROIDBENCH. Even on large real-world apps such as Facebook , the analysis finishes in about 2 minutes,
while taking even under one minute for many other apps.

• We present a first step toward broadening the scope of the FLOWDROID static data flow analyzer and the Soot
compiler framework on which it is based beyond Java and Android. In this work, presented in Section 9, we
show how assemblies compiled for the Microsoft .net framework can be converted to Jimple code. This is a
necessary prerequisite for applying our existing tool chain on this platform as well which we plan as future
work.

2.4 Dissertation Outline

The goal of this dissertation is to show whether and if so, how, static data flow analysis can be used to analyze Java
programs and Android apps for detecting leaks of privacy-sensitive data. The remainder of this thesis is structured
as follows. In Section 3, we explain the general concepts on which our work is based. This includes a discussion of
the frameworks used as well as general problems such as how to define sources and sinks that capture the user’s
intuition of what sensitive data is and where it should not be leaked. We explain how access paths, the primary
abstraction for representing taint inside the static data flow analysis, are structured and motivate why we chose this
representation. Afterwards, we give a short introduction into the IFDS framework in which FLOWDROID’s data flow
problem is formulated. We also discuss the fundamental limitations of the chosen frameworks and representations.

Section 4 presents the platform-independent core of the FLOWDROID data flow tracker, i.e., the parts that are not
specific to Android, but that can be applied to Java (and potentially many other platforms) as well. We discuss
how precision, scalability, and flexibility can be achieved, and what tradeoffs were made. We describe each of the
components of FLOWDROID in detail including its features and limitations. We also give an outlook on some of
the work other researchers have done based on FLOWDROID. Afterwards, Section 5 presents the Android-specific
extensions to this core data flow tracker. We describe how we handle the Android lifecycle, the callback-driven
nature of Android app programming and execution, and the tight coupling that many apps have with their user
interface. Together, Sections 4 and 5 reflect the full FLOWDROID system as it is available to the research community
as an open-source product.

In Section 6, we discuss STUBDROID, a technique for handling large libraries in a static data flow analysis. We
show how one can create efficient summaries for the Java base libraries and the Android SDK to avoid having to
re-analyze these common classes together with every app or program. We show that our library-based approach

7 An initial prototype of FLOWDROID was created by Christian Fritz in his master’s thesis [53]. The version presented in this Ph.D. thesis
improves significantly over the initial prototype in functionality, efficiency, precision, and recall.

16



can reduce the overall analysis time by up to 80%. For evaluating static data flow trackers such as FLOWDROID,
we provide a suite of micro-benchmarks called DROIDBENCH in Section 7. With this suite that has gained enough
popularity to be used for evaluation in various research papers, we show how FLOWDROID performs in comparison
to other approaches available commercially or known to the scientific literature. Since these micro-benchmarks
do not give insights into a tool’s scalability for real-world apps, we evaluate FLOWDROID on a number of popular
apps taken from the official Goole Play Store in Section 8. We first report on time and memory consumption with
the default settings, and then evaluate how the most important settings affect the scalability of the tool on our
experimental set of apps.

In Section 9, we present an outlook on work to extend FLOWDROID and the Soot compiler framework on which
it based beyond Java programs and Android apps. We present a framework that transforms code compiled for
the Microsoft .net framework in to Soot’s Jimple intermediate representation. This serves as a first important step
towards applying FLOWDROID to this platform as well in future work. We finally conclude our discussion of static
data flow analysis in Section 10.
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3 Concepts of Static Data Flow Analysis

In this section, we will explain several important concepts that are necessary for the techniques and methods we
propose in the remainder of this thesis. For reducing the complexity of the analysis, we do not conduct our static
analyses directly on the Java or, in the case of Android, Dalvik bytecode, but rather use a simplified intermediate-
representation called Jimple which we explain in Section 3.1. Section 3.2 focuses on defining sources and sinks
as an integral part of the data flow problem. In Section 3.3 we discuss access paths, which are the fundamental
concept of our taint abstractions. The FLOWDROID static data flow tracker is implemented as an IFDS problem.
Therefore, we give an introduction into the IFDS framework in Section 3.4.

3.1 The Jimple Intermediate Representation

Analyzing Java or Dalvik bytecode is complex, because these languages have been optimized for runtime execution
performance, not for static analyis. Java bytecode has more than 200 different opcodes that an analysis would
all have to emulate with respect to the data flow facts. For each opcode, the analysis would need to have rules
on how to transform an incoming data flow fact such that the output resembles how the opcode has influenced
the respective data. For such a large numbner of opcodes, this would be a major undertaking. To simplify the
analysis, the work presented in this thesis is therefore based on the Soot compiler framework [78] and its Jimple
intermediate representation [137]. Jimple consists of only 15 different types of statements that can contain 29
different types of expressions. While for performance reasons Java bytecode, for instance, has individual opcodes
for putting one of the integer values 0, 1, 2, 3, 4, 5 on the stack, there is no such special-casing in Jimple.
Furthermore, Java bytecode is a stack-based language. Operands are put on the stack before executing an operation.
The operations pops the arguments, computes the results, and puts these results back on the stack. A static analysis
working on this level would have to emulate this complete stack semantics. In Jimple, there is no stack. Instead,
Jimple is closer to the Java sourcecode language, because it uses locals which are simply local variables that can
be read from and assigned to. In total, Jimple can be seen as a higher level of abstraction than bytecode, though
there is a complete mapping from bytecode to Jimple and back again. Unlike with decompilation to Java source
code, there is no semantic loss when creating Jimple code from Java bytecode.

Jimple inherits some properties that are relevant for static analysis directly from the bytecode language. While
the Java source code language supports complex nested constructs, both the bytecode and the Jimple language
break them into a sequence of simpler statements. Adding more than two numeric values, for instance, is broken
into a sequence of additions with two values each. As another example, if the original source code invoked a
method and passed a value from a field as a parameter, i.e., had a nested field access inside a method call, this is
broken into two different statements as well. First, the field is read and the field value is written into a temporary
variable. Then, the method call takes place with the value from the temporary variable. While these simplifications
increase the overall code size, they create code with a simple structure, effectively reducing the number of cases
that must be handled in the static analysis.

3.2 Source and Sink Definition

The goal of a data flow analysis is to find connections between sources and sinks. This requires a definition of what
constitutes a source and what constitutes a sink. For the use case of detecting privacy leaks, the user or analyst is,
informally speaking, interested in whether privacy-sensitive information is leaked to potentially untrusted external
parties. This is, for example, the case if an app reads the user’s address book from his phone and transmits it to
a server on the web. In this example, the source is the method that reads the address book data and the sink is
the method that transmits this data (or any data derived from it) to the remote server. In the simpler example
from Listing 1, the user’s device ID is read and send out as the text of an SMS message. There, the getDeviceId()

method (called on Line 4) is the source and the sendTextMessage method (called on Line 8) is the sink. Before
any data flow analysis can be conducted, these source and sink methods must be identified. They constitute which
flows the analyst is interested in (as opposed to, e.g., the flow of a constant value into a message displayed to the
user which is usually not of any interest).

On Android, the only possibility for an app to access data from the operating system (such as sensor data like
GPS location or device identifiers) or from other apps (such as the address book) is through API calls. The goal of
identifying sources and sinks can thus be reduced to the task of partitioning the set of publicly accessible Android
API methods into ones giving access to sensitive information (i.e., sources), ones allowing to send out information

18



1 void onCreate() {

2 // Get the data

3 TelephonyManager mgr = (TelephonyManager) this.getSystemService(TELEPHONY_SERVICE);
4 String deviceId = mgr.getDeviceId();

5
6 // Leak the data

7 SmsManager sms = SmsManager.getDefault();

8 sms.sendTextMessage("+49 1234", null, deviceId, null, null);
9 }

Listing 1: Simple Data Leakage Example. Adapted from the DirectLeak1 test case in DroidBench

(i.e., sink), and remaining set of non-interesting methods. The easiest attempt would be to conduct this partitioning
by hand, which is, however, practically infeasible. Version 4.4 of the Android operating system contains more than
110,000 public API methods, newer versions even more. Manually checking whether each of them returns privacy-
sensitive information or can potentially be used to send such information to third parties is clearly infeasible.
Therefore, approaches to automatically identify sources and sinks have been proposed. SuSi [109], for instance,
uses machine learning to take a small set of hand-annotated source and sink methods as a base for identifying other,
similar methods. Source methods share the characteristic of reading data from a system resource and returning
them to the caller, regardless of the concrete type of data. Such a system resource could, for instance, be a database
stored on the phone. Sink methods, on the other hand, write to system resources such as the network. SuSi is
highly effective in exploiting these common characteristics for identifying new, previously unknown sources and
sinks. For Android 4.4, it achieves a precision and recall of more than 92%. Many of the source and sink methods
identified by SuSi were previously not included in the source and sink lists of static analysis tools, neither from
academic research, nor from industry. It is important to note that every missed source or sink method is a potential
security threat as attackers can call those methods to obtain and send out privacy-sensitive data items without the
leak being detected. Data flow analysis tools can only be effective if their source and sink lists are complete. This
again underlines that automation is necessary to properly safeguard user privacy.

Automatic detection of sources and sinks through machine learning has the potential to identify a large number of
sensitive methods. As all approaches based on machine learning, it is, however, inherently incomplete. One cannot
give any guarantees on the absence of false negatives. In other words, there may always be a sensitive method
that is not classified as a source or sink, although it actually is one. The authors of the DroidSafe project [60],
for instance, manually investigated the methods called by the apps in their test set and found that SuSi missed
53% of the source methods and 32% of the sink methods called by these apps. They therefore opted to completely
manually assemble the list of sources and sinks for their analysis. As this requires a manual inspection of every
app before running the actual data flow analysis, it can, however, only be seen as a supplementary approach for a
fully-automated large-scale analyses and not as a replacement.

While SuSi exploits implementation properties of sources and sinks as features for its machine learning algorithm,
other approaches exploit similarities in how these methods are used in client programs. Merlin [89] starts from
an initial specification much like SuSi’s hand-annotated training set. It then looks for similar data flows in a set of
client programs to find further, not yet identified, sources and sinks. According to the original paper, Merlin’s false
positive rate is 6% for sources and 26% for sinks. This approach, however, can only identify those sources and sinks
that are used in at least one of the applications in the analysis set. While this will, given enough apps, usually cover
all the common sources and sinks, it still misses the more “obscure” (i.e., rarely-used) methods. This leaves more
room for attackers to deliberately exploit those rare methods for conducting undetected data leaks.

AndroidLeaks [55] is representative for yet another approach to identifying sources and sinks, namely through
Android permissions. The idea is that most methods that give an app access to sensitive information are pro-
tected by permissions. If an application, for instance, wants to read out the user’s location data, it needs the
ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION permission. Given a mapping between API methods and the
set of permissions required by these methods, one only needs to collect all methods that require one of the well-
known information-retrieval permissions. Several research projects have focused on providing such permission-to-
method mappings [13, 47]. While this approach is, given such a mapping, trivial to implement for sources, it is
more complicated for sinks. AndroidLeaks cannot easily rely on permissions here, because the INTERNET permission
is enforced by the kernel-level sandbox and not by the Dalvik-level Android framework for performance reasons.
For sinks, AndroidLeaks therefore resorts to a manually- compiled sink list.
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1 void onCreate() {

2 // Get the data

3 Data d = new Data();

4 d.a = 5;

5 String x = source(d);

6 sink(d.a);

7 }

Listing 2: Source method call with complex objects

All approaches mentioned so far consider full methods as sources or sinks. While this definition is conceptually
simple, it is imprecise. Consider the example in Listing 2 where the method source() is considered as a source
method. Without any further information, an analysis does not know whether this method returns the sensitive data
into the x variable or whether it writes that data into a field of the d object which gets passed in as a parameter.
If the analysis needs to be complete, it has to conservatively over-approximate and assume that both the return
value and all of the fields inside the data object receive sensitive data. While this assumption will ensure that the
analysis never misses any sensitive data obtained through the source method, it can also lead to serious over-
tainting. In other words, it can make the analysis track spurious data elements that are not sensitive at all. In the
example, constant value stored in d.a might not be overwritten by the call to source; falsely assuming that the
source method can taint everything in its scope will eventually lead to a false positive. When taking static fields
into consideration, conservative over-approximation fails entirely as one would need to assume that every call to
a source method writes sensitive data into every static field in the whole program, because static fields are always
in scope. In other words, once a source method was called, all static fields would be assumed to contain sensitive
information. While such a behavior of a source method is theoretically possible, most source methods will not
behave that way. In most cases, an analysis that makes such a conservative assumption will suffer from a large
number of false positives.

To completely solve this issue, one needs to extend the definition of a source beyond mere method signatures.
Instead, the specification of a source or sink must precisely pinpoint the variables (and potentially the concrete
fields reachable through these variables). For the source method, this could be “taints the return value”, or
“taints <parameter0>.a” instead of just “method source is a source”. One example of a specification langua-
ge for sources and sinks that allows such fine-grained definitions is RIFL [42]. Note that a source or sink definition
has to be in relation to the externally-visible interface of the respective method method. An analysis tool that only
works on client programs and that does not have access to the implementation of the source or sink method inside
the framework or OS code must be able to map the source or sink definition to a concrete taint to be propagated
onwards.

If the source and sink definitions are not written by hand, such fine-grained information is, however, usually
not available. SuSi’s classifier cannot reason about field accesses or access paths. Mapping Android permissions to
methods also only yields a set of methods, but not any finer-grained information. A practically-usable static analysis
tool must therefore also provide for useful heuristics in the case of coarse-grained specifications. Conservative over-
approximation is usually not acceptable due to the issue of over-tainting explained above. Therefore, one usually
assumes that a source method only taints its return value which is true for all of the commonly-used Android API
methods, but may fail in other contexts or for future additions to the API.

Orthogonal to identifying sources and sinks is the problem of classifying them. Data flow analyses are often used
inside semantic frameworks that check or enforce data-driven policies. In the original example 1, the user wants
to know that his IMEI number is transferred to the internet as opposed to, e.g., his files being stolen via a Bluetooth
connection to another device. This requires sources and sinks to be associated with categories such as unique
identifier, address book or files on devices for sources. For sinks, potential categories can be Internet, or Bluetooth.
When manually identifying sources and sinks, categorization is straightforward. However, the SuSi approach also
supports categorization by once again applying machine-learning (just with a different set of features and new
training data) to the previously identified sources and sinks.

3.3 Access Paths

Java programs and Android apps store data in and read data from fields. A static data flow analysis tool must
model such heap accesses in its taint abstraction. In the example in Listing 3, the field fld of base object a gets
tainted. Only the statement in line 5 accesses this heap object and therefore constitutes a real leak. The other calls
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1 void onCreate() {

2 A a = new A();

3 A b = new A();

4 a.fld = source();

5 sink(a.fld); // true leak

6 sink(a.foo); // no leak

7 sink(b.fld); // no leak

8 }

Listing 3: Heap Analysis for Java (1)

1 void onCreate() {

2 A a = new A();

3 a.fld = new B();

4 a.fld.data = source();

5 sink(a.fld); // debatable

6 sink(a.fld.data); // true leak

7 sink(b.fld.foo); // no leak

8 }

Listing 4: Heap Analysis for Java (2)

to the sink method should not be detected as endpoints of data flows as this would indicate false positives. In the
program analysis literature, several techniques for representing taints on heap objects have been proposed:

• Field-Insensitive Analysis: When a field gets assigned a tainted value, the field-insensitive analysis taints
the complete base object. In the example, such an analysis would represent a.fld by just a, which would not
only taint a.fld, but also unrelated fields of the same base object such a a.foo. It would therefore lead to a
false positive in line 6.

• Field-Based Analysis: When processing an assignment to a field, the field-based analysis technique taints
the declared field irrespective of the base object. It does not distinguish between different objects of the
same class holding this field. In the example, it would represent a.fld by just A.fld. Consequently, it would
therefore lead to a false positive in line 7.

• Field-Sensitive Analysis: If tainted data is assigned to a field, the field-sensitive analysis taints the combina-
tion of base object and field. In the example, it represents a.fld by a.fld. When the analysis encounters a
field access, it matches both elements and thus avoids both types of false positives in the example.

For the example in Listing 3, field-sensitive tracking is the most precise option. In general, even field-sensitive
tracking can, however, lead to false positives. Consider the extended example in Listing 4. In this example, the
sensitive data is not directly assigned to a field inside the base object a, but instead to a field data that is in turn
stored in a field fld of the base object a. In other words, this example has one more level of indirection. For
accessing the sensitive data from base object a, not only one, but actually two consecutive field dereferences are
required. The call to sink in line 6 leaks the correct data, whereas the call in line 7 does not constitute a leak as
no sensitive data is actually passed into the sink. Whether the call in line 5 shall be considered as a leak or not
depends on the semantics of the sink function, i.e., whether it is expected to read the data field containing the
sensitive data or only some other unrelated field. This again refers to the discussion of precise source and sink
definitions in Section 3.2. The traditional field-sensitive analysis, however, can only model one base object and
one field dereference, effectively tainting a.fld in line 4. For not missing the true leak in line 5, the analysis must
consider everything that is read from a.fld as tainted. The analysis cannot distinguish between a.fld.data and
a.fld.foo, therefore causing a false positive in line 7. Regardless of the precise sink definition, it would also always
have to consider the call in line 5 a leak.

To retain precision in the case of multiple dereferences, one therefore needs an abstraction that can capture a
base object plus a (possibly empty) sequence of fields. This data structure is called an access path [35, 135]. In
the example, the analysis would taint a.fld.data, thereby avoiding the false positive in line 7 as well as offering
maximum precision for the sink-dependent case in line 5. Note that access paths can also model taints on static
fields. In this case, the base object is null and the first field in the access path’s sequence of fields is assumed to be
static.

In theory, an access path can precisely pinpoint a heap object by exactly denoting a series of field dereferences
that provide access to the object. It is the task of the alias analysis to take one access paths and then enumerate
all other access paths that can possibly point to the same runtime object. Extending the definition of an alias
to access paths is straightforward. Computing aliases on access paths is not trivial, though. We will discuss this
problem in detail in the context of the FLOWDROID static data flow tracker in Section 4.8. Regardless of the concrete
alias analysis, the set of possible access paths pointing to the same heap object can, however, be infinite. Consider
the example in Listing 5. Lines 6 to 8 are accesses to three of the infinitely many aliases of a.data. The key
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1 void onCreate() {

2 A a = new A();

3 a.next = new A();

4 a.next.prev = a;

5 a.data = source();

6 sink(a.data); // leak

7 sink(a.next.prev.data); //leak

8 sink(a.next.prev.next.prev.data); // leak

9 sink(a.next.prev.foo); // no leak

10 }

Listing 5: Recursive Access Paths

observation is that the field dereferences are circular: a.next.prev is the same as a. Therefore, one can derive an
arbitrary number of aliasing access paths by adding more walks through this loop, growing the individual access
path infinitely. Traditionally, this issue has been solved by k-limiting [71]: The maximum length of all access paths
inside an analysis is set to a constant value k. Whenever the analysis generates an access path that exceeds this size
limit, it is truncated and marked with a star. For a limit of k = 2, the access path a.next.prev.data is reduced to
a.next.prev.*8. This means that all sequences of field dereferences on base object a that start with next.prev

match this access path. In other words, the set of referenced heap objects is conservatively over-approximated.
With k-limiting in place, the set of possible access paths pointing to the same runtime object inside a program of
finite size is finite and the analysis is guaranteed to never miss a potential sequence of dereferences for a tainted
heap object. Thus, k-limiting is sound and space-bounded. On the other hand, k-limiting can lead to false positives.
The reduction in the example from a.next.prev.data to a.next.prev.* makes the analysis oblivious to whether
a.next.prev.data or a.next.prev.foo was the original reference, leading to a false positive in line 9. Note that
this imprecision not only occurs with recursive data structures, but can always occur if the value of k is too low to
capture the full depth of the data structure at hand. Recursive data structures only force the problem as they allow
for infinite loops and would thus require an infinite k for precise modeling.

Note that recursive data structures are not only a theoretical problem, but occur frequently in practice. The
LinkedList class in the Java Collections API, for instance, is a doubly linked list, i.e., every node in the list has
a reference to its predecessor and to its successor. This makes the LinkedList code similar to the example from
Listing 5. In the Java TreeMap implementation, every node contains references to its parent as well as to its left
and right child. This is, again, a recursive data structure. Even worse, every reference to an inner class stored in a
field of its outer class is a recursive data structure. When compiling an inner class, the Java compiler adds a field
with the name this$0 that points to the instance of the outer class with which the inner class was instantiated. An
access path can loop between inner and outer class: a.inner.this$0.inner.this$0....

The choice of k not only influences the precision of the analysis, but also its runtime. A k that is unnecessarily
high wastes time and space by referring to individual elements that could also have been grouped together without
any loss of precision. Consider the Java String library. If this string contains tainted data, it is usually sufficient for
the taint to reference the string. Instead referencing the string’s internal character array plus the length field of the
string plus its hash as three individual access paths is, in most cases, wasteful, though sound. A simple solution
would be to detect the maximum depth of all data structures in the program under analysis and use this value for
k. As explained above, this approach, however fails for recursive data structures. Choosing a k value that is too low,
on the other hand, leads to over-tainting, i.e., the taints referencing more heap objects than necessary. Beside the
reduced precision, this can also increase the runtime of the analysis. More accesses to heap objects match the short
access paths, and thus more new taints get derived. Every spurious match of an access path must be propagated
through the program just like a correct one. In total, the number of propagated taint abstractions can increase
significantly. In summary, while access paths have a conceptually simple correlation to the precision of the analysis,
the impact of the access path length on performance and memory consumption is neither linear nor trivial and
depends on the target program being analyzed. In Section 8.3, we evaluate the impact of increasing the access path
length on the time and memory consumption of the data flow analysis in detail.

With these issues, k-limiting alone is not sufficient for a precise, yet efficient static data flow analysis tool.
Deutsch [37] proposed symbolic access paths to deal with recursive data types. His analysis aims at detecting loops

8 In the definition we use in this thesis, the base object does not count toward the maximum access path length. A length of k means an
optional base object plus at most k fields.
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Figure 2: Access Graph for the Doubly-Linked List Recursive Data Structure

in access paths and reducing them to their canonic representation which is usually the one skipping the loop.
Consider again the example from Listing 5. The access path of minimal length that references the tainted heap
object is a.data. All field sequences next.pred in between can be left out without losing precision or soundness.
These two additional field references only return to the very same object that would have been referenced without
them. More formally, let x be a prefix of an arbitrary access path and let y and z be arbitrary sequences of field
references. An access path x.y.z can be reduced to x.z if y only points back to x. In Deutsch’s work, such an
omittable access path fragment y is called a Basis. For the example in Listing 5, next.prev is such a basis B. The
symbolic access path points to a.(B)n.data.

In practice, whenever a new access path is created in the taint analysis, it must be reduced to its corresponding
symbolic access path. This requires the analysis to check whether the new access path contains a basis or a sequence
thereof. In general, a basis corresponds to a must-alias relationship. If x.B must-aliases with x, then B is a base.
Deutsch’s definition, however, is less precise: if an access path π yields an object of type t when applied to an object of
type t, then π ∈ B∗t (taken from [37]). Note that Deutsch refers to an access path as only the sequence of fields and
thus applies access paths to base objects, instead of considering the access paths to consist of a base object and a
sequence of field dereferences. More importantly, though, his definition of a basis is only based on types. A basis is
defined for a type and can be stored in a constant lookup table. While this allows basis’ to be precomputed for all
types referenced in the target program to increase efficiency, it is also an imprecise approximation of the must-alias
relationship. For the example in Listing 5, next would be a basis on its own as its return type is A again. The same
holds for prev. This, however, can merge two access path that normally refer to different runtime objects into the
same access path: a.next.data and a.prev.data both become a.(B)n.data. If one is tainted and the other one is
leaked, a false positive occurs.

Symbolic access paths are similar to Access Graphs as proposed by Khedker et al. [74]. This technique has already
been used for modeling heap objects in a precise liveness analysis for the construction of points-to sets and callgra-
phs by Padhye [105]. An access graph represents a possibly infinite set of access paths, all of which are accepted by
the regular language that is equivalent to the graph. Since the expressiveness of access graphs is limited to regular
expressions, they cannot support unbounded counting. Consequently, the semantics of the doubly-linked list in the
example cannot fully be represented. Normally, the object a can only be reached through access paths with an equal
number of calls to next and prev. If more dereferences occur in one direction (next or prev) than in the other, the
target might no longer be the same object. The program under analysis is free to use an arbitrary number of such
dereferences. To over-approximate this memory structure, on would need an access graph with a single state and
every operation (next or prev) stays in that state, effectively reducing a.next.* and a.prev.* both to a.*. Such a
model is semantically equivalent to symbolic access paths. In general, access graphs are, however, more expressive
than symbolic access paths, because they can exploit all patterns of pointer dereferences that can be modeled using
regular expressions. Figure 2 shows an access graph that selectively over-approximates the heap structure impo-
sed by the example data structure. It accepts sequences of a.prev.next or a.next.prev in which an operation is
immediately followed by its counterpart. Additionally, as an over-approximation, it also accepts access paths that
start with the same operation performed more than once such as a.next.next.prev. In other words, in such cases
in which the automaton would be required to count, it simply accepts in states n2 and n4, respectively. Technically,
the counting problem was unrolled for counting up to 1 operations. One can construct similar automata for any
given finite limit k, which brings back an issue similar to the original one of k-limiting. Additionally, automatically
inferring such complex models is a challenge on its own when given only the program code of the data structure
and its operations.

Access Path Abstraction by Lerch et al. [81] is a different approach to the problem. The key idea is not propagate
many different access paths that are similar, but to only propagate a single abstraction for all access paths that are
rooted at the same variable. If two abstractions with the same base variable arrive at a control flow merge point,
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they are joined together to the same abstraction which is then propagated onward, leading to much fewer taints
being propagated through the program. Even more importantly, if analysis information computed for individual
methods is summarized for later re-use, these summaries are applicable to more contexts. A summary for an access
path rooted in x is applicable to all incoming access paths rooted in x instead of having to compute a new summary
for every access path. To still retain full precision, the full access paths are reconstructed and matched when they are
accessed. While this technique has the potential to avoid the two problems of (1) infinite access paths for recursive
data structures, and (2) large numbers of access paths being propagated due to over-tainting, it requires significant
changes to the taint engine. Whenever fields are read, the analysis must on-demand reconstruct the original access
paths. Similarly, field writes, method summaries, loops, etc. need special treatment. In total, this approach requires
significant changes to an existing taint analysis. Combining the approach with FLOWDROID would be an interesting
area of future work. Note that Lerch’s work was presented after we published our work on FLOWDROID.

Kanvar and Khedker provide a survey on different heap abstraction techniques known to literature [72]. They
classify the techniques according to two criteria: heap modelling and summarization. In their terminology, heap
modelling refers to the collection of a potentially unbounded set of concrete locations, and summarization refers to
mapping these locations to a finite set of abstract objects. Heap models can be store-based or storeless. Access paths
are storeless, because they only represent how memory can be accessed inside the program through a sequence of
field dereferences. In a store-based model, on the other hand, heap locations are identified through their addresses,
representing by the incoming pointers to these addresses. More simply, a store-based model is a heap graph in which
every object A that holds a pointer to another object B corresponds to a directed edge from A to B, very much like
access graphs. Similarly, access paths can be seen as (potentially unbounded) paths through the heap graph. K-
limiting and referencing heap objects through their respective allocation sites are two examples of summarization
techniques. Note that k-limiting is applicable to both store-based and storeless heap models. In the store-based case,
it reduces the heap graph by removing nodes and inserting over-approximating edges that take the place of the
pointers to the removed objects. In the storeless case, k-limiting works as described above, i.e., by truncating the
access path and appending a wildcard operator instead. Another common summarization technique for store-based
heap models is to identify a heap object by its allocation site. While this technique is simple and greatly reduces
the number of distinct heap objects that an analysis must handle, it cannot properly deal with factory methods. All
heap objects created in the same factory method would be considered the same heap object, which is not commonly
the case.

3.4 The IFDS Framework

The FLOWDROID data flow tracker which is central to the work presented in this thesis is based on the IFDS fra-
mework by Reps and Horwitz [117]. IFDS stands for a class of problems to which their framework is applicable:
inter-procedural, finite, distributive, subset. We will now explain each of these conditions in detail and show that
they are fulfilled for the problem of static data flow analysis. Firstly, problems must be defined over a finite domain
(i.e., there is only a finite, enumerable set of distinct data flow abstractions). When using access paths of a finite
length, this is trivially the case. There can be at most O((n+m)k) distinct access paths where n is the number of
local variables, m is the number of fields across all classes in the target program, and k is the maximum access path
length. Note that this is only a theoretical upper bound. In practice, there will be fewer taint abstractions, because
not every arbitrary sequence of fields is a valid access path, i.e., a valid sequence of field dereferences according to
the definitions of the respective classes.

Secondly, the problem must be distributive. If a certain node in the program’ control flow graph is reachable on
two different paths through the program, it must be possible to first compute the data flow abstractions along each
path and then join them, and this must yield the same result as computing them together. Or, in other words, it
must be irrelevant when separately-computed data flow abstractions are joined. Static data flow tracking works by
propagating a set of taint abstractions. Unconditional taints are associated with the sources and these taints are
then propagated over all successor nodes in the program’s interprocedural control flow graph. When new taints are
created, e.g., because a tainted variable is assigned to another variable, this simply creates a new taint abstraction
for that second variable. In total, each statement is associated with a set of data flow abstractions denoting the
access paths of all tainted data at that statement. It does not matter for which statement we first compute a new
element for this set. Adding elements to sets is trivially distributive: It does not matter whether new taints are
added to the set right away or kept separate to afterwards merge the partial sets. The last requirement, subset
semantics, is also trivially fulfilled, because the merge operator of the analysis is set union on a lattice of sets of
taint abstractions. The bottom of the lattice is the empty set, each added taint abstraction forms a new lattice
element. Consequently, taint tracking meets all requirements and is an IFDS problem.
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Figure 3: IFDS Flow Functions, Reproduced From [117]

Reps and Horwitz have defined a flow- and context-sensitive framework for solving problems that meet the
above criteria. Naem et al. [100] have contributed practical extensions for efficiently applying the IFDS framework
to problems defined on real-world programs. Bodden has implemented Heros, an IFDS solver on top of Soot [23],
which we initially used for FLOWDROID, before switching to our own, more efficient solver implementation described
in Section 4.12. All these solvers share the same general concepts. They start with an inter-procedural control flow
graph of the target program and expand it to an exploded supergraph, i.e., each node in the control flow graph
is turned into one node per possible abstraction. A fact f1 holds at a statement s1 if the respective node 〈s1, f1〉
is reachable from the start node 〈s0, 0〉. The statement s0 is usually the first statement in the program. The fact 0
is a special fact that holds unconditionally. The data flow problem is thus reduced to the problem of generating
the exploded supergraph and then computing reachability relationships in it. Note that in more efficient (albeit
non-standard) implementations such as FLOWDROID, the start nodes 〈s0, 0〉 are created directly at the sources, not
at the start of the program.

To create the exploded supergraph, the data flow functions must be encoded as edges between the nodes of
possible facts at program statements. For two control-flow connected successor statements s1 and s2, node 〈s1, f1〉
is connected to a node 〈s2, f2〉 if and only if the fact f2 holds at statement s2 given that the fact f1 previously held
at statement s1. Generating such edges is the purpose of the flow functions. Figure 3 (reproduced from [117])
shows graph encodings for typical flow functions. The function on the very left side is an id function that retains
all incoming flow facts. The function in the middle unconditionally generates a new fact for a (gen function) and
discards the incoming fact for b (kill function). The kill part is modeled by the missing arrow. The function on
the right side combines gen, kill, and id. It kills a, unconditionally creates b, and retains c. Note that the flow
functions used in static taint tracking depend on the statements they connect, i.e., they are not what is usually
called separable. A separable flow function would only depend on the incoming data flow fact, but not on the
current statement. In taint tracking, a statement that overwrites a certain variable, would for instance be translated
to a kill flow function for the repsective taint abstraction, while a statement that does not access that variable at
all would be translated into an id function, leaving the taint abstraction as it is.

We generally distinguish four different types of flow functions depending on the type of the current statement:

• Normal flow function A normal flow function is applied when the current statement is neither a call site,
nor a return site. Common cases of such statement are assignments and conditionals.

• Call flow function A call flow function models a method call and is applied at call sites only. It it responsible
for mapping actual call arguments in the caller to formal method parameters in the callee. If the call is to
an instance method, it must also map the base object of the call to the this object of the callee. It is not
responsible for data flow facts that shall not be mapped into the callee, but passed on inside the caller.

• Return flow function A return flow function is applied at the exit node of a method. This can be a return

statement or a statement at which an uncaught exception is thrown, because the control flow will then also
leave the current method. The return flow function performs the inverse operations of the call flow functions,
i.e., it maps back the parameters and (if applicable) the base object and the return value from the callee into
the caller. All flow facts that are no longer valid because they have no corresponding fact inside the callee
are dropped.

• Call-to-return flow function A call-to-return flow function is applied at call sites. It models flow facts that
skip the callee. Instead of mapping the facts into the callee as in the call flow function, it maps them to the
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Figure 4: Four Types of IFDS Flow Functions
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successor statement inside the caller. A common use case is to preserve facts about variables that are not in
the scope of the callee.

In Figure 4 we give an example of how the four different flow function types can be defined for a simple static
data flow analysis. The analysis starts in the caller() function. We assume that the analysis considers sources as
black boxes. Consequently, calls to a source method are processed in the call-to-return flow function (green edges).
This links the variable a to the unconditionally tainted zero fact. The next line copies the taint state of variable
a to variable b. Afterwards, the call maps variables b and c into the context of method callee (red edges). Note
that we only included c.a in the figure, because neither c itself nor any other field in it ever receives any taint.
Consequently, all edges on c would have been identity edges which we omitted for not cluttering the presentation.
Inside the callee() method, new unconditionally-tainted data is assigned to p1.a. When returning from callee(),
the respective data flow fact must be mapped back into the caller (green edges) to make sure that the taint on the
field is not lost. In principle, all IFDS-based data flow analysis are built using similar semantics and definitions.
Note that a precise real-world taint analysis such as FLOWDROID is more complex, though, because it also needs to
handle issues such as aliasing.

The original IFDS paper proposed to first create the complete exploded supergraph and then compute reachability
based on it. While this is conceptually simple, it is inefficient in practice, because it would require flow functions
to be enumerated even for statements that are never actually reached by a data flow fact. This can happen because
of unreachable methods or because even in reachable methods, not all possible access paths are actually tainted at
some point. Therefore, we compute the exploded supergraph on-demand, as explained in [100]. A flow function is
created only when it is actually required. In practice, the implementation runs a fixed-point iteration on a taint set.
It takes a taint at a statement 〈s1, f1〉 from this set and computes the respective flow function to obtain the new set
element 〈s2, f2〉. The iteration stops when no new entries are obtained, i.e., the set has reached its fixed point.
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4 Precise Static Data Flow Analysis: FLOWDROID

FLOWDROID [9] is a static data flow analysis tool for Android apps and Java programs. Given a specification of
sources and sinks, it enumerates all possible data flows between any of these sources and any of these sinks. In
this section, we explain in detail how FLOWDROID works, what its features and limitations are, and how it can be
used as an extensible framework for further research in the field of static data flow analysis. The main goal of our
work is to produce a taint tracer that is effective and efficient for finding privacy leaks in real-world scenarios.
Our description follows the architecture of the tool and explains the various components from which it is built.
Section 4.16 will later map the components onto a temporal workflow and show in which order the components
are applied to conduct the data flow analysis.

4.1 Architecture

Figure 5 shows an overview over the various components of FLOWDROID. All components are based on the Soot
compiler optimization framework [78]. This framework is responsible for converting Java bytecode into the Jim-
ple intermediate representation [137]. As explained in Section 3.1, Jimple is much easier to analyze for a static
analysis tool than the Java bytecode language. The FLOWDROID data flow tracker is based on the IFDS framework
by Reps and Horwitz [117] explained in Section 3.4. Expressing the data flow problem as an IFDS problem allows
FlowDroid to build on existing techniques for propagating taint abstractions over an inter-procedural control flow
graph. From IFDS, FLOWDROID automatically inherits context-sensitivity and flow-sensitivity. By using access paths
as the primary taint abstraction propagated by the IFDS solver, FLOWDROID ensures object-sensitivity. The imple-
mentation of the data flow problem on the Jimple IR is called the FlowDroid Core. Together, the IFDS solver and
the FlowDroid Core form the Data Flow Engine. All properties of the data flow analysis that differ depending on the
concrete target platform (Android or Java) or problem configuration (e.g., which sources and sinks to consider)
have been encapsulated in interfaces outside of the data flow engine. These are the other components in Figure 59

which will be explained in the remainder of this Section:

• Source Sink Manager Responsible for deciding which statement is a source or a sink, see Section 4.3

• Alias Analysis Exchangable interface to plug different alias analyses into FLOWDROID. See Section 4.8.

• Taint Propagation Wrapper Provides optional external models for shortcutting taint propagations over calls
to libraries. See Section 4.9.

• Native Call Handler Provides external models for propagating taints over calls to native methods. See Sec-
tion 4.10.

• Path Reconstructor Component for extracting source-to-sink connections and optionally data flow paths
from the taint propagation graph. See Section 4.13.

9 Some interfaces such as the one for the alias analysis are usually only used with the default implementation

28



• IPC Manager Optional component that can be used by tools that extend FLOWDROID with support for inter-
process communication (such as inter-component and inter-app communication on Android). The default
implementation in FLOWDROID is a stub.

• Entry Point Creator Component for creating a dummy entry point for callgraph construction if the target
does not provide a readily usable (i.e., a single, static, public) entry point. See Section 4.15.

This separation between data flow engine and customizable components allows FLOWDROID to be applied to
various problems without changing the implementation of the data flow engine. If not specified otherwise, default
implementations are used which model the semantics of traditional Java programs. One major focus of our work
on FLOWDROID is to provide precise and efficient alternate implementations that capture the semantics of the
Android operating system and framework. The platform-specific alternate implementations of these interfaces that
we created for Android are explained in Section 5. Regardless of the FLOWDROID-specific interfaces, the data flow
tracker is, however, always based on Soot and it’s Jimple intermediate representation. Therefore, the set of targets
that can be analyzed is limited to what can be expressed in Jimple. For reading in Android apps (which use
a different bytecode format than traditional Java programs), we use Soot’s Dexpler component [18]. Analyzing
platforms other than Java and Android (and thus converting the respective code to the Jimple IR) is discussed in
Section 9.

The main abstraction that is propagated across statements in FLOWDROID is access paths which are explained in
detail in Section 3.3. Recall that an access path is a sequence of field dereferences, e,g. obj.fld1.fld2 references
the object that is reachable by taking the base object obj and then first accessing field fld1, and, in the object
obtained from this field, accessing the field fld2. While the access path alone would be sufficient to perform basic
data flow tracking 10, additional information is stored along with each access path to support certain features.
For example, FLOWDROID keeps track of precise type information for the base object of the access path and each
dereferenced field in order to prune impossible callgraph edges. These additional fields inside the access path are
explained in the respective feature’s section.

4.2 The FLOWDROID Core

The FLOWDROID core is responsible for the basic mandatory features of the data flow tracker. It formulates the
interprocedural taint propagation as an IFDS problem. The core handles cases such as simple assignments, method
calls, and method returns. In this section, we will describe the core’s IFDS flow functions (normal, call, return,
call-to-return) semi-formally. For not bloating the basic data flow tracking with more complex or optional features,
some aspects (arrays, implicit flows, sources and sinks, etc.) were factored out into the rule engine. Each rule
inside the rule engine can provide more rules to the four basic data flow functions, e.g., add an additional rule
on how to process array accesses, which is not handled by the core. The details of the rule engine are discussed
in Section 4.2.7. This section focuses on the core. Therefore, the features implemented in rules do not affect the
flow functions discussed in this section. Also note that the core can only transfer, preserve or kill taints, but not
unconditionally generate new ones; the latter is handled in the source propagation rule.

Note that FLOWDROID computes flow functions pointwise. Without loss of generality, we therefore assume that
there is only a single incoming taint abstraction on which a flow function needs to be evaluated. This greatly sim-
plifies our formalization. For each incoming taint abstraction, the flow function can generate an arbitrary number
of outgoing abstractions which are then, again, propagated onwards individually. If a single statement is reached
by multiple incoming data flow facts, the respective flow function is evaluated once for each incoming fact. Each
outgoing fact contributes to the set of facts that hold at the statement, but is, following the scheme of pointwise
propagation, propagated onwards independently.

4.2.1 Normal Flow Function

Normal flow functions are applied at all statements that are neither calls nor returns. The core must thus only
handle assignments. Keep in mind that optional functionality such as implicit flow handling (for which one would
need to define a normal flow function for conditionals) is part of a separate rule and not of the core. Further note
that the right side of an assignment in a normal flow function is never a method call. Assignments that contain calls

10 It would also need a reference to the source from which the tainted data was originally derived.
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1 public class Container {

2 private Object fld;

3
4 public Object get() {

5 return this.fld;
6 }

7
8 public void test() {

9 Container c = new Container();

10 c.fld = source();

11 new UserCode().leak(c);

12 }

13 }

14 public class UserCode {

15
16 public void leak(Container c) {

17 Object o = c.get();

18 sink(o);

19 }

20
21 }

Listing 6: Visibility of Access Paths

are handled by the call flow function. For an assignment statement s ∈ Stmt with the structure x . f n = y.gm with
n, m ∈ {0,1} the following rules apply11:

• For an incoming taint T = y.gm.hk with k ∈ N≥0, the new taint set is {T, x . f .hk}. Note that hk denotes an
arbitrary, potentially empty suffix to the access path and not a k-times repetition of the same field dereference.

• For an incoming taint T = y.∗, the new taint set is {T, x . f .∗}.

• For an incoming taint T = x . f n.gk with k ≥ 0, the new taint set is ;. If the field that is overwritten is a prefix
of the incoming tainted access path, this taint is killed.

Note that the first and third rule can also have the star wildcard appended to both sides of the rule. In general, if
a taint rule applies without the star, it also applies when appendiung a star to both the incoming and the outgoing
taint. All taints to which none of the above rules apply are copied over as-is.

4.2.2 Call Flow Function

The call flow function is applied to all statements that contain a method call, including assignments with a method
invocation on their right side. However, note that the left side of such an assignment can only be tainted when
processing the return flow function, because only then, the effect of the callee on the incoming taint is known.
When discussing the call flow function we can, therefore, without any loss in generality, omit the case of an
assignment. For a call statement s ∈ Stmt with the structure o.m(a0, ..., an) with n ∈ N, the following rules apply:

• For an incoming taint T = ai .h
k with k ∈ N≥0, 0 ≤ i ≤ n, the new taint set is {pi .h

k} where pi is the variable
that stores the ith formal parameter in the callee. Note that this rule also applies to T ′ = ai .∗ becoming pi .∗
by setting k = 0 in the rule and applying the general principle that stars can always safely be added on both
sides of a rule.

• For an incoming taint T = o.hk with k ∈ N>0, 0 ≤ i ≤ n, the new taint set is {thisi .h
k} where this is the

this-reference inside the non-static callee.

• For an incoming taint T = S.hk with k ∈ N≥0 where S is a static field, the new taint set is {T}.

Again, note that hk denotes an arbitrary, potentially empty suffix to the access path and not a k-times repetition
of the same field dereference. Unlike the case of the normal flow function, all incoming taints for which there is
no explicit propagation rule are discarded as they are assumed not to be accessible from within the scope of the
callee. However, beware that an access path being in scope in a callee does not necessarily imply that is visible or

11 There is at most one field derefrerence on either side of the assignment and there cannot be a field access on both sides at the same
time according to the specification of the Jimple IR.
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accessible from the callee as well. In the example in Listing 6, the tainted data is read from the source in Line 10
and stored into a private field of the container object. This leads to a tainted access path c.fld. In Line 11, this
taint is passed into the callee UserCode.leak(). Inside there, c.fld is in scope, though the private field fld is not
visible. It would, however, lead to a false negative to prune this “invisible” taint, because UserCode.leak() in turn
calls the get() method on the container object in Line 17 which can read the private field because it is in the same
class. Therefore, access paths must be propagated into callees regardless of the respective fields’ access modifiers.

Some callees require special handling. The above rules implicitly assume that the method reference at the call si-
te matches the callee’s declarations, i.e., the number of call arguments is equal to the number of formal parameters
in the callee. For proper callgraph edges, this is an invariant. Soot’s SPARK callgraph, however, includes additional
pseudo edges that model special cases such as threads and that violate this invariant. In Java, one possibility for
starting a thread is calling ThreadPoolExecutor.execute() and passing it an instance of a custom class that im-
plements the java.lang.Runnable interface. This custom class then implements the run() method in which the
thread’s code, i.e., the code to be executed concurrently, is placed. It is the duty of the Java Runtime (or the An-
droid framework in the case of Android) to actually start the thread on the OS level and invoke the run() method
in the context of the new thread. This operating-system specific handling is implemented in native code. Conse-
quently, even when the full Java or Android library is analyzed together with the target program, there is no call
edge from ThreadPoolExecutor.execute() to Runnable.run() that would be visible to the callgraph algorithm,
effectively making the run() method unreachable. To circumvent this problem, the SPARK callgraph algorithm
fakes an edge from all call sites of ThreadPoolExecutor.execute() to Runnable.run(), effectively injecting the
respective implementation of Runnable.run() as the callee for the ThreadPoolExecutor.execute() call sites.
Semantically, this simulates that the thread code is “inlined”, i.e., synchronously executed at the respective call
site of ThreadPoolExecutor.execute(). In the call flow function of the data flow analysis, such call special edges
must be handled separately. While ThreadPoolExecutor.execute() takes one parameter (namely the instance of
java.lang.Runnable containing the thread code), the run() method that is finally called is parameterless. The
call flow function must therefore not try to map any parameters in this case. Similar special-casing is required for
the doPrivileged methods of the Java code security infrastructure.

4.2.3 Return Flow Function

The purpose of the return flow function is to map taints that are valid inside a callee back into the original caller
when the control flow returns from callee to caller. It can be seen as the inverse of the call flow function. Similar to
the call flow function, all taints to which no explicit propagation rule applies are discarded as they are assumed to
only be in scope inside the callee, but not the caller. Regardless of the return statement in the callee, the following
rules apply given an original call site s ∈ Stmt with the structure o.m(a0, ..., an) where n ∈ N. We will discuss call
sites that contain assignments later on.

• For an incoming taint T = pi .h
k with k ∈ N>0, 0 ≤ i ≤ n, the new taint set is {ai .h

k} where pi is the variable
that stores the ith formal parameter in the callee.

• For an incoming taint T = pi .∗ with k ∈ N>0, 0≤ i ≤ n, the new taint set is {ai .∗}

• For an incoming taint T = this.∗ with k ∈ N>0, 0 ≤ i ≤ n, the new taint set is {oi .∗} where this is the
this-reference inside the non-static callee.

• For an incoming taint T = S.hk with k ∈ N>0 where S is a static field, the new taint set is {T}.

It is important to note that the first rule in the call flow function has its equivalent in the two first rules stated
above. In the first rule, an access path the starts with pi, but is strictly longer (hk with k > 0, not k ≥ 0 as in the
call flow function) is propagated back. Additionally, if the access path ends at the parameter, but has the wildcard
(pi.∗), it is also propagated back. If the access path only taints the parameter, but not a field inside it (rule 1
with k = 0), the taint is discarded. In that case, the parameter value as a whole was overwritten inside the callee.
According to the Java language semantics, the caller will still carry on with the old value when the callee returns.
For primitive values and strings, the propagation rules can be simplified. Primitives do contain fields that can get
tainted inside the callee and strings are immutable by definition. Therefore, taints on variables of these types can
never be propagated back to the caller through parameters on a function call.

Still, these two rules are an over-approximation when dealing with an intermediate language such as Jimple
that does conform to the static single assignment (SSA) form. In other words, variables in Jimple can be re-used
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1 public void main() {

2 Container c1 = new Container();

3 Container c2 = new Container();

4 callee(c1, c2);

5 leak(c1);

6 leak(c2);

7 }

8 private void callee(

9 Container d1, Container d2) {

10 d1 = source();

11 source(d2);

12 }

Listing 7: Ambiguity of Overwritten Access Paths

1 void callee(Container c1, Container

c2) {

2 leak(c1);

3
4 c1 = source();

5 source(c2);

6 }

Listing 8: Local Parameter Variables and Local
Splitting

1 void callee(Container c1, Container c2) {

2 if (Math.random() < 0.5)

3 c1 = source();

4 source(c2);

5 }

Listing 9: Local Splitting Usage Ambiguity

at any time, only requiring that all uses of the variable are compatible with the same static type. Consider the
example in Listing 7. The main() method creates two new instances of the Container class, none of which are
initially tainted. It passes both of them to the callee() method. Inside callee(), the variable holding the first
parameter is overwritten with tainted data from the source, tainting d1.*. This value should not be visible inside
the caller. After line 10, the variable d1 no longer points to the original object that was passed into callee(). As
the caller main() always continues with the old (untainted) object, no taint should be propagated backwards. On
the other hand, the second parameter d2 is not overwritten, but the very same object that was passed into callee

is passed on to (another overload of) the source method. Assume that this method taints something inside d2, but
is is modeled using a taint on d2.* as well as an over-approximation12. In that case, the taint must be passed back
to the caller main(). For the FLOWDROID core, the two taints d1 and d2 are, however, indistinguishable without any
further information about the concrete behavior of the source. Both taint a parameter variable and all of its fields.
With the rules above, both will be propagated back into the caller, producing a false positive in line 5. Choosing
to not propagate back either would lead to a false negative in line 6 which, from a security / privacy analysis
standpoint, is a worse decision to make.

This ambiguity could be resolved by applying FLOWDROID to an SSA-type intermediate language such as Shim-
ple [136] instead of Jimple which allows variable redefinitions. Another approach would be to use Soot’s local
variable splitter that identifies unrelated uses of a variable and then splits these uses so that each of them operates
on a separate variable. At first, this appears to be an easy solution that can be done as pre-processing step before
executing the data flow solver and thus does not require any changes to the FLOWDROID core. In the example in
Listing 9, the local splitter would create a new variable c1$1 for the definition in line 4 instead of overwriting
c1. When method callee returns, this new variable is clearly independent from the parameter variable. Thus, the
analysis can distinguish that the taint on c1 must not be mapped back into the caller, while the taint on c2, which
is still the original parameter variable, has to be mapped back. Still, this approach does not fully solve the problem.
Consider the code example in Listing 9. In this slightly modified case, the original parameter value of c1 is only
overwritten depending on some condition. For the local splitter, there are no distinct uses of c1. Both the parameter
variable c1 and the definition at line 3 merge into the same variable c1. Consequently, the ambiguity of whether
c1 must be mapped back into the caller when the method callee returns, remains. We note that depending on
the front-end with which Soot reads in the target program (Java bytecode, Java source code, Android bytecode,

12 As explained in Section 4.3, source methods are modeled using user-defined Source Sink Managers that receive method calls and
can create arbitrary taints for them. This means the data flow core has not control over the definition or level of granularity of the
sources. Implementing an over-approximating source sink manager that taints the whole object that is passed as a parameter to a
source method is a legitimate design choice.
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etc.), it may already apply the local splitter during import phase, making this partial solution an implicit part of the
FLOWDROID analysis.

To completely solve the problem without changing the IR, additional bookkeeping would be necessary. For each
nested call site, FLOWDROID would have to keep track whether the variable was overwritten or tainted (i.e., passed
to a source method as a parameter). More generally, the return site needs to know not only the taint state of the
parameter variable, but also how this taint was created. If we have nested calls, this information must be available
for each call level from which the control flow (and thus the taint tracking) returns. Conceptually, this is similar to
checking whether the parameter variable at the beginning of the callee may-alias with the parameter variable at the
return site. Such a may-alias relationship only exists if there is at least one path through the callee (more precisely:
from the start of the callee to the current return site) on which the variable is not overwritten. Conceptually,
FLOWDROID’s existing alias infrastructure can deliver such precise context- and flow-sensitive alias information. As
we explain in Section 4.8.4, this implementation is, however, implemented as a second IFDS problem that runs
largely independently in its own solver instance. More precisely, aliases are aways computed asynchronously; the
data flow solver only triggers the alias query, and immediately continues. When the alias query finally completes, it
creates new taints from the discovered aliases which is independent from the flow function that originally triggered
the alias analysis. With this design, aliases can only be used to generate new leaks, but not for influencing how an
existing taint shall be processed. The decision of whether to map back a taint or not in the return flow function
cannot be based upon the outcome of such an alias query without synchronizing the alias solver with the data flow
solver, which is likely to incur a high performance penalty. In this work, we decided against this additional overhead
and rather chose to implement an approximation. If the parameter variable was never assigned to in the callee, we
propagate the taint back to the caller, otherwise we discard it. This design decision is based on the assumption that
source sink manager implementations that taint parameters are uncommon, because such sources are uncommon
in Android and Java. In the SuSi project [109] that analyzed the complete Android source code for sources and
sinks using machine learning, no such sink was discovered.

In the description above, we have assumed that the call site to which the call flow function is applied is not
part of an assignment. If the callee, however, returns a value and this value is used in an assignment, there is an
additional rule. Assume that the call site has the structure x = o.m(a0, ..., an) where n ∈ N and that the exit site is
of the form return r13.

• For an incoming taint T = r.hk with k ∈ N≥0, the new taint set is {x .hk}.

The Jimple intermediate representation does not allow a field reference on the left side of an assignment that has
an invocation on its right side. Therefore, this case need not be handled and we can safely assume that left-hand
side x is a local. The same applies for field references in the argument list of the call site, i.e., all arguments are
either locals or constants. However, there is one special case to be handled: the left side of the assignment can
reference the same variable as a parameter. In the example in Listing 10 in Line 4, the variable val is an argument
to the call to callee(), but also receives the return value of that method. In Line 10, sensitive data is written into
c.fld. If a snapshot of the program state were taken after executing this line, val.fld in method main() would
also be tainted. When the control flow returns from callee(), the variable val is, however, overwritten with a new
object that does not contain tainted data. Therefore, no leak occurs. FLOWDROID models this special case explicitly
in the return flow function and does not apply the first group of rules (parameter and base object handling) if they
would taint an access path that starts with the variable that receives the return value.

However, this rule only applies under the assumption that the callee was processed completely before returning
to the caller. This is not necessarily the case for exceptional control flow. Assume that the callee throws an exception
in Line 13. In this case, the parameter value is already overwritten, but no return value is ever created and the
assignment on Line 4 never happens. Consequently, the value val.fld never changes in the callee. FLOWDROID

models this behavior by only applying the assignment precedence explained above if the return control flow is not
exceptional. If it is exceptional, taints on parameters and the base object are mapped back, even if the respective
variable is overwritten.

4.2.4 Call-to-Return Flow Function

The call-to-return flow function is applied to all call sites and models the flow of facts that skip the callee and
directly proceed at the return site inside the caller. This mainly applies to taints that are in scope in the caller

13 We use the definition that an exit site is the last executed statement inside the callee, and that the return site is the statement at which
the execution continues in the caller after returning from the callee
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1 void main() {

2 Container val = new Container();

3 try {

4 val = callee(val);

5 finally {

6 leak(val.fld);

7 }

8 }

9 Container callee(Container c) {

10 c.fld = source();

11
12 // Create and return new object

13 Container c2 = new Container();

14 c2.fld = null;
15 return c2;

16 }

Listing 10: Parameters and Return Values

and thus need to be preserved on the caller side, but that are not in scope inside the callee and thus cannot be
propagated into the caller and back again. For a call statement s ∈ Stmt with the structure o.m(a0, ..., an) with
n ∈ N, the following rules apply:

• For an incoming taint T = x .hk with k ∈ N≥0 ∧∀pi , 0 ≤ i ≤ n : pi 6= x ∧ x 6= o and x not being a static field,
the new taint set is {T}.

• For an incoming taint T = pi .h
k with k = 0,0≤ i ≤ n, the new taint set is {T}

All tainits to which none of the above rules apply are killed. This is to enforce that no taints that must be
propagated through the callee (to be potentially killed inside the callee or one of its subsequent callees) are kept
alive in caller regardless of the callee. The first rule propagates those taints that are not in scope in the callee if the
taint is neither on a parameter nor on the base object of the virtual method call. For static method calls, the check
on the base object is not performed. Note that static fields are always propagated through callees, because they are
always in scope in the whole program. The second rule is special as it preserves taints on values that are passed
as parameters, but only reference the parameter as such, not any fields inside it. As mentioned for the return flow
rule, such taints cannot be changed inside the callee, so these taints are only propagated into the callee (in case the
taint is passed into a sink there), but not back out again. For not losing the taint on the caller side, it is preserved
via the call-to-return flow function.

4.2.5 Optimizations

The rules explained above can be inefficient for deep call hierarchies. Assume a taint on this.x. In this case, for
every call to some method this.m(), the taint is propagated into the callee, over all statements inside the callee,
into all of the callee’s callees, and finally back to the original caller even if field this.x is never read in any of those
methods. This not only induces the effort to process this taint on each statement in each of these methods. Also
recall that the flow-sensitive IFDS solver must, for each statement in the program, store all data flow facts that hold
at the respective statement. If the analysis must store the field taint for all statements in the whole call tree, this
introduces unnecessary memory consumption. The problem is even bigger for static fields, because a static field is
always in scope. Once a taint on a static field has been created, it will recursively be passed into all callees that are
subsequently being called in the control flow, regardless of whether this taint is relevant to any of them or not.

To circumvent this problem, FLOWDROID applies a quick pre-analysis to check whether the first field in the access
path is read in any of the transitive callees of a given method call. If this is not the case, the taint is propagated over
the call-to-return edge and thus bypasses the call instead of being propagated into the callee, all the way through
it, and back out again. Note that the result of this check is a context-insensitive property of the callee, i.e., can
efficiently be cached and must only be done once per method and not once per call site or context. Note that we
only apply this optimization to taints on static fields at the moment. Access paths that reference non-static fields
are only propagated into callees if their base object appears in the call as the base object of the callee or inside the
argument list of the call. Conservatively over-approximating whether an incoming access path a0.f can be read in
the callee (assuming that a0 is the first argument of the call) would mean checking whether p0, the variable that
receives the first formal parameter in the callee, is accessed. If this is the case, an alias could be created for later
reading out the field even without synactically accessing p0.f. However, the case in which a parameter of a method
is completely unused is rather rare, so such a pre-check does not increase performance in practice and can even
slow down the analysis due to the additional computational cost of the check.
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4.2.6 Callgraph Considerations

The IFDS solver propagates taint abstractions along an interprocedural control flow graph. For building such a
graph, one first needs to construct a callgraph from which the interprocedural edges are taken (mappings between
call site and callee as well as between exit sites in callees and return sites in callers). To be able to evaluate
the tradeoffs between callgraph accuracy and callgraph computation time, FLOWDROID supports multiple callgraph
algorithms: RTA, CHA, VTA, and SPARK. Computing a precise callgraph with, e.g., SPARK takes more time than
creating a VTA callgraph. On the other hand, a VTA callgraph usually has many more (spurious) edges along which
data flow information then needs to be propagated. Due to this effect, the time saved when computing a less precise
callgraph can easily be spent again several times during the taint propagation on large programs. The callgraph
computation time only needs to be invested once, but the spurious edges cause unnecessary propagations on every
taint abstraction that reaches them. In our experiments, we found the latter effect to greatly outweigh the time
saved during callgraph construction. Analyses that completed in about 80 seconds with about 9 GB of memory
when using SPARK were no longer completed with CHA even when given several hours and 100 GB of memory.
Therefore, FLOWDROID uses the Soot’s SPARK callgraph algorithm [84] with full precision by default.

Traditionally, this callgraph is computed upfront using existing algorithms such as Soot’s built-in SPARK algo-
rithm [84]. Unfortunately, these algorithms compute the potential callees for each call site in the whole program,
regardless of whether tainted data will ever be tracked across the respective call edge or not. Therefore, it can be
advantageous to compute the callgraph on demand. Such on-demand analyses exist for callgraph construction [2]
as well as for pointer analysis [128] which is an important component of precise callgraph construction. While
it has been shown that on-demand computation can significantly lower the computational cost of computation in
the average case (i.e., for an average number of nodes being queried), they do not easily integrate with Soot’s
class and method loading infrastructure. In Soot, classes and methods are only loaded when needed. Even then,
only signatures are usually loaded unless more information such as the method bodies is actually needed and re-
quested by an analysis. Therefore, an on-demand analysis only actually improves the performance in practice if
it also reduces the set of methods whose bodies need to be loaded. In other words, the on-demand analysis must
not assume that it can access all method bodies in the program. Otherwise, the computation time of the callgraph
itself is shadowed by the on-demand method loading that happens in both cases (on-demand callgraph or classic
upfront computation) and only a marginal improvement can be measured. A special challenge lies with invocations
of interface methods as shown in Listing 11. The call to the interface method in Line 14 can either be resolved by
taking all methods handle() in all implementors of the IMyInterface interface, which would be imprecise, or by
scanning the call hierarchy of the test() method to find all possible assignments to field this.intf. In the latter
case, this would yield the possible concrete types of the base variable on Line 14. In terms of complexity, such
a scan, would, however, be a full backward slice. In Lines 2 and 7, factory methods are called to instantiate the
interface. For a obtaining precise type information, these methods would need to be analyzed as well. In total, an
on-demand analysis that precisely handled interface invocations needs to traverse (and, consequently, load) many
methods inside the program. Even if the actual analysis effort per method is low, it is hard to achieve a substantial
overall performance gain, because the method loading time is the single most important dominating factor. After a
few initial experiments, we therefore chose to leave the issue of on-demand callgraph construction for a Soot-based
data flow analysis to future work.

Another limitation of the SPARK callgraph algorithm is that it is context-insensitive. This can lead to spurious
call edges and thus potentially data flow edges. In practice, we have found that the effect of this imprecision on
the result of the data flow analysis, i.e., the leaks reported, is very limited. For most apps, not a single false positive
is reported in the end. Even without false reports, there can, however, be an impact on performance. For every
outgoing call edge at a given call site, the call flow function must be computed. If the result of this function is not the
empty set, these new taints must be propagated through the whole call tree (i.e., the callee and all of its transitive
callees). The performance impact is the more substantial, the more call edges there are at a umbiguous call site,
and the larger the call tree of any of those false callees is. Consider the example in Listing 12. Method main() starts
a new thread and passes tainted data to it. In a simplified version of the java.lang.Thread class, we can assume
that Runnable implementation passed to the constructor is stored in a field. Calls to the start() method then
create a new OS-level thread and invoke the run() method of the Runnable stored in the field. To precise identify
the callee of this call to Runnable.run() inside the Thread.start() method, the callgraph analysis would need
to differentiate the different instances of the Thread class and their different field values. SPARK, however, cannot
distinguish such different contexts. Instead, the call to Thread.start() has outgoing edges to Runnable.run(),
more precisely, to each Runnable.run() implementation that is ever passed to a constructor of the Thread class.
In the example, both calls to Thread.start() are assumed to reach both Runnable implementations, leading to
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1 void onCreate() {

2 this.intf = factory();

3 test();

4 }

5
6 void onPause() {

7 this.intf = otherFactory();

8 test();

9 }

10
11 void test() {

12 String s = source();

13 IMyInterface base = this.intf;
14 base.handle(s);

15 }

Listing 11: Interface Invocation and Callgraphs

1 void main() {

2 Thread t1 = new Thread(new Runnable() {

3 void run() {

4 // Thread code

5 }

6 });

7
8 t1.start();

9 Thread t2 = new Thread(new Runnable() {

10 void run() {

11 // Thread code

12 }

13 });

14 t2.start();

15 }

Listing 12: Imprecisions due to Context-Insensitive
Callgraph

cross-references between t1 and t2. This imprecision is due to the missing context, the callgraph algorithm cannot
link the call site to any information limiting the possible states of the internal receiver field of the Thread class. For
programs with a large number of threads, this imprecision can significantly incease the callgraph. Fortunately, most
Java programs and Android apps do not use a very large number of threads. Note that the problem does not arise
for the second overload of Thread.start() which directly takes the Runnable as an argument. In this case, SPARK
can directly generate an edge from the call site to the run() method of the object passed using the parameter and
the context of the call is irrelevant.

Soot supports the demand-driven context-sensitive points-to analysis by Sridharan et al. [129]. This analysis
is, however, conducted as a refinement after the SPARK callgraph is done. It replaces the points-to object in the
Soot scene, but has no influence on the callgraph. Therefore, without further considerations (such as iteratively
re-computing the callgraph after the refinement step), it does not solve the problem at hand. Alternatively, there
is the 1-context-sensitive Paddle algorithm [83] for Soot which is intended as a more precise replacement for
SPARK. Since Paddle is maintained as a separate component outside of the Soot source code repository, analysis
components are usually not designed to work with Paddle. FLOWDROID is based on an IFDS solver which in turn
uses an interprocedural control flow graph (ICFG). The architecture of the ICFG and the solver would need to be
adapted to allow for context-sensitive queries with Paddle which would be a major undertaking. Furthermore, at
least Paddle’s memory-efficient version based on BDDs is reported to be unstable for larger analysis targets [144].

An alternative technique called geometric encoding-based context-sensitive points-to sets has recently been pro-
posed and implemented into Soot by Xia and Zhang [145]. This technique is reported to be 81.9 times faster
than Paddle for medium-sized test cases. There is no comparative data for large test sets, because Paddle did not
complete on them. In comparison to SPARK, computing the geometric points-to takes about 118% longer and
requires approximately 187% more memory. In summary, even this comparatively efficient implementation of a
context-sensitive callgraph comes with a performance and memory penalty. As mentioned above, longer callgraph
construction times can be compensated by more precise results when performing a static data flow analysis, because
a lower amount of spurious call edges must be processed. We therefore see experimentation with context-sensitiver
callgraphs in FLOWDROID as an important area of future work, despite the higher cost during callgraph constructi-
on. On the technical level, FLOWDROID, the ICFG and the solver all were implemented before the work of Xia and
Zhang was available. Therefore, even for integrating their approach, significant changes to these components are
necessary.

In Section 4.11, we report on how FLOWDROID propagates types together with taint abstractions to filter out
invalid callgraph edges at least in those cases in which an access path rooted in the base object of a virtual method
call is tainted. While this type propagation is less precise than a fully context-sensitive callgraph, it only requires
little overhead and can thus serve as a middle ground between context-sensitive and context-insensitive callgraph
algorithms when they are used in a data flow analysis.
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4.2.7 The Rule Engine

The FLOWDROID Core supports many features of the Java programming languages (exceptions, arrays, etc.) and is
therefore complex. To ensure code quality and maintainability, the normal structure of IFDS problems with four
different flow function types (normal, call, return, call-to-return) is not sufficient as Lerch and Hermann have
shown [80]. Therefore, the four IFDS flow function implementations in the FLOWDROID Core only handle simple
taint propagations like mapping taint abstractions from caller to callee and back or handling assignments that only
copy taints as-is. These are the flow functions shown in the previous sections. More involved analysis tasks such as
modeling arrays and exceptions have been factored out of the Core’s IFDS flow functions and into a Rule Engine.
The Rule Engine can be seen as a plug-in framework for IFDS flow functions. Every plug-in (or rule as it is called
in FLOWDROID) handles a specific language feature or analysis task. This also makes the analysis configurable by
optionally joining in or leaving out some of the rules. At the moment, there are the following rules:

• Source Propagation Rule Injects unconditional taints at the positions identified by the Source Sink Manager,
see Section 4.3.

• Sink Propagation Rule Checks whether a sink identified by the Source Sink Manager has been reached, see
Section 4.3.

• Array Propagation Rule Models array constructions, reads, and writes, see Section 4.4.

• Exception Propagation Rule Models exception throwing and catching, see Section 4.5.

• Implicit Propagation Rule Models implicit information flows, see Section 4.6.

• Strong Update Propagation Rule Implements strong updates, i.e., kills overwritten taints, see Section 4.7.

• Wrapper Propagation Rule Integrates the Taint Wrapper into the IFDS flow functions, see Section 4.9.

• Typing Propagation Rule Implements type checks to drop taints with incompatible types, see Section 4.11.

Note that rules are lower-level constructs. They are all part of the FLOWDROID Core component from Figure 5.
More specifically, they are part of the IFDS flow functions and only have been separated as a means of good engi-
neering practice. A rule can make use of one or more of the components from Figure 5 described above. In other
words, a component is a higher-level construct that encapsulates tasks or decisions independently from the IFDS
flow functions. The Taint Propagation Wrapper component for instance provides external library models. It, howe-
ver, does not decide when to query for such models or how to propagate them. This lower-level implementation is
done by the Wrapper Propagation Rule which knows that library models must be applied in the IFDS call-to-return
flow function and that taints generated from library models must afterwards be forwarded to the alias analysis, etc.

Though FLOWDROID uses its own implementation of an IFDS solver (see Section 4.12), it inherits the concept of
pointwise propagation originally proposed by Naeem et al. [100]. Instead of eagerly creating the full supergraph
and then applying the analysis, the supergraph is computed on demand. In other words, FLOWDROID’s IFDS engine
starts with unconditional facts at the sources and then maintains a worklist of facts for which successors still need to
be computed to extend the supergraph. These graph extensions, or successor computations, are done independently
of each other in unsynchronized threads for performance reasons and to allow for a simple model of computation.
Therefore, neither the FLOWDROID Core, nor any rule can ever assume to have a full picture of the supergraph.

With this general design decisions, rules can also be computed independently of each other. The Data Flow
Engine passes the incoming taint at a statement to the FLOWDROID core as well as to the rules. It then computes
the union of the results generated by the Core and those generated by the rules to obtain the result of the current
IFDS flow function, i.e., the new data flow facts used to extend the supergraph. This implicitly also propagates the
incoming taint onward in the normal flow function. Conceptually, rules may, however, also conclude that a certain
data flow fact must be erased, for instance in the case of the Strong Update Rule. To allow for such rules, the
Data Flow Engine provides two flags to all rules: killSource and killAll. A rule can set either flag and thereby
influence how the rule results are joined in the Core Engine. The killSource is used to signal to the Engine that
the incoming taint shall not be propagated onward in the default implementation of the normal flow function. The
killAll immediately aborts all taint propagation for the current incoming taint at the current statement under the
current context and returns an empty set of data flow facts to the IFDS solver. Note that once a rule sets this flag,
the engine also discards all results provided by other rules. In other words, the kill flag is global for all rules. In
that case, an empty set of flow facts is returned as the outcome of the IFDS flow function.
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4.3 Handling of Sources and Sinks

The IFDS flow functions can only propagate taint abstractions. For each node in the program’s control flow graph,
they take an incoming abstraction and create zero or more outgoing ones that are then propagated to the next
node in the graph. This approach, however, requires the initial taint abstractions to be injected before starting
the propagation. FLOWDROID therefore iterates over all statements in all reachable methods of the program and
checks whether they are a source. If so, a special taint abstraction called the zero abstraction is injected at this
statement. It models an unconditional taint that is valid in all contexts. This initial injection is handled by the
FLOWDROID infrastructure when it initializes the IFDS solver. The zero abstraction is special as it does not reference
an actual access path. Therefore, none of the flow functions built into the FLOWDROID core is able to process it.
These functions immediately discard zero abstractions. Actually handling the zero abstractions has been factored
out into a special Source Propagation Rule (which is part of FLOWDROID’s rule engine explained in Section 4.2.7).
Whenever it encounters a zero abstraction, it creates a new abstraction for the access path tainted by the source
and discards the zero abstraction.

Note that the two steps are not identical. While the framework in its first step of creating zero abstractions only
needs to know whether a certain statement can be a source in general, the second step, which actually generates
the correct taint abstractions, needs to precisely find the right tainted access paths. A statement can not only be a
source, because it calls a source method and saves the unconditionally-tainted return value. It can also, e.g., pass
a data object to a source method, which then writes the tainted data into a field of that object. In both cases, the
respective statement is a source, but the tainted access paths will be different. A detailed discussion of sources
and sinks on a conceptual level can be found in Section 3.2. To technically encapsulate all the possible variants
of sources and sinks, FLOWDROID provides an interface for a Source Sink Manager. With this interface, analysts can
defined arbitrary rules of what constitutes a source or a sink. While the source propagation rule is responsible for
the low-level integration of sources into the core’s IFDS flow functions, the source sink manager resides on a higher
level of abstraction. It has the following two functions:

• getSourceInfo() This method takes a statement and returns a set of access paths that shall be unconditionally
tainted. This set can be empty if the given statement is not a source or contain an arbitrary number of access
paths. The set semantics is helpful in case a source taints multiple elements at once, e.g., by writing sensitive
data into multiple fields of objects passed in as arguments to the source method.

• isSink() Given a statement and an incoming access path, this method decides whether a sink has been called.
Note that the access path is important, because methods may consume multiple call arguments, but only leak
a subset of them. In such a case, a sink should only be considered as triggered if the “right” parameter is
tainted at the call.

For integrating the sink handling into the IFDS flow functions, FLOWDROID uses a second rule, called the Sink
Propagation Rule. For each statement and incoming taint abstraction, it queries the source sink manager registered
with the analysis. In addition to providing the technical glue code between the source sink manager and the IFDS
flow functions, the two propagation rules (source propagation rule and sink propagation rule) also take care of
additional lower-level constructs such as caching, or, in the case of sources, triggering the alias analysis where
necessary.

FLOWDROID provides a default implementation for Java programs that assumes that sources are always me-
thod calls. In general, this need not be the case, and a custom source sink manager can define arbitrary state-
ments as sources or sinks. Our default implementation checks whether the target method is listed in a file called
SourcesAndSinks.txt. If so, its return value is unconditionally tainted. In this simplistic model, sources never taint
any parameters passed to them. Only if the method returns void or the user code does not process the return value
(i.e., the calling statement is not an assignment), and the callee is not static, the base object of the call is tainted ins-
tead. When unconditionally tainting a source value, all fields within it are tainted as well, i.e., the generated access
path always ends with an asterisk. While this definition is based on a rule-of-thumb, it has proven to be effective in
practice. Usually, sources do not fill data objects, but rather return new ones, and assuming that all values in such
objects are sensitive is sufficiently precise in public. Especially in contexts such as Android, a permission check (if
a special permission is required) happens when the source method is called. Therefore, whatever is returned by
this method is guarded by the check and can rightfully be assumed as tainted. Additionally, these simple semantics
match the source and sink definition of SuSi [109] from which we take the default SourcesAndSinks.txt file.
Note that the source and sink definition from SuSi does not require all defined methods to be concrete. If a method
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1 void test() {

2 String[] arr = new String[3];

3 arr[0] = ‘‘Hello World’’;

4 arr[1] = source();

5 leak(arr[0]); // false positive

6 }

Listing 13: Over-Approximation for Arrays

1 void test() {

2 String[] arr = new String[3];

3 arr[0] = source();

4 arr[1] = source();

5 arr[3] = source();

6 }

Listing 14: Index-Based Tainting for Arrays

in an interface or an abstract method inside an abstract class is marked as a source or sink, this definition applies
to all implementors of that method.

In some cases, this simple default implementation is insufficient, though. FLOWDROID provides an alternative
source sink manager that captures the full expressiveness of the interface and requires a precise source and sink
definition in an XML file. In this file, the analyst can mark individual access path rooted in the method’s return
value, base object, or any of the call parameters as tainted, and can explicitly specify whether to taint fields inside,
i.e., add the asterisk to the access path or not. To the best of our knowledge, there is no approach that would
automatically generate such a precise source and sink configuration, though. Therefore, it can only be assembled
manually and is likely to be incomplete.

For dealing with Android apps, we provide an Android-specific source sink manager that is derived from the
default implementation (the one that uses simple rules and only requires method signatures as inputs). In Android,
special lifecycle methods and callbacks are invoked by the operating system which we precisely model. The para-
meters passed to these methods can also carry sensitive information and must therefore be considered as sources as
well. Furthermore, user interface controls can also be sources, e.g., in the case of password fields. Consequently, the
Android-specific source sink manager must be tightly coupled with the analyses that detect such special sources.
More details are given in Section 5, where we describe the Android-specific implementations of the FLOWDROID

interfaces.

4.4 Array Tracking

FLOWDROID supports tracking tainted data in arrays. Note that arrays, unlike the Java collection classes, are handled
directly in the FLOWDROID Core, because they are language constructs. For collection classes, the data flow tracker
relies on the generic handling of library methods through taint wrappers that we explain in Section 4.9. Array
elements are referenced using a numeric index which may be computed dynamically and thus be unavailable to a
static analysis tool unless sophisticated pre-analyses are employed, e.g., through constraint solving [98]. Therefore,
we opted to not distinguish the individual elements of an array and rather conservatively over-approximate the taint
status of arrays. In other words, whenever a tainted value is written into an array, FLOWDROID assumes the entire
array to be tainted. If the code under analysis later reads back data from a different index of the same array, this
data is considered tainted as well (because it was read from a tainted array) and a false positive may occur as
shown in Listing 13. In practice, we have not found this to be an important problem. Therefore, we leave a more
precise array handling to future work.

Arrays not only have elements, but also a length field which can be used to store sensitive data. As opposed to
elements, the size can only be written once, i.e., when the array is created. Changing the array length afterwards is
not possible. Still, the value can be read at every code position where the array is accessible. With the over-tainting
technique presented above, creating an array with a length taken from a tainted variable would taint the whole
array right from the start, though it does not yet contain a single element14. To avoid this problem, FLOWDROID

can optionally distinguish whether the array as such (contents), only the length, or both are tainted. This flag is
attached to the access path.

A similar technique could theoretically also be used for tracking statically-available array indices. If data is
written into the array at a static index (i.e., a constant index available in the bytecode), this index value is stored
in the taint abstraction. When data is read from the array, the result is only tainted if the accessed index is either
a statically-available constant that is equal to the index in the access path, or if the accessed index cannot be
determined statically and there is at least one tainted index in the array. In the latter case, the analysis would

14 Note that direct element specification such as String[] arr = new String[] {“First”, “Second”}; is broken up into an array
creation with only the length and two consecutive assignments in the Jimple IR
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have to over-approximate and assume that the access to the unknown index references a tainted index of the
array. Furthermore, if a write operation happens to an index that cannot be determined statically, the complete
array would have to be tainted as usual to conservatively over-approximate the missing information. While this
technique would potentially increase the precision of the array handling, it can also lead to an increased number of
taint abstractions to be propagated. In the example in Listing 14, all indices of the array are tainted in the end, so
the most concise taint representation would be a single access path that references the array as such. When tainting
the whole array as soon as a single element is tainted, this is trivially achieved. The same taint gets created again for
each element assignment, which does not increase the size of the overall taint set, because all those taints are equal.
When tainting individual indices, however, all taints are only reference a single element, and thus are separate and
will stay separate. IFDS performs a simple set union as merge operation, so even if, in the end, all indices inside the
array are tainted, there is no possibility to merge the three taint abstractions into one. Furthermore, if not all, but
only some array indices are tainted, one would need not only an IFDS merge extension, but also a way to efficiently
represent index ranges for not increasing the number of taint abstractions to be propagated. As explained above,
we leave these issues to future work. Dillig et al. developed an approach to more precisely analyzing the contents
of collections and arrays [38]. The required analysis effort is non-trivial, but integrating such an approach into
FLOWDROID could potentially increase the precision of the analysis.

4.5 Exception Tracking

FLOWDROID is able to track data flows over exceptions. This includes two aspects. Firstly, the normal data flow
propagation in the IFDS solver must operate on an interprocedural control flow graph that contains exceptional
edges. It must take into account that control flow may not only progress in a linear way, but may also jump to
an exception handler if the current statement throws an exception. In the example in Listing 15, the statement in
line 4 throws an exception and transfers the control flow to line 8 where a leak occurs. Without exceptional edges
in the control flow graph, this leak would be missed. Furthermore, in this particular example, the exception is not
optional, but is always thrown (unlike, e.g., a field access that throws a NullPointerException if and only if the
base object is nulll). Consequently, the control flow will always be transferred, line 5 is dead code, and that leak
can never occur.

These (additional) exceptional control flow edges are captured by Soot’s Exceptional Unit Graph. It is based
on a Throw Analysis that, for each statement, defines that maximum set of exceptions that it may throw. A field
access may, for instance, throw a NullPointerException. The exceptional unit graph adds an edge for each pos-
sible exception to each catch handler that can possibly catch this exception type and that is defined over a range
containing the throwing statement. This approach implicitly assumes that every syntactically possible exception is
also thrown, i.e., it does not check whether some exceptions are actually impossible. In the case of the field access,
it does not prove that there is actually a chance for the base object being null which is a necessary precondition
for the exception to be thrown. It therefore provides a conservative over-approximation over the exceptional con-
trol flow edges. According to the JVM specification, some exceptions such as the OutOfMemoryError can always
happen. Therefore, if there is an exception handler for java.lang.Throwable, which is the common superclass of
all exceptions and errors in Java, there will be an edge from each statement to this handler. Note that the throw
analysis is platform-specific. Soot provides one implementation for Java and one for Android. In Android, many ge-
neral exceptions such as OutOfMemoryError or VirtualMachineError do not exist. Instead, the operating system
directly terminates the app if such an error occurs. For not producing spurious edges, it is therefore important to
chose the right throw analysis when constructing the interprocedural control flow graph.

Secondly, the data flow tracker must handle tainted data that is part of an exception object that is thrown.
Consider the example in Listing 16. First, sensitive data is obtained from the source. In line 4, an exception with
the tainted data as its message is thrown. In line 7, this exception is caught and the data is read from the message,
before it is leaked in line 8. For capturing these semantics, the data flow tracker must correctly propagate the
taint on the exception object created in line 4 to the exception object caught in line 7, though these might reside
in totally different local variables. In FLOWDROID, handling such taints inside exceptions is done by the Exception
Handling Rule. When a new exception object is created and tainted data is written into that object, the data flow
core’s built-in flow functions are still sufficient for creating the access path referencing the data inside the object.
In the example, FLOWDROID would create a taint on e1.message given that e1 is the original temporary variabe
in which the exception is stored before it is thrown. Once the exception is thrown, however, special handling is
required. The exception handling rule sets the exception thrown flag. This flagged abstraction is then propagated to
the catch block by following Soot’s normal exceptional control flow graph. When processing the first statement in
the catch block, the exception handling rule checks whether the incoming taint has the exception thrown flag set.
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1 void test() {

2 String s = source();

3 try {

4 throw new
RuntimeException(‘‘Hello

World’’);

5 leak(s);

6 }

7 catch (RuntimeException ex) {

8 leak(s);

9 }

10 }

Listing 15: Exceptional Control Flow

1 void test() {

2 try {

3 String s = source();

4 throw new RuntimeException(s);

5 }

6 catch (RuntimeException ex) {

7 String t = ex.getMessage();

8 leak(t);

9 }

10 }

Listing 16: Tainted Data in Exception Object

If so, it is converted into a tainted access path that references the local variable of the caught exception, regardless
of the original tainted variable in the incoming access path. In other words, the flag makes sure that the base of the
original access path is ignored, and is replaced by the variable that hosts the caught exception when entering the
catch handler.

Technically, Soot’s inter-procedural control flow graph combines the traditional callgraph with an intra-
procedural exceptional control flow graph. Consequently, there is only an edge from a statement that throws
an exception to the respective exception handler in the same method such as in the examples in Listing 15 and 16.
This edge is part of the normal intra-procedural exceptional control flow graph. If the exception escapes from the
current method and is caught inside the caller, there is no edge from the throw site to the handler. Nevertheless, the
IFDS problem can handle this case as follows. The throw site in the callee is the origin of a return-flow edge that
models that the control flow immediate leaves the callee when the exception is thrown. In the case the exception
is optional (e.g., only happens when a base object of a field access is null), there is also a normal flow edge to the
successor statement that models the case in which the exception is not thrown. In either case, inside the caller, there
is an intra-procedural control flow edge from the call site to the exception handler as defined by the may-throw
analysis on the call site. In summary, there is no direct edge from the throw site to the exception handler, but rather
two consecutive edges: One that leaves the method (intra-procedural inside the callee) and one from call site to
handler (intra-procedural inside the caller).

Figure 6 graphically shows the IFDS flow functions for a simple example. Note that in this example, the exception
is thrown under some opaque predicate if(?) to depict that it is only thrown under cetain circumstances and that
there is also a normal control flow onwards. This is important to not make leak(b) unreachable in the caller, but
show how exceptional edges are handled together with normal ones. Further note that there is no fall-through
from leak(b) to the exception handler in the caller. The caller returns after leak(b). For the exceptional flow from
callee() to the handler in caller(), you can see that the original abstraction on variable f is first transferred back
to the caller, even though variable f is not even in the scope of the caller. However, because the exception flag is set,
the normal flow function that processes the catch statement will map it to the right receiver e. The intermediate
flow fact is immediately discarded afterwards. These are the two consecutive data flow edges along the two control
flow edges ((1) return from callee() and (2) into the handler in caller() that are necessary to model this flow.

4.6 Implicit Data Flow Tracking

The concepts discussed so far focused on explicit data flows, i.e., sequences of assignments that propagate data
through the program. It is always the sensitive data item itself that is passed on, either completely, or in parts (i.e.,
by taking a substring of a tainted string). Implicit flows, on the other hand, do not refer to the actual data being
propagated, but information about the data. In the example in Listing 17, not the string obtained from the source is
leaked, but the information whether that string starts with Hello. In some cases, this can already violate security or
privacy policies. As an extreme example, a malicious program could, for instace, iterate over a string and, for each
character in the string, first send out whether it is equal to “a”, then send out whether it is equal to “b”, etc. This
is done for all possible values of all characters in the string. With this information, the attacker could completely
reconstruct the string, though the string is never explicitly sent out by the program.
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Figure 6: IFDS Flow Functions for Exceptional Data Flow

1 void test() {

2 String data = source();

3 boolean b;

4 if (data.startsWith("Hello"))

5 b = true;
6 else
7 b = false;
8 leak(b);

9 }

Listing 17: Implicit Flow Example

1 void test() {

2 String data = source();

3 boolean b;

4 if (data.startsWith("Hello"))

5 leak("Starts with Hello");

6 else
7 leak("Does not start with

Hello");

8 }

Listing 18: Implicit Flow Example 2
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1 void test() {

2 String data = source();

3 int i = 0;

4 if (data.startsWith("Hello") {

5 i = 42;

6 leak("Hello World");

7 } else {

8 i = 42;

9 leak("Hello World");

10 }

11 leak(i);

12 }

Listing 19: Equal Branches and Implicit Flows

1 void test() {

2 String data = source();

3 if (data.startsWith("Hello") {

4 foo();

5 leak(this.a);
6 }

7
8 void foo() {

9 leak("Hello World");

10 this.a = 42;

11 }

Listing 20: Interprocedural Implicit Flows

While not tracking implicit flows can lead to leaks being missed which are highly relevant in the context of
security and privacy, implicit flow tracking also comes with its own challenges and disadvantages. Conceptually,
an implicit data flow tracker taints all data items that depend on any data element that is already tainted. Even in
benign programs, this can lead to a large number of additional taints that not only aversely impact performance,
but also produce unexpected leak reports. These detected leaks are not technically false positives, but merely model
expected behaviour of the program that just happens to fall under the very broad definition of an implicit flow. If a
program, for instance, requires a user to log in, it will always leak information about the real password in the back-
end database, namely if the password entered by the user during his login attempt is equal to the correct password
or not. This single-bit information leak is unavoidable if the login procedure works as expected, because a login
procedure, by definition, tells apart correct from incorrect login attempts. Nevertheless, a leak will be reported. This
example already shows, that implicit leaks can greatly clutter the output of the data flow tracker. King et al. [76]
investigated this issue and found these inherent problems of implicit flow tracking to likely be the root cause why
data flow tracking tools that are used in practice usually focus on explicit data flows only. Therefore, implicit data
flow tracking is an optional feature in FLOWDROID which is disabled by default. FLOWDROID’s concept of rules (see
Section 4.1) allows us to decouple the complete implicit flow implementation from the rest of the system. Only if
the implicit flow feature is enabled, the respective rile is registered with the rule engine.

Recall that FLOWDROID is based on tracking access paths. Therefore, the implicit data flow tracker must create
new tainted access paths for every left side of an assignment if that assignment is control flow-dependent on a
conditional that includes a tainted variable. Before discussing our concrete implementation in FLOWDROID, it is
necessary to understand that in Jimple code, just like in Java bytecode, conditionals are always explicit. While
the Java source code language allows shortcut notations such as a = b ? c : d, the Java compiler will always
turn this into an explicit conditional: if (b) a = c; else a = d;. Therefore, whenever there is an implicit data
dependency, there is always a control flow diversion through an if statement. Note that while loops are also
represented as if conditions and jumps and are not additional language constructs.

When a taint reaches an if condition during normal forward propagation, we create a special taint abstraction on
access path *. This access path does not refer to a specific variable, but to all of them. Semantically, this abstraction
mandates that all left sides of assignments at which this special taint abstraction arrives shall be tainted, without
requiring any match on the right side. In other words, this access path serves like a fake variable that encodes
control-flow dependencies. Aside from this rule, the special abstraction is propagated just like any other taint. It,
however, also contains the postdominator of the if statement at which it was created. The postdominator is the
first unit after the control flow of the then and the else branch merge again. When the special taint reaches this
statement, it is deleted. Successor statements from here are no longer control flow-dependent on the conditional15.
For finding the postdominator of a given if statement, FLOWDROID leverages Soot’s existing postdominator analysis.

Aside from assignments, calls to sink methods also need special treatment. In the example in Listing 18, only
constant strings are passed to the sink method. Nevertheless, an observer who receives this string is able to deduce
whether the sensitive data obtained from the source started with “Hello” or not. To capture this kind of leaks,
FLOWDROID always records a leak when the special taint * arrives at a call to a sink method, regardless of the

15 The control flow always merges at the end of the method at latest. This is the fallback if Soot’s postdominator analysis is unable to
find a more precise postdominator.
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1 void test() {

2 int data = source();

3 String[] arr = new String[data];

4 try {

5 arr[42] = "Test";

6 }

7 catch (ArrayIndexOutOfBoundsException

e) {

8 leak("Hello World");

9 }

10 }

Listing 21: Exceptional Control Flow, Implicit Data
Flow

parameters passed to the method. While this technique ensures that no implicit leak is missed, it can also lead to
false positives. In the example in Listing 19, the call to the sink method is control flow-dependent on a conditional
on tainted data. However, regardless of the outcome of the check, the same constant value is leaked and the same
state modifications are performed. Consequently, an external observer that only has access to the values passed to
the sink methods, cannot deduce anything about the original sensitive value obtained from the source. A static tool
such as FLOWDROID can only avoid such false positives by proving equality between the two branches. For more
complex code with nested conditionals, we would have to prove that all possible control flow paths through the
branches are equal. This is a problem FLOWDROID does not address. Still, in simple cases such as the one shown in
Listing 19, FLOWDROID’s constant string propagation (see Section 4.14) is able to detect that the value of variable
i is always 42 in Line 11. Therefore, the call argument is replaced by the constant value 42, which is no longer
syntactically dependent on any secret value, and the false positive is avoided.

All of the examples discussed so far focused on intra-procedural implicit flow tracking. In Listing 20, method
foo() is only called if the sensitive data starts with “Hello”. Conceptually, the very same rules apply if we inline
the body of foo() into the respective branch of the conditional. To simulate this inlining during the taint analysis,
FLOWDROID has a special treatment for the * taint at call sites. Normally, this taint is propagated in addition to all
other, “normal” taints. This is important, because the other taints are needed again after the postdominator has
been reached, so they cannot be discarded on the way. In the case of a method call, however, a context change
happens. All of the contents of foo() are captured by the * taint that taints everything. Inside foo(), there is
no postdominator after which the * taint is removed and the normal, selective tainting continues. Therefore, it
is sufficient to only propagate the * taint into foo(). If there are other taints, for instance on this.x, they are
irrelevant inside foo(), because they are already covered by the much broader * taint. FLOWDROID therefore keeps
a list of contexts, statements, and methods to denote into which method a taint * has already been propagated
at which call site in which context. If such an entry exists and an explicit taint arrives at such a call site with an
already-known context, it is not propagated into the callee16. Only propagating the * taint into the callee (and all
of its subsequent callees) can significantly reduce the time and memory consumption of the analysis. Technically,
it is important to note that if we omit taints on the call flow function, we must make sure to propagate them over
the call-to-return flow function for not losing them inside the caller. Even if we do not need a taint on, e.g., this.x
inside foo(), it must still be there inside test() when the call to foo() returns.

Implicit flows can also be triggered through exceptions. In the example in Listing 21, the exception is only thrown
if the array has less than 43 entries, i.e., the value obtained from the source was less than 43. If that is the case, a
constant string is leaked in the exception handler, allowing an observer to derive information about the sensitive
value. To capture such leaks, FLOWDROID must use a slightly broader definition of the normal flow function than
normally used. The outcome of the normal flow function is not only dependent upon the incoming taint and the
current statement, but also upon the next statement at which the control flow will continue. FLOWDROID checks
whether this control flow edge between current and next statement is an exceptional edge. If this is the case and
the current statement references a tainted value, a new * taint is generated. In other words, if a statement uses
a tainted variable and then throws an exception, we assume that the fact whether this exception is thrown or not

16 Technically, this optimization introduces a race condition by design, because the analysis cannot know whether the * taint or the
concrete taint on this.x will reach the call site first. This can lead to the optimization being applied only partially, but cannot affect
correctness.
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1 void test() {

2 Container c1 = new Container();

3 Container c2 = c1;

4 c1.data = source();

5 c2.data = null;
6 leak(c1.data);

7 }

Listing 22: Strong Updates and Aliasing

can potentially depend on the tainted data. The exception handler must then be treated in the same way as a
conditional branch.

This approach can, however, also lead to false positives. In the example in Listing 21, the length of the array is
potentially lower than 43. Assume that the array initialization were String[] arr = new String[data + 100];

instead. The array size would then always be larger than 43, and no exception would be thrown. Consequently,
there would not be any leak. FLOWDROID would, however, still report a leak if implicit flow tracking is enabled.
Recall that in FLOWDROID, the program’s control flow is modeled through an interprocedural control flow gaph
(ICFG). For exceptional flow edges, this graph is based on Soot’s general-purpose ExceptionalUnitGraph, which,
in turn, is based on an interprocedural may-throw analysis. This means that there is an exceptional edge from a
statement stmt to a handle hnd in the ICFG if stmt can potentially throw an exception that is caught by hnd. An
array access can potentially always throw an ArrayIndexOutOfBoundsException and thus, there will always be
a control flow edge to the respective exception handler if one exists. Soot’s may-throw analysis does not perform
range checking. This is yet another example of additional leaks that are reported when implicit flow tracking is
enabled.

4.7 Strong Updates

The normal data flow rules built into FLOWDROID’s data flow core only capture generating new taints. In some cases,
however, existing taint abstractions must also be removed, i.e., not propagated onward. This happens, for example,
when a tainted variable is overwritten with non-tainted data. In the simple case, the left side of the assignment
exactly matches a prefix of the incoming access path. This simplistic view, however, fails on aliases. In FLOWDROID,
aliases are first-class taints as explained in Section 4.8. Whenever a heap object is tainted, FLOWDROID enumerates
all aliases for this object if the default aliasing strategy is used. When an alias is found for a specific taint, it
becomes an additional taint on its own. Consider the example in Listing 22. On line 5, there are two incoming
taints: c1.data and c2.data. Therefore, killing the original taint c1.data, because the left side of the assignment
matches that one access path, leaves the taint modeling the alias (C2.data) intact. In the example, this leads to a
false positive in line 6. Recall that taint propagation is point-wise in IFDS, so a flow function is always computed
on a single incoming taint. When killing the taint on c1.data, there is no possibility to influence what happens to
the taint on c2.data on that line.

To avoid such false positives, FLOWDROID provides the Strong Update Propagation Rule. For each incoming taint,
if it must alias with the left side of an assignment, this taint may not be propagated onward. In the example, the
taint on c2.data is trivially killed on line 5. The base object of the access path c1.data must-aliases with the base
object of the referenced field c2.data, so this taint is killed as well. Note that this requires a must-alias analysis,
while the normal taint propagation that generates new derived taints, is based on a may-alias analysis. FLOWDROID

therefore relies on Soot’s built-in intra-procedural must-alias analysis for such queries. As a consequence, if aliases
are created in other methods, the analysis will conservatively degenerate and keep the alias taint on the alias alive
even if the original taint is killed.

We perform special-casing for the dummy main method in which, by construction, no must-alias relationships
exist. Skipping this method improves the analysis performance, because the dummy main method can reach a
significant size with a large number of local variables. The more local variables there are, the more potential
relationships must be checked, which is avoidable in this case.
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4.8 Precise and Efficient Alias Analysis

A precise static data flow analysis tool must also precisely handle aliasing relationships. In the example in Listing 23,
the tool must capture that not only a.fld, but also b.fld is tainted when the sink method is called at line 13. There
are two possible models to capture such aliasing relationships during the static data flow analysis:

• Eager tainting Whenever a heap object is tainted such as a.fld in line 12, also enumerate and taint all
aliases. From this line, the analysis would therefore propagate two taints onward: a.fld, and b.fld. When
the analysis reaches the call to the sink in line 13, the leak can be detected by simple pattern matching
against the incoming taints.

• Lazy tainting When processing an assignment, only the receiver access path is tainted, aliases are ignored.
In line 12, the analysis would only propagate a.fld onward. Whenever a heap object is read (line 13), the
analysis must then, however, check for aliases to discover that the leaked access path b.fld aliases with the
incoming taint a.fld.

1 void bar() {

2 // All of the relevant behavior

3 // is in the callee

4 foo();

5 }

6
7
8
9 void foo() {

10 A a = new A();

11 A b = a;

12 a.fld = source();

13 leak(b.fld);

14 }

Listing 23: Simple Aliasing Example

1 void bar() {

2 X x1 = new X();

3 X x2 = new X();

4 X x3 = foo(x1, x2);

5 leak(x3.a.fld);

6 }

7
8 X foo(X p1, X p2) {

9 A a = new A();

10 X x = new X();

11 x.y = a;

12 a.fld = source();

13 return x;

14 }

Listing 24: Complex Aliasing Example

In the literature on alias analysis, the aliasing problem is often formulated as a binary decision: Given two
variables, can they potentially alias? When integrating such a binary alias analysis into a static data flow analysis
tool, lazy tainting is the natural choice. Whenever the solver processes an incoming tainted access path and a
current statement, it can check whether the base variable of the incoming taint may alias with any variable that is
used in the current statement. The question whether an incoming taint can possibly alias with a leaked access path
is exactly such a binary question. For implementing an eager tainting strategy based on binary decisions, one would
have to iterate over all statements in the code as soon as a heap object is tainted, and check whether this new taint
may alias with a variable used in any statement. If so, it would then need to create a taint for that variable at the
respective statement as well. This requires one loop over all of the program’s code for each newly tainted heap
object, which can easily lead to significant overhead. In contrast, the lazy tainting strategy can defer this checking
to the point at which the respective statement is being processed by the normal taint propagation anyway. Note
that this is not an argument against eager tainting, but rather shows that the classical formulation of the aliasing
problem as a binary decision problem is not a good fit for eager tainting strategies. Instead, one would need the
alias analysis to enumerate all aliasing access paths efficiently without requiring additional passes over the program
code for each newly-tainted heap object. We will discuss this issue in more detail later in this section.

While efficient eager tainting requires changes to the interface of the alias analysis (and in fact an extension to
what alias analyses provide to their clients), lazy tainting also has its drawbacks. In simple examples such as the one
from Listing 23, eager tainting and lazy tainting seem equivalent. In general, lazy tainting can, however, quickly
become inefficient. Consider the more complex example in Listing 24. When the analysis returns from method foo,
it needs to map back the taints into the context of the caller bar. Those taints that reference objects which are not
visible in the caller are dropped. If eager tainting is used, this process is straightforward: At line 13, the analysis
processes two incoming taints: x.y.fld and a.fld. The callee-side access path a.fld has no corresponding access
path in the caller as it is not based on an interface element such as a parameter, this-local, or return value. It is
therefore dropped. The taint x.y.fld is based on the variable x which is returned. Therefore, it corresponds to
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x3.y.fld in the caller, because the return value of foo is assigned to x3 in the caller bar in line 4. In other words,
there is only a single taint abstration that needs to be propagated onward inside the caller.

If we analyze the same example with a lazy tainting strategy, the only incoming taint at line 4 is a.fld. This
access path does not match any access path inside the caller as the callee-side variable a is not visible in the
caller. Dropping this taint would, however, be unsound as it would also kill the alias which is visible in the caller.
Remember that taints in lazy tainting reference not only their own access path, but also all possible aliases. These
aliases are only made explicit on heap accesses. When returning from method foo, the analysis therefore cannot
know the exact set of variables that is represented by the taint on a.fld. It cannot decide whether, at some point
later in the code, an alias of a.fld is still accessed or not. Therefore, it cannot decide whether this taint needs to be
mapped back into the caller or not. The analysis is supposed reason about mapping access paths between contexts
without having full information yet. Note that though we demonstrate the problem with method returns, this is a
generic problem with context changes and lazy tainting that arises on method calls as well. There are two possible
methods to implement context changes with lazy tainting:

• Propagate everything Propagate all taints onward as-is. In the example, the taint a.fld would be propa-
gated onward in the caller bar although it does not point to any valid object there. Still, whenever a read
operation on a heap object happens, the data flow analysis can use this taint in a binary alias query to check
whether it may alias with that heap object. In line 5, the analysis would process the incoming taint a.fld
and would check whether this access path aliases with x3.a.fld.

• Manifest aliases on context change When propagating taints over a context change (method call or return),
enumerate all aliases of a given tainted access path. Then, map these access paths into the other context. This
essentially is a mix between eager and lazy tainting: It applies the eager tainting technique solely to context
changes and keeps the lazy technique everywhere else. In line 13, the analysis would take the incoming taint
a.fld and compute its alias x.y.fld which then gets mapped back into the caller method bar as x3.a.fld.

Note that the propagate-everything technique assumes that, in the analysis, variables are referenced through
unique identifiers and not through names. A variable a in foo must be distinguishable from a variable with the
same name a in bar for not creating false positives when propagating taints onward as-is. It must still be clear
that this taint, albeit being propagated in bar, references a heap object with a base variable from foo. In the Soot
framework, on which FLOWDROID is based, this is trivially the case, because all variables are modeled using objects
in the AST of the Jimple intermediate representation. A variable a in foo would be a different object in the analysis
than a variable a in bar.

While the propagate-everything technique is sound and does not miss any leaks, it is inefficient, because it cannot
prune taints during context changes. It would need to propagate the taint a.fld onward even if it does not alias
with anything that is visible outside of the scope of method foo. Because aliases are only checked when accessing
heap objects, there is never enough information to know that a certain taint becomes inccessible and can safely
be deleted. Consequently, propagation everything accumulates unnecessary taints and thus negatively affects the
scalability of the data flow analysis. This is a general issue with lazy tainting for aliases. Therefore, the second
technique (manifesting aliases on context change) compromises on lazy tainting; it is essentially a combination of
eager and lazy tainting. Instead of enumerating all aliases whenever a heap object is tainted, it only enumerates
aliases on context changes. This enables the data flow analysis to erase those access paths that are not visible in
the other context. In the example, the taint a.fld would not be propagated back into bar.

The combined technique (just like eager tainting), however, requires enumerating all aliases of a given access
path. This is not commonly a feature of off-the-shelf alias analyses as Xiao [146] points out (he calls this enumera-
tion function ListAliases as opposed to the binary IsAlias query). Therefore, most alias analysis are not suitable
for the integration into a static data flow analysis tool that uses eager tainting or the combined technique. Despite
the great existing amount of research on alias analysis, this area needs to remain under active investigation. This
lack of existing algorithms and well-tested implementations inside static analysis frameworks such as Soot is the
primary reason for FLOWDROID to provide its own alias analysis. One noteworthy exception is Boomerang by Späth
et al. which allows exactly such alias enumeration. It was created as a generalization of FLOWDROID’s flow-sensitive
alias analysis which we present in Section 4.8.4 and builds upon the work presented in this thesis.

Before discussing the details of FLOWDROID’s alias analysis, we will first address why enumerating aliases cannot
easily be emulated with a set of binary alias queries. Again, take the example from Listing 24. When returning from
method foo in line 13, the analysis must know the aliases of taint a.fld that are visible through the interface of
the method foo. Trivially, one would replace the base variable of this taint with interface variables and run binary
alias checks:
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• Does a.fld alias with x.fld?

• Does a.fld alias with p1.fld?

• Does a.fld alias with p2.fld?

These queries, however, fail to capture the necessary alias information from the example, i.e., the fact that a.fld
aliases with x.y.fld. To capture this alias, one would need to query the binary alias analysis for all possible aliases
of a. One would need to enumerate all sequences of fields that are accessed inside method foo and generate all
possible combinations thereof. This would lead to the following additional queries:

• Does a.fld alias with x.y.fld?

• Does a.fld alias with p1.y.fld?

• Does a.fld alias with p2.y.fld?

If the method foo would also access other fields such as x.z, the data flow analysis would also need to query the
alias analysis for these fields. If n is the number of fields accessed in a given method, and the access path length
is restricted to l elements, the number of possible access paths is O(nl). From this example, we can conclude that
binary alias queries, at least on a conceptual level, do not effectively capture the requirements of a static data flow
analysis.

The challenges that arise for the alias analysis are tightly coupled with the choice of the underlying taint abstrac-
tion, more precisely: the heap model on which the analysis operates. As explained in Section 3.3, FLOWDROID is
based on access paths, which is a storeless abstraction according to the terminology of Kanvar and Khedker [72]. If
we had instead chosen a store-based abstraction, the analysis could taint abstract representations of the respective
heap objects instead of ways to access them (i.e., access paths). In that case, one would only need a single taint
abstraction for the heap object, regardless of the number of different variables and sequences of field dereferences
that point to the object. This would also eliminate the question of eager vs. lazy tainting, because all these “secon-
dary” taints would no longer be necessary. On the other hand, efficiently summarizing such a heap model without
significantly losing precision is a challenge on its own. Merging different memory objects into one abstract heap
object leads to false aliases, while providing separate heap objects for what is actually the same memory object
leads to missed aliases. Common techniques such as mapping all objects created at the same allocation site to the
same abstract heap object, for instance, cannot properly model factory methods.

In the remainder of this Section, we will first discuss FLOWDROID’s plug-in architecture for alias analyses in
Section 4.8.1. We will then show the practical impact of the emulating access-path aliased analysis with an off-the-
shelf binary alias analysis in Section 4.8.2. Afterward, we will introduce FLOWDROID’s custom alias flow-sensitive
analysis that is explicitly tailored at computing aliases for access path-based taint analysis problems in Section 4.8.4.
In Section 4.8.5, we introduce a special alias analysis tailored at implicit flow tracking. Lastly, we present related
work on alias analysis in Section 4.8.6.

4.8.1 FLOWDROID’s Aliasing Architecture

To support experimentation with different alias analyses, FLOWDROID decouples the aliasing problem from the data
flow engine through an interface IAliasingStrategy as explained in Section 4.1. This interface caters for both
eager and lazy tainting. Eager tainting is implicitly asynchronous: Whenever a new heap object is tainted (i.e., a
tainted value is assigned to a field or an alias element), the analysis is invoked with a call to computeAliasTaints.
It is tasked with finding all aliases of the new heap taint, with creating taint abstractions for these aliases, and
with injecting these alias taints into the data flow solver. To allow for the manifest aliases on context change strategy
(the combination that performs eager tainting on method returns, but lazy tainting everywhere else), the alias
analysis is also invoked on method returns. To capture the shared semantics of eager tainting and the combination
approach, FLOWDROID provides an abstract base class called AbstractBulkAliasStrategy. For lazy tainting, the
aliasing strategy is invoked for a binary may-alias decision on every access to a heap object such as a field or an
array index by calling mayAlias. For this variant, the abstract base class AbstractInteractiveAliasStrategy is
provided. Figure 7 shows the complete aliasing class diagram.

Note that FLOWDROID also requires an interprocedural must-alias analysis to support strong updates. The
IAliasingStrategy interface, however, does not provide an abstraction for this aspect. Instead, FLOWDROID al-
ways relies on Soot’s default implementation. We have not seen good reasons for exploring other alternatives for
must-alias relationships so far.
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IAliasingStrategy AbstractAS*

AbstractBulkAS*

AbstractInteractiveAS*

FlowSensitiveAS*

PtsBasedAS*

ImplicitFlowAS*

LazyFlowAS*

*Class name abbreviated. AS = AliasStrategy

Figure 7: FLOWDROID’s Aliasing Architecture

4.8.2 FLOWDROID’s PtS-Based Aliasing Analysis

In theory, the conceptual mismatch between access paths of arbitrary lengths and standard off-the-shelf binary alias
analyses can lead to a high performance penalty. The number of queries to be made can be high depending on the
maximum access path length. To assess the impact in practice, we have implemented such a strategy in FLOWDROID.
As the underlying aliasing algorithm, we use the PointsTo implementation from SPARK.

1 void test() {

2 A a1 = ...;

3 A a2 = ...;

4
5 a2.b.c = a1.b.c;

6 a1.b.c.d = source();

7
8 leak(a2.b.c.d);

9 }

Listing 25: PtS-Based Aliasing (Java Code)

1 void test() {

2 A a1 = ...;

3 A a2 = ...;

4
5 B b1 = a1.b;

6 C c1 = b1.c;

7
8 B b2 = a2.b;

9 b2.c = c1;

10
11 D tmp = source();

12 c1.d = tmp;

13
14 C c2 = b2.c;

15 D d2 = c2.d;

16 leak(d2);

17 }

Listing 26: PtS-Based Aliasing (Jimple Code)

Our implementation is based on the observation that field accesses can only refer to the base object and one
field in Jimple, e.g., a.fld. Longer sequences of field dereferences are always broken up into chains of simple
one-field accesses. Listing 25 shows the original Java code of an example. The corresponding Jimple code is shown
in Listing 26. The Jimple code has been simplified slightly to focus on the important aspects of the example. In the
original Java code, the alias analysis would have to detect the aliasing relationship between a1.b.c and a2.b.c to
find the leak in Line 8. In the Jimple code, the analysis must only find the aliasing relationship between c2.d and
c1.d which only involves the base object and one field instead of the much longer original access path. In other
words, the problem of finding aliases on longer access paths is reduced to finding aliases between interim variables
that store prefixes of the aliasing access paths. This is a direct consequence of the prefix finding problem discussed
in Section 4.8 above. It is only made implicit by the Jimple language construction.

In the following, we will explain the alias analysis process in detail for the given example. The first unconditional
taint is created at the source in Line 11. Directly in the next line 12, the tainted data is assigned to a heap variable
and the alias analysis is triggered for c1.d. It scans over the whole method body to find assignments of c1.d, more
precisely: assignments of anything that has a points-to set with a non-empty intersection with the points-to set
of c1.d. Note that this analysis is, by definition, flow-insensitive. Line 9 references c1 which trivially PtS-aliases
with itself (the base of c1.d), so a new taint b2.c.d is created and injected into the forward solver. This alias then
becomes a new taint in its own right and is propagated onward like any other taint. The alias analysis then proceeds
to find more aliases, now with the set {c1.d, b2.c.d}. In Line 9, the alias b1.c.d is added for c1.d. This taint is
also injected into the forward taint propagation and becomes a taint in its own right. The alias analysis now has a
worklist containing {c1.d, b2.c.d, b1.c.d}. This search continues until the worklist has reached a fixed point,
i.e., no new aliases can be found. Regardless of the continuing alias search, the taint analysis can continue and find
the leak as soon as the alias taint on b2.c.d has been found and is propagated over the last three statements. The
alias analysis always only needs to check whether the base object and, in the case of a field reference, the first field
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Algorithm 1 PtS-Based Alias Algorithm in FlowDroid

Require: Method body b, tainted access path ap
Ensure: Injection of alias taints into forward taint tracker

1: Q← [ ap ]{Initial queue of aliasing access paths}
2: while Q 6= empty do
3: curAP← Q.pop()
4: for each Unit u ∈ b do
5: if isInstanceInvokeStatement(u) then
6: if curAP.hasPrefix(u.base) then
7: injectIntoForwardSolver(append(u.base, curAP.suffix), u)
8: else if isInvokeStatement(u) then
9: for each Parameter p ∈ u.getParams() do

10: if curAP.hasPrefix(p) then
11: injectIntoForwardSolver(append(p, curAP.suffix), u)
12: else if isAssignment(u) then
13: if isHeapObject(u.rightOp) ∧ hasNonEmptyIntersetion(pts(u.rightOp), pts(curAP)) then
14: Q← append(u.getLeftOp, curAP.suffix)
15: if isHeapObject(u.leftOp ∧ hasNonEmptyIntersetion(pts(u.leftOp), pts(curAP)) then
16: injectIntoForwardSolver(append(u.getLeftOp, curAP.suffix), u)

are a prefix of an access path in the worklist. The remaining fields in the access path do not need to be checked,
they are simply copied over to the new alias taint if the prefix matches.

The PtS-based alias analysis only iterates over the statements inside the current method to check for potential
aliases. Note that SPARK is inter-procedural, i.e., each single binary alias query takes aliases created in other
methods into account as well. Still, the analysis must make sure to issue the right queries and also ask for potential
aliases in those other methods, or it will only discover those aliases that are in scope in the current method. Recall
that the alias analysis is not only invoked when a new taint on a heap object is created, but also after a method
return has been processed. This allows the alias analysis to pick up the taints that were matched back into the
callee by the normal taint propagation algorithm and perform the same intra-procedural scan in the callee. If this
again yields new taints on aliases, they are again mapped back as normal taints and again, the alias analysis is
triggered for a new scan in the callee’s callee, etc. With this technique, the alias analysis does not need to process
any context switches on returns on its own, but can completely rely on the IFDS-based taint analysis for this task.
The only case that needs special treatment is a method call. The alias analysis must also check whether a parameter
or a base object of a method call aliases with an existing taint and then explicitly inject a taint for the concrete
variable of that base object or parameter into the taint analysis. The taint analysis will then take care of mapping
this new alias taint into the callee. In general, aliases are manifested where they are used, be it in an assignment
or in a call site, at the latest, however, when the current method returns. Scanning only inside the current method
and injecting the found aliases back into the normal forward taint propagation has the advantage of being able to
re-use the context handling of the IFDS-based taint analyzer. This is import, because the alias analysis must be able
to inject taints into the taint propagation, which in turn, requires a context. One simple solution would be to always
use the null context (element is unconditionally tainted). However, continuing the complete taint propagation in
a null context could lead to a precision loss even in cases that are not directly affected by the points-to analysis.

Algorithm 1 shows the PtS-based aliasing algorithm in detail. It is called for a method body b and an incoming
access path ap. This incoming access path is the one that was originally tainted though the assignment to the heap
object for which the alias analysis was invoked. The algorithm takes this access path as the first element of its
worklist Q in line 1. As long as the worklist is not empty, the algorithm iterates over all statements in the current
method. We will first discuss how assignments are handled (line 12). If the current statement is of the form a =

b.c and the current access path curAP is e.f.g, the algorithm must check whether the points-to sets of b.c (the
assignment’s right side) and e.f (the prefix of the current access path) have a non-empty intersection as shown in
line 13. If this is the case, a new alias has been found which must be added to the taint set. In line 14, the access
path of the newly-found alias is computed by taking the right side of the assignment (b.c in the example) and
appending the remaining fields of the access path that are not covered by the field access (g in the example). In the
example, the new alias b.c.g is added to the worklist. It is not immediately passed to the forward taint analysis,
though. Aliases are only manifested when they are actually accessed in this alias algorithm. The check whether an
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alias is accessed is done in line 15. If the left side of the assignment aliases with the prefix of the current access path
(based on a non-empty intersection of the respective points-to sets as explained above), the forward taint analysis
is triggered. Similar to the case before in which a new alias was discovered, the algorithm adds the remaining fields
to the access path. It then injects this access path into the forward taint propagation as a new taint.

The second possibility for referencing a tainted access path aside from assignments is to use the base object of a
tainted access path in a method invocation, be it as the base object of a virtual method call (line 5 in the algorithm)
of as a parameter (line 8 in the algorithm). In both cases, the alias algorithm derives a new access path with the
respective base object from the method call and the field list from the incoming access path which it passes to the
forward taint analysis (lines 7 and 11). The forward taint analysis then takes care of mapping these access paths
into the context of the callee where the alias analysis is triggered again if necessary (i.e., when the taint analysis
has reached another assignment to a heap object in the callee).

4.8.3 FLOWDROID’s Lazy Aliasing Analysis

Classic alias analysis not only has the issue of not being able to process access paths of arbitrary length, but it also
cannot enumerate all aliases for a given tainted heap object. The analysis user (in our case the taint analysis) must
then provide for a means to simulate this missing feature. Our PtS-based alias analysis described in Section 4.8.2
presents such a simulation. To cope with context switches, it manifests the aliases created inside a method when
returning from that method or when calling another method. This, however, requires scanning the code and for
each statement, checking whether it defines a new alias. Such an approach leads to a high number of alias queries,
and is not the originally-intended use of the alias algorithm. As an alternative model, we also implement a true lazy
alias strategy that never manifests any alias taints before the point at which the respective heap object is actually
accessed. In other words, when a new heap object is tainted, this alias strategy does nothing. When returning from
a method call, it does nothing. When a heap object is accessed, it checks whether the incoming taint aliases with
the current heap access. For this to be possible, all taints must be propagated into all methods, even if the respective
base object is not in scope in the concrete callee at hand. Recall that the lazy alias strategy has no information on
whether the callee (or any of its transitive callees) may access a heap object that aliases with this incoming taint.
It must therefore conservatively assume that every incoming taint might be accessed through an alias and must
retain it.

Consider the example from Listing 27. The taint on a.fld is not in scope in method callee. More precisely:
There is no corresponding access path in the callee, so in the traditional concept of mapping access paths into the
callee’s context when encountering a call sites, this taint would be discarded. However, if this taint is discarded,
there is nothing left to propagate into method callee, and the alias analysis inside callee would not be able to
discover that the field accessed in line 9 actually does alias with tainted data. Therefore, this leak could not be
found. We solve this issue by retaining all taints that cannot be mapped into a callee as-is when using the lazy
alias strategy. In the example, the taint analysis would propagate the taint on a.fld into callee, thereby ignoring
that the base variable of this access path is not in scope inside the callee. When the lazy alias analysis computes
points-to sets, it is irrelevant whether the variable is in scope or not (in fact there is no notion of scope for points-to
sets in Soot). Therefore, it can find out that a.fld and x.fld are aliases for the same runtime object in line 9 and
can correctly report a leak.

1 void main() {

2 A a = new A();

3 A b = a;

4 a.fld = source();

5 callee(b);

6 }

7
8 void callee(A x) {

9 leak(x.fld);

10 }

Listing 27: Lazy Alias Analysis Propagate Everywhere

This strategy of propagating all access paths into all scopes can obviously greatly increase the number of taints
that needs to be propagated through the program under analysis. Note that the traditional mapping leads to a large
reduction of taints. Methods may have many local variables and many tainted access paths in their scope, of which
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1 void main() {

2 Data p = new ..., p2 = new ...

3 taintIt(source(), p);

4 leak(p.f);

5
6 taintIt("public", p2);

7 leak(p2.f);

8 }

9
10 void taintIt(String in, Data out) {

11 x = out;

12 x.f = in;

13 leak(out.f);

14 }

Listing 28: Source Code for Aliasing Example

x = out;

x.f = in;

...
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Figure 8: Taint Graph for Aliasing Example

only a fraction gets passed to callees. With the lazy alias analysis, however, all of them must be propagated to all
callees and all of their callees, etc. all along the whole call tree. Consequently, this strategy is, while technically
sound, infeasible for any realistic program. It merely saves as a baseline for assessing the impact of how bad the
impact of traditional alias analysis can be on static data flow tracking. This strategy is not used in any productive
settings in which FLOWDROID is applied. In our experiments, we find that the analysis runs into timeouts even for
moderately-sized apps. Consequently, applying the lazy aliasing strategy to large real-world apps such as those we
use for our performance evaluation in Section 8 is infeasible 17.

4.8.4 FLOWDROID’s Flow-Sensitive Alias Analysis

To achieve full context sensitivity and alleviate the problems with traditional off-the-shelf alias analyses described
above, we implemented an alias analysis as an IFDS problem. Basing the alias analysis on IFDS allows it to easily
share contexts with the taint propagation which is also implemented as an IFDS problem within the exact same
technical framework. Whenever a heap object is tainted during the forward taint propagation, a backward scan for
aliases is triggered in a second solver. This second solver works on a reversed copy of the interprocedural control
flow graph. If an alias is found during the backward propagation, it is injected into the normal forward propagation
as a new taint. In other words, the alias analysis interacts with the taint propagation by injecting flow edges back
and forth. While this is a very low-level interface, it means that the forward taint propagation need not wait for
alias queries to be answered. It injects the heap taint into the backward solver and continues with its propagation,
completely ignoring any aliases. The backward propagation then runs asynchronously. Each time it has found an
alias, it injects back an edge into the forward solver which can then propagate the alias as a new, independent
taint. This approach exploits the distributivity of IFDS: Instead of computing aliases where they are created, they
are computed independently and joined in later as first-class taints. Not having to wait for the alias analysis during
taint propagation enables FLOWDROID to compute more flow functions in parallel which is especially helpful on
modern many-core processors. Note that flow functions are parallelized through worker threads, each evaluation
of a flow function is a separate task item that can run on an arbitrary CPU core with free capacity.

Consider the example in Listing 28. In Line 3, the method taintIt() is called with a tainted first argument and
the object p as the second argument which becomes out in the callee taintIt(). This method then writes the
tainted data into out.f, and calls the sink method on out.f. This immediately leads to a leak. When returning
to the caller, p.f is tainted as well, leading to the next leak in Line 4. In Line 6, the same method taintIt() is
called again, but with non-tainted data and a different target object this time. A context-sensitive alias analysis like
ours is able to distinguish these two calling contexts, avoiding a false positive in Line 7. Figure 818 shows the IFDS
flow function evaluations for the taintIt() method. The red lines on the left side show the normal forward taint
propagation. Initially, the in parameter is tainted and this taint is copied over to x.f. As this is an assignment to
a heap variable, an edge is injected into the backward alias analysis as shown with the dotted black line. Note the
change of direction, now the arrows run upward instead of downward on the right side of the figure. These edges

17 Because all analyses either timed out or ran out of memory we do not report detailed data here.
18 The figure is taken from our 2014 ICSE paper [9].
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1 void main() {

2 Data p = new ...;

3
4 p2 = p;

5 sink(p2.f);

6
7 p.f = source();

8 sink(p2.f);

9 }

Listing 29: Flow-Sensitivity in Alias Analysis: Source

Figure 9: Flow-Sensitivity in Alias Analysis: Taint
Graph

lead to out.f (red arrows on the right side), discovering the alias. This alias is then injected back into the forward
analysis as a new taint.

Recall that IFDS does not store the individual edges between taint abstractions, but constructs and incrementally
extends path edges. Instead of storing “out.f is tainted if x.f was tainted in the previous line”, it stores “out.f
was tainted if the current method was called with in tainted”. A path edge always connects a flow fact at the start
of the method with a flow fact at the current position. During normal forward taint propagation, this is trivial.
The forward solver entered method taintIt under a specific context (e.g., in tainted) and extends the edge from
there. This is shown by the blue arrow on the left side of Figure 8. When injecting an edge into the backward
solver, it is important to also inject this context into the second solver. Only then, the backward solver can also
extend the right path edge, making the discovered aliases also conditional on the context in which in was tainted.
This is shown with the blue arrow on the right side. In the backward solver, this context originally never existed,
because this solver never entered the taintIt() method. It, therefore, continues with a foreign context it takes
as-is. When a new alias is discovered, it can inject this newly-discovered taint back into the forward solver using
this very context to keep context-sensitivity. In other words, whenever a solver (forward taint solver or backward
alias solver) enters a method, it must inject this context into the other solver as well. This guarantees that when a
solver passes a taint to its peer, this taint is always associated with correct context 19. A trivial alternate solution that
would not inject contexts, but rather link injected edges with the null context as shown with the dotted black line
on the right side would cause a false positive in Line 7, because it would not have any context in which to inject
back the alias on out.f. Consequently, this alias would be injected back with the null context as well, making
the value of the second method parameter unconditionally tainted for all call sites, which would be an imprecise
over-approximation.

After tainting out.f, the backward alias analysis must return into the caller and look for further aliases in main().
For this return edge, it also exploits the injected contexts. The forward solver knows which caller-side contexts lead
to which callee-side contexts at which call sites. This information is shared with the backward solver so that the
latter can reconstruct the correct caller-side context when returning from the callee. It then continues the alias
analysis backward just as in the previous example. Once it reaches a location in which the variable to which the
current taint abstraction refers is overwritten, the analysis stops. On the current path, no aliases can be created
before that statement. Note that no further actions must be taken, because the discovered aliases have already been
injected into the forward taint analysis directly when they were discovered.

Flow-Sensitivity
The IFDS analysis is by design flow-sensitive. The forward taint propagation always associates taints with con-

texts and the statements at which the taint is valid. The same happens within the backward alias analysis. Retaining

19 We would like to thank John Toman from the Programming Languages research group at the University of Maryland for identifying
and fixing a corner case in the context injection as it was implemented in the FLOWDROID open-source project. IFDS uses method
summaries. When a solver already has a summary for a method which the other solver then leaves in a new context, the first solver
must apply its summary to this new context, even if (due to the summary) no actual propagation needs to be done. In other words,
one must be careful with IFDS summaries when injecting contexts.
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flow-sensitivity during the handover between the two distinct IFDS analyses is, however, non-trivial. Consider the
example in Listing 29. In Line 7, the source value is obtained and assigned to a heap object. This triggers a back-
ward alias analysis as shown by the dashed black line at the bottom in Figure 9. The taint is propagated back to
Line 4 where the alias on p2.f is created. Since a new tainted access path has been discovered, the respective taint
is handed back to the forward solver as shown by the upper dashed line in the figure. The taint is then propagated
forward to Line 8 where the leak is correctly reported. However, the handover between backward and forward sol-
ver also leads to a false positive. Note that, to clarify the presentation of this false positive, we left out the forward
edges from the handover onward for the true leak we just explained and do not show path edges either. For the
false positive, it is important to understand that aliases are taints on their own. There is no distinction between an
alias and a taint in the analysis. Therefore, after the handover, the access path p2.f is tainted from Line 4 onward,
and, consequently, a false leak is reported in Line 5.

The problem occurs, because in reality, aliases are not standalone elements. Instead, all aliases of a given heap
object (including what is represented by the original access paths) form an equivalence class that has a common
state. Once one of the aliases is tainted, the heap object is tainted, and thus all of the aliases are tainted. In the
analysis, we, however, have one state per alias, because each alias is represented by its own taint abstraction.
In other words, when the analysis performs the backward propagation, it loses track of the information that the
heap object is not yet tainted. The analysis thus needs a mechanism to only activate the taint abstractions that
represent aliases when passing over the original line that tainted the heap object and for which the alias analysis
was originally started. This would either require a different representation of aliases (one that is not equal to
taint abstractions) or a linking between taint abstractions. Both are not trivial to integrate into the IFDS-based
infrastructure and have drawbacks on their own. Firstly, having a different representation for aliases would prevent
them from re-using the same IFDS problem for forward propagation after the handover has happened. Note that
after a new alias taint has been discovered, it must be propagated forward to see whether additional aliases are
derived from this newly discovered alias. As long as aliases are equal to taints, this can be done by the normal
taint propagation problem. When using a different representation, this logic would have to be duplicated. For
the Boomerang analysis, this is not an issue, because it is a standalone alias analysis and therefore cannot share
abstractions or propagation logic with a client analysis such as FLOWDROID in the first place. Secondly, linking the
base taint abstraction with its aliases would violate the basic IFDS principle of local, point-wise propagation. In
that case, when propagating over a statement, the flow function would not only have to be computed once for the
incoming taint, but additionally once per associated taint, making data flow abstractions buckets rather than facts.
It is unclear how this would work when aliases are injected into the forward solver at earlier statements at which
the original taint was never propagated, such as in the example.

Instead of changing the representation of aliases or linking them with the taints from which they were originally
derived, we therefore chose a simpler solution. Each alias taint can be associated with the statement at which the
alias analysis was started. It becomes a taint on its own, but is inactive. Inactive taints that reach sinks are not coun-
ted as leaks, they are silently propagated onward. Only when the taint is propagated over the statement referenced
in the abstraction (called the activation statement) it is activated can then again cause leaks. Technically, activating
a taint abstraction simply means that the activation statement in the abstraction is reset to null. Afterward, the
taint can cause leaks again as normal. In the example in Listing 29, this means that the taint passed to the backward
solver in Line 7 (the one that goes across the lower dashed line in Figure 9) is inactive. It is associated with Line 7
as its activation statement. This information is kept as-is and propagated as part of the abstraction. When the taint
is handed back to the forward solver (upper dashed line in the figure), the taint is still inactive and therefore, no
spurious leak is reported in Line 5. Only when the taint is passed over Line 7, it becomes active again and can thus
cause the correct leak in Line 8.

Each flow function in the forward solver checks whether it must activate the incoming taint at the current
statement. For normal flow functions, this check is trivial, because it only needs to compare the current statement
with the activation statement stored in the taint abstraction. For the call-to-return flow function, the situation is
more complex, because it skips the callee and all of its transitive callees. It must therefore activate the taint, if the
activation statement stored in the incoming taint abstraction appears in any of the methods of the whole skipped
call tree. Technically, it must iterate over all callees of the current call site, and all of its transitive callees, and
check whether the activation statement is reachable in any of those methods. Since this checks needs to be done
whenever an inactive taint is propagated over a call-to-return edge, a naive implementation can cause a major
negative impact on performance, especially for deep call trees. To mitigate this problem, FLOWDROID maintains a
cache with a mapping from activation statements to the set of call sites at which the respective taints must be
activated when passing over. Note that this mapping is independent from any concrete taint and is only influenced
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1 void onCreate() {

2 Data k = new Data();

3 Container c = new Container();

4 Container d = c;

5 foo(c, k);

6
7 k.f = source();

8 leak(d.data.f);

9 }

10
11 void foo(Container y, Data z) {

12 y.data = z;

13 }

Listing 30: Act. Stmts on Call-To-Return Functions

1 void onCreate() {

2 Data d = new Data();

3 d = id(d);

4 d.f = source();

5
6 Data e = new Data();

7 e = id(e);

8 e.f = source();

9 }

10
11 Object id(Object o) {

12 return o;

13 }

Listing 31: Activation Statements and IFDS Summa-
ries

by the code structure. It is essentially an over-approximation of which statements are reachable from which call
sites.

Computing this mapping for each statement that could potentially become an activation statement would, ho-
wever, be costly. Therefore, FLOWDROID exploits another observation. A alias taint is always propagated over the
backward solver’s IFDS return edge before it can be propagated over a forward call-to-return edge that can activate
it. If the alias is created in a callee, then the data flow must first leave this callee in the alias analysis, before it
has the possibility to arrive at the same call site again (e.g., due to a loop) and be propagated over it in the call-
to-return function. This enables FLOWDROID to populate the mapping of activation units to call sites on demand.
Whenever the backward alias analysis leaves a method, the concrete activation unit in the current taint and the
concrete call site at which the return happens are added to the cache. For a motivation as to why this approach
is correct and does not miss entries in the mapping, consider the example in Listing 30. The tainted value is read
from the source in Line 7 and written into a field k.f. The previously-called method foo() has already created an
aliasing relationship between k and c.data. Since c.data is also aliased with d.data, a leak happens in Line 8.
Note that the backward alias analysis must first finish the analysis of method foo(), and then return into the caller,
before it can find the second alias on d.data. At this time, the alias is still inactive. Only when moving forward
then and passing the call to foo() in Line 5 again, the taint is activated. The analysis can now exploit the cache
entry that was created when leaving the foo() method earlier. In total, activation statements provide a simple and
efficient solution that makes FLOWDROID’s context-sensitive alias strategy fully flow-sensitive as well.

On the downside, storing the activation unit inside the taint abstraction can also drag unwanted dependencies
into the IFDS summaries. Consider the example in Listing 31. Taints are introduced in Lines 4 and 8. In both lines,
the backward alias analysis is triggered, because the value obtained from the source is written into a heap object. In
both cases, the statement right before the source call is a call to the same id() method. In both cases, the context
is a taint on the first and only parameter of the method. Normally, one would expect the IFDS algorithm to analyze
the id() method once, create a summary for it, and then apply this summary when processing the second call.
With activation statements in the taint abstraction, this is, unfortunately, no longer the case. For the first call, the
statement in Line 4 is the activation unit. Therefore, this abstraction is not equal to the abstraction at the second
call that contains the statement in Line 8 as its activation unit. Technically, the two calls happen under different
contexts and the summary generated for one context cannot be reused for the other one. Therefore, we make the
use of activation statements optional and allow the context-sensitive aliasing strategy to be used without them
if enabling them would negatively impact scalability for the current app at hand. Enabling or disabling activation
statements is a trade-off between scalability (processing time and memory consumption) on one hand and precision
on the other hand.

On Aliasing and Distributivity
Though the above IFDS-based alias analysis algorithm described above conveniently fits into FLOWDROID’s archi-

tecture and has proven to be precise in practice, aliasing is not a distributive problem and thus violates one of the
preconditions of IFDS. By nevertheless formulating it as an IFDS problem, we conservatively over-approximate the
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possible aliases of a given access path. One example in which this leads to a false positive is shown in Listing 3220.
We left away the calls to the constructors of the local variables for the sake of brevity, these lines would not contri-
bute any further insight into the problem at hand. In the example, a conditional decides between two possible pairs
of aliasing relationships: Either (1) x and a, y and b are aliased, or (2) x and p, y and, q are aliased. A sensitive
value is assigned to q.b. In the first case (the conditional evaluated to true), there is no alias to q.b. In the second
case (the conditional evaluated to false), y.b must be tainted as well which then leads to x.attr.b being tainted
in Line 13. Since we were in the second branch above (which is mutually exclusive with the first branch), there are
no more aliases that must be tainted. More specifically, one cannot take the taint on x.attr.b and go back to the
first branch of the conditional to derive a taint on a.attr.b in Line 6. There is no run of the program that goes
through both branches of the conditional at the same time. A distributive framework such as IFDS, however, fails to
keep the branches apart. It assumes that after the conditional, one is free to join the information obtained from each
branch and continue with the union (or some other suitable merge result). When FLOWDROID’s context-sensitive
alias analysis processes the assignment in Line 13, it will trigger a new backward propagation for x.attr.b to find
potential aliases. At this point, there is no information that this taint is only valid under the assumption that the
second branch was taken in the conditional, and so FLOWDROID assumes that it is perfectly legal to process the
first branch and join the results into whatever already exists in the taint set. Since this is a conceptual problem
of applying IFDS to aliasing problem, it cannot easily be solved or circumvented. However, such cases are rare in
practice and in our experiments we have not seen any major sources of false positives from this inaccuracy.

1 void onCreate() {

2 A b, q, y;

3 B a, p, x;

4
5 if (Math.random() < 0.5) {

6 x = a;

7 y = b;

8 }

9 else {

10 x = p;

11 y = q;

12 }

13 x.attr = y;

14 q.b = source();

15 leak(a.attr.b);

16 }

Listing 32: False Positive due to Non-Distributivity

4.8.5 Alias Analysis for Implicit Data Flow Analysis

When implicit flow tracking is enabled and a method is only called under a condition that depends on tainted
data, then every assignment to a heap object inside that callee creates a new taint as explained in Section 4.6.
This is because the state of the heap object then transitively depends on the tainted value. Recall that, for instance,
writing a constant value into a field if and only if the user’s password is mySecretPwd yields information about the
password, namely whether it is equal to mySecretPwd or not. In other words, all fields that are written somewhere
in a conditionally-called method are considered to be tainted upon return from that method. Non-heap objects
need not be tainted, because their state is local to the callee and cannot be observed externally (aside from return
values which are handled separately).
For the static data flow analysis, this gives a different view on the role of aliasing. In a traditional eager aliasing
strategy, whenever a heap object is tainted, the alias analysis must find all potential aliases of this heap object and
taint them as well. This leads to one alias query per statement that assigns a value to a heap object. Ideally, one
wants an analysis that is context- and flow-sensitive. In the case of a conditionally-called method, this complexity
is unnecessary. The task is no longer to find the aliases of some access path a, but to enumerate all aliases of all
heap objects written in that method, because all of those heap objects will be tainted.

1 void onCreate() {

2 A a2 = a;

3 a.b.data = ‘‘’’;

4 if (source.equals(‘‘mySecretPwd’’))

5 foo(a);

6 sink(a2.b.data);

7 }

20 The example was originally given by Uday Khedker from IIT Bombay in response to our presentation of FLOWDROID’s IFDS-based alias
analysis and has been adapted for the purpose of this thesis.
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8
9 void foo(A a1) {

10 A a2 = a1;

11 B b = a2.b;

12 b.data = ‘‘Hello World’’;

13 }

Listing 33: Aliasing for Conditionally-Called Methods

Consider the example in Listing 33. The analysis creates an implicit taint when processing the conditional in line 4.
On the method call in line 5, an empty abstraction is passed into the callee foo. The assignments to local variables
inside foo are skipped. Line 12 contains an assignment to a heap object, so the left side of the assignment gets
tainted. Additionally, an alias query for b.data is started. Note that any of the alias analyses could now be used
to resolve the query and find the taint on a1.b.data. With the knowledge that foo was called conditionally,
the analysis can now, however, be faster. The key idea is that aliasing relationships in a method are static and
independent of the concrete query or position in the code at which the query is performed. We can therefore
improve performance by switching to a context- and flow-sensitive alias analysis.
Conceptually, one can therefore use SPARK for analyzing alias realtionships inside conditionally-called methods.
SPARK has already been used to construct the callgraph, and consequently, SPARK’s points-to analysis has also
already been run, because it is integrated into SPARK’s callgraph construction algorithm. On the downside, SPARK
only provides an interface for binary alias queries and is not able to enumerate aliases as discussed earlier. Simula-
ting this missing enumeration feature would lead to an algorithm similar to our PtS-based alias algorithm explained
in Section 4.8.2. For technical reasons, we opted to not re-use the existing PtS-based algorithm, but create a very
simplistic specialized implementation for conditionally-called methods that delivers improved performance. All the
alias relationships are be pre-computed once per method and then cached inside a lookup table. Given such a
lookup table, the alias analysis only needs to perform a fixed point iteration starting with a given initially tainted
access path.

Access Path 1 Access Path 2
a2 a1

b a2.b

Table 1: Aliasing Lookup Table for Method foo

Consider the lookup Table 1. If b.data is tainted and the lookup table states that b aliases with a2.b, then the
taint a2.b.data gets added to the taint set. If a2 aliases with a1 according to the table, the taint a1.b.data gets
added to the set. After that, no more new taints can be generated through table lookups and the alias analysis
terminates. The taint on a1.b.data can then be passed back into the caller onCreate to continue with the normal
taint propagation. In the caller, FLOWDROID will automatically return to one of the other alias analyses to process
further assignments to heap objects since it no longer analyzes a conditionally-called method. The lookup table-
based analysis is never used outside of conditionally-called methods. Further, recall that in FLOWDROID, the alias
analysis is also invoked when returning from methods. In the example, the flow-sensitive alias analysis would, for
instance, be used to then resolve that a.b.data in the caller aliases with a2.b.data which is finally leaked.
Note that this lookup table for aliases is inherently intra-procedural as well as flow- and context-insensitive. It is
therefore possible to pre-compute the table once per method. If a method contains multiple assignments to heap
objects, only the fixed point computation must be re-done per assignment, but not the lookup table construction.
This is a key difference to, e.g., the flow-sensitive alias analysis presented in Section 4.8.4 which needs to perform
a full propagation for every new alias query. Further note that there is no loss in precision or completeness when
switching from the flow-sensitive alias analysis to the lookup table-based analysis in the case of conditionally-called
methods.

4.8.6 Related Work on Alias Analysis

Several researchers have already looked into alias analysis, be it as a standalone problem, or specifically as a tool
for enabling other analyses, including taint tracking. Many analyses have been proposed so far, such as the context-
and flow-insensitive SPARK [84] analysis which is the default in Soot, or Paddle [83], its context-sensitive (but
still flow-insensitive) counterpart. Doop [24] is a direct competitor of Paddle, designed to share exactly the same
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logical points-to definition, and thus precision. Doop is based on Datalog combined with Binary Decision Diagrams
(BDDs), an approach introduced to program analysis by Whaley et al. [143].
All these analyses, however, provide a very simple interface. They check whether two given variables or two given
variable/field pairs alias. As explained above, such an interface is not a good conceptual match for a data flow
tracker such as FLOWDROID for two reasons. Firstly, it does not allow for querying all aliases of a given taint, but
requires the data flow tracker to query all possible combinations. Secondly, it does not support the additional
precision of having an access path with an arbitrary number of field dereferences instead of only a base object
and a single field. De et al. [34] solve the second issue by providing a flow- and context-sensitive alias analysis for
access paths. Notably, their analysis also supports strong updates. On the other hand, their work does not solve the
first issue of enumerating aliases. The pointer analysis implemented in Andromeda by Tripp et al. [135] allows for
such enumeration, but does not provide full flow-sensitivity, as it misses a concept akin to activation statements.
Our flow-sensitive alias analysis presented in Section 4.8.4 provides both compatibility with access paths and alias
enumerations, and is context- and flow-sensitive. Furthermore, it supports strong updates at least on an intra-
procedural level. Additionally, our analysis is, just like Andromeda, demand-driven. Aliases are only computed for
those access paths that are actually tainted. The other approaches above use an ahead-of-time, whole-program
approach. In data flow analysis, only a subset of all possible access paths is ever tainted. Consequently, an ahead-
of-time approach is likely to compute many aliasing relationships that are correct, but irrelevant.
An earlier (though context- and flow-insensitive) approach to on-demand pointer analysis in the classical model
(i.e., not based on access path and not enumerating) was presented by Heintze et al. [63]. Sridharan et al. [127]
formulated the aliasing problem using a context-free language that can be solved on a graph representation. This
approach is field-sensitive through labeling graph nodes, but flow-insensitive. DynSum by Shang et al. [121] uses
summaries to improve the performance when answering multiple points-to queries within the same method. Our
flow-sensitive alias analysis uses IFDS method summaries to store the effects of complete method execution on a
given incoming context for later reference. The analysis by Yan et al. [148] is a pure alias analysis, as opposed
to a full points-to analysis that can link objects to allocation nodes. They formulate the alias problem as a CFL-
reachability problem use summaries for methods with a large number of callers. Boomerang by Späth et al. [126]
was inspired by FLOWDROID’s context-sensitive alias analysis. It improves the analysis further and generalizes it. In
contrast to the work presented here, their algorithm is no longer tightly integrated into the FLOWDROID architecture
using multiple solvers that need to inject context into each other. Instead, they provide a standalone pointer-
analysis framework that, while it provides similar functionality, can be used with arbitrary clients. They even
evaluated Boomerang by replacing FLOWDROID’s context-sensitive alias analysis with their new approach, showing
that it reduces the number of alias queries the data flow analysis must issue by 29.4 times. Still, according to
the measurements in the Boomerang paper, FLOWDROID’s original alias algorithm performs 1.6 times better than
Boomerang with regard to total analysis time.

4.9 Library Call Handling

Programs usually rely on libraries to provide their functionality. The most widely used library is the Java Class
Library (JCL) itself, but other third-party libraries exist as well. These libraries perform tasks such as cryptographic
computations, graphics rendering, or database and file access. If a program creates an ArrayList, adds a element
to it, and reads it back, it already exchanges (potentially sensitive) data with a library. A static data flow analysis
on a Java program is thus incomplete if it does not take calls to library methods into account. In the example with
the ArrayList, the analysis must know that adding a tainted element to the list and reading it back again yields
tainted data. Not modeling the list would make the analysis lose the taint and potentially lead to a missed leak.
As an alternative, a static analysis can also merge the library code with the program under analysis and analyze
both as a single entity. While this approach is conceptually simple, it can negatively affect performance. For many
applications, the size of the library code (such as the complete JCL implementation) greatly exceeds the size
of the application code. As a consequence, the analysis spends more time analyzing the library than the actual
program of interest. Furthermore, this increase in the overall size of the code to be analyzed can also increase
the time and memory consumption of the analysis up to the point of becoming infeasible on common hardware
configurations. Additionally, merging library and application code requires all library code to be present on the
analysis machine which is not necessarily the case if the application was programmed against a stub. The real
library implementation might only be available on certain devices such as the target smartphones or servers. Lastly,
one can observe that libraries are usually only changed infrequently, rending a complete re-analysis of the library
code on every analysis run an unnecessary effort. Therefore, more lightweight models of the library code (in
comparison to full implementations) are required.
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In FLOWDROID, such library models can be integrated through the ITaintPropagationWrapper interface. The basic
idea behind a taint wrapper is to inject fake taints into the call-to-return flow function that jumps over the respective
library call. Even if the library implementation is unavailable (i.e., there is no outgoing call edge from the respective
call sites) or the library method is stubbed out (i.e., simply throws an exception instead of doing any real work
as in the case of Android), the call-to-return-function is still invoked. It can therefore still query the taint wrapper
for information on which outgoing taints shall be created given a certain incoming taint. Abstracting this handling
through an interface allows us as well as other researchers to experiment with different library models. Usually,
there is a tradeoff between the time required to compute the models and the time savings achieved by using the
summaries instead of analyzing the full library implementation. The taint wrapper interface has the following
functions:

• getTaintsForMethod() This method takes a call site and an incoming taint abstraction. It returns all taints
that are valid after the control flow has returned from the library method. Note that this also models kill flow
as it is upon the taint wrapper implementation to decide whether to pass the incoming taint on as part of its
result taint set or not.

• getAliasesForMethod() This method queries the taint wrapper for may-alias relationships inside the library
methods. It takes a call site and an incoming taint. From this information, it computes all access paths
that may alias with the incoming one at the given call site. Note that this method is currently only used in
combination with FLOWDROID’s flow-sensitive alias strategy (see Section 4.8.4).

• isExclusive() Some library models are guaranteed to have complete information about the data flows inside
the respective callee. The wrapper is then called exclusive for these methods. FLOWDROID will not conduct an
own taint analysis inside an exclusive method even if its source code is available. Only the taints returned by
the taint wrapper will be propagated onward over the call site. More technically, the IFDS call flow function
gets deactivated for methods for which the taint wrapper is exclusive. Note that exclusivity also applies to
the alias analysis, not only to the taint analysis.

• supportsCallee() This method takes a method as input and checks whether this taint wrapper has a model
for that method. In that case, even if there is an implementation for the respective method available, no
assumptions about it are made. This is important when applying code optimization techniques prior to the
taint tracking. If the method, for instance, always returns a constant value, the code optimizer may propagate
this value into the caller and remove the call. For a library method, such a code change can, however, break
the semantics of the program. The analyzed method code may, for instance, only be a stub against which the
program is compiled, and not a real implementation. In such a case, the call must be retained in any case
such that the taint wrapper can then simulate the behavior of the real method implementation during the
taint analysis.

Exclusivity is an important concept. When analyzing a Java program, one usually still needs to have the JCL (more
precisely: the JRE’s rt.jar file) on the Soot classpath. Without this file, the analysis would not be able to construct
proper class hierarchies and would miss the declarations of the library methods. When including this file, the
analysis must, however, be able to explicitly not enter those methods for which the taint wrapper can already
provide a complete model. Otherwise, no time would be saved through the model. While Soot is already able
to exclude certain classes, thereby banning the method bodies in that class from being loaded, this exclusion is
too coarse-grained for library models. A taint wrapper must be able to exclude single methods from the analysis,
potentially based on the incoming taint abstraction. This fine-grained control is provided through the exclusivity
check.

4.9.1 Easy Taint Wrapper

FLOWDROID provides a simple default taint wrapper called EasyTaintWrapper. This wrapper is based on a small
number of rules that cover most cases, but are not necessarily precise. With these rules, the easy taint wrapper
emulates the behavior of those static data flow analysis tools [67] that employ hard-coded rules of thumb. The
easy taint wrapper is configured with a file called EasyTaintWrapperSource.txt that defines three different sets:

• Included Prefixes A prefix is usually a package name. The taint wrapper only applies its rules when proces-
sing a call to a method where the name of the callee’s declaring class starts with a registered prefix.
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• Taint Generators This set contains signatures of methods that can create taints. ArrayList.add() can, for
instance, create a taint on the base object (the list) when called with a tainted parameter. Note that interface
methods can also be declared as taint generators. In this case, all classes that implement the respective
interface method are considered to match the taint generator. The same holds for abstract base classes.

• Taint Killers This set contains signatures of methods that kill taints. ArrayList.clear(), for instance, re-
moves the taint from the base object. If there had been a tainted object in the list before, it is now guaranteed
to be gone. Conceptually, a taint killer is a manually-defined unconditional sanitizer.

• Exclusions The method signatures in this list belong to methods to which the easy taint wrapper rules shall
not be applied. This set allows to explicitly exclude methods that would otherwise be captured as their
containing classes or packages are included.

Upon a call to getTaintsForMethod(), these lists are evaluated to compute the taints that are valid when the
control flow returns from a call to a library method. The easy taint wrapper assumes that interactions between
program code and library code is restricted to method calls. In other words, the program can only taint fields inside
a library object by calling a method on that object. Afterwards, it can read that tainted data back by again calling a
method on the object, or by directly reading the field. The latter is possible, because the easy taint wrapper taints
the complete base object including all fields inside it (asterisk appended to access path). The following sequence of
checks and actions is performed for each call to a library method:

1. Include Check If the declaring class of the callee method is not in the set of included prefixes, only the
incoming taint is passed on, i.e., the taint state remains unchanged. The easy taint wrapper also supports an
aggressive mode that disables this check.

2. Kill Check If the signature of the target method is in the kill list, an empty set of taints is returned. This
explicitly refrains from passing on the incoming taint.

3. Exclusion Check If the target method’s signature is in the set of exclusions, only the incoming taint is
returned.

4. Propagation Check If the base object of a method call is tainted and the call site is a definition statement,
the left side of the assignment gets tainted as well. Note that this rule applies to all methods as long as
the include, exclude, and kill checks succeed. In other words, the easy taint wrapper approach does not
specify all methods that exhibit this behavior, but, on the contrary, explicitly excludes those methods that act
differently. The default assumption is that if an object contains tainted data, all method calls on that object
can potentially return this data. Note that this rule does not distinguish between the base object being tainted
and some access path rooted at base object being tainted. In either case, some tainted data is stored inside
the object and assumed to be retrieved by any call on the object.

5. Generation Check The the signature of the target method is in the set of taint generators and one of the call
arguments is tainted, a new taint is generated. If the target method is an instance method, the base object
of the call gets tainted. If the call site is a definition statement, the left side of the assignment gets tainted as
well.

The propagation check rule is very broad. It generates new taints on all calls that are not explicitly excluded. There-
fore, this rule can quickly lead to over-approximation, negatively impacting precision and performance. Therefore,
it is important to properly configure exclusions. Additionally, the easy taint wrapper contains explicit handling code
for the two most common special cases. A call to equals() should never taint the base object, even if the parameter
is tainted. If this method is implemented according to its specifications, it is free of any side effects. The easy taint
wrapper exploits this fact to exclude all calls to equals() regardless of the type in which this method is implemen-
ted, i.e., also for classes that explicitly overwrite this method. Furthermore, we do not consider the return value
of the equals() method as tainted unless implicit flow tracking is enabled. We also implement sepcial handling
for the hashCode() method, because we assume that the sensitive information stored in an object usually cannot
be reconstructed from its hash code. Therefore, even if the base object is tainted, the return value of this method
remains untainted.
The easy taint wrapper also supports a conservative mode. This mode simplifies the generation check rule from
the list above to taint the base object of the call regardless of which method is called. In other words, the every
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call to a method with a tainted parameter taints the base object, not only for those methods in the set of taint
generators, but for all methods. This mode allows for an implementation-agnostic conservative over-approximation
of library behavior. Note that even this mode is incomplete when considering complex dependencies between
multiple objects. Refer to Listing 45 in Section 6.1 for an example in which the easy taint wrapper still cannot
find a leak, even in conservative mode. In short, calling a method on an object can only taint this object with the
easy taint wrupper, but not another object to which the current one holds a reference. For such complex example,
approaches such as STUBDROID (see Section 6) are required.
For most programs and libraries, the easy taint wrapper is sufficient. By using interface methods as taint generators,
a relatively small configuration file is able to cover most of the commonly used Java API methods. The default
configuration file shipped with FLOWDROID contains about 430 lines. On the other hand, this configuration file must
be assembled manually, making completeness guarantees hard to achieve. A fully automated and, additionally,
more precise library model that can be plugged into FLOWDROID’s taint wrapper architecture is provided through
STUBDROID. We will present STUBDROID in Section 6.

4.9.2 Library Detection

Modeling libraries only works under the assumption that a clear distinction between program code and library
code can be efficiently made. For those libraries that are pre-installed on the target device, the distinction is easy.
The respective package and class names are known in advance, and are unlikely to ever change as backward-
compatibility is usually a key requirement for the vendors. Furthermore, the analysis does not find the respective
code inside the program, but on external locations somewhere on the classpath. Some libraries are, however, not
pre-installed on the device, but rather shipped with every program that uses the particular library. Android’s support
library, for instance, emulates some features of newer Android operating systems on devices running older Android
versions to ensure backward-compatbility for programs. Depending on the features an app uses, the corresponding
version of the support library is packaged into the app’s APK file during compilation. Due to this re-packaging, an
analysis cannot distinguish between app code and library code based upon the location from which the class or
method in question was loaded. Libraries can be loaded from additional JAR files on the Soot classpath as well as
from the app package (APK file) itself. Still, in the simple re-packaging case, identifying libraries based on package
and class names is sufficient.
If the app developer, however, runs an obfuscation or optimization tool on his app after compilation, the package
and class names are changed to shorter versions. These do not bear any further semantics such as a.b.abc instead
of android.app.LibraryClass. A library model that expects the original class name will thus fail to recognize the
renamed version of the re-packaged library. Though the library code remains the same, the analysis will act as if
no library model were available for it. Recall that this is only an issue if the library code is compiled into the app.
Therefore, the analysis will not miss any leaks despite the renaming, because it can always analyze the full library
code together with the app. Still, this can greatly increase the size of the code to be analyzed and lead to exactly
those performance issues that the external library models were originally designed to solve. Identifying obfuscated
libraries is an open challenge and orthorgonal to the work presented in this thesis.
Other approaches such as AdSplit [122] propose changes to the Android framework to separate apps from their
libraries and avoid such code mangling. In AdSplit, advertisement libraries (which are common cases of library
use on Android) are run as separate apps inside separate processes. While such changes are hard to make to an
existing framework such as Android, it could also allow for separate sets of permissions for the app and its libraries
which would enhance security. For FLOWDROID, this would allow the app and its libraries to be analyzed as totally
separate entities. This would also help capture the semantics of a library: No matter where a library X is used,
it always exhibits certain behavior on its inputs, such as leaking incoming data to the Internet. STUBDROID (see
Section 6) uses a similar reasoning on the level of methods: A library method behaves identically in terms of data
flow regardless of the program in which it is used21.

4.9.3 Library Stub Generation

FLOWDROID is used as a component in many other research projects. In some of these projects, developers rely
on the callgraph alone. They choose FLOWDROID to take advantage of its Entry Point Creators (see Section 4.15)
so that they do not have to model, e.g., the Android lifecycle on their own. This callgraph is, however, partially
incomplete for library callbacks. Recall that taint wrappers define how data flows are propagated through library

21 See Section 6 for additonal considerations on callbacks, etc.
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methods for which no implementation is available. A taint wrapper, however, does not extend the callgraph. If
there is no implementation for the library method, i.e., no outgoing call edge on a call site that invokes a library
method, the taint wrapper will not add the missing callgraph edge. For the taint analysis, this makes no difference,
as the respective taints are still injected in the call-to-return function due to the external model. For the callgraph-
only external user, it can lead to false negatives. If the developer takes the callgraph created by FLOWDROID and
enumerates the reachable statements, he will, for instance, not find all statements inside custom thread implemen-
tations. The java.lang.Thread class is part of a library (the JCL for Java programs and the Android framework
for Android apps) and usually excluded from the analysis for performance reasons. If the code under analysis calls
Thread.start(), the callgraph generator fails to create outgoing edges for this call, let alone map this call to the
run() method of the custom thread implementation.
As a solution for this challenge, FLOWDROID provides an additional concept besides taint wrappers. Similar to the
mocks proposed in DroidSafe [60], FLOWDROID patches some library classes with mock implementations. Instead of
simply replacing the library with a custom implementation altogether, it dynamically creates the respective code.
That has the advantage that the user is still free to choose whether to run FLOWDROID against a full or partial
implementation of the library or none at all. The tool detects the missing parts and adds mock implementations for
just these parts, essentially leading to a merged library. Obviously, this approach shares the very same issues of the
DroidSafe mocks: Developing the mocks is a major undertaking. Therefore, FLOWDROID only generates mocks for
those cases in which problems with the callgraph have been reported. As of now, these are a handful of methods
from java.lang.Thread and Android’s android.os.Handler class.

4.10 Native Call Handling

Java programs and Android apps can both interact with native, platform-specific code written in unmanaged lan-
guages such as C or C++. The Java VM and Android’s Dalvik VM both support JNI, the Java Native Interface.
The JNI allows a program running inside a Java (or Dalvik) VM to load a native library and call methods inside
this library. The library can also use JNI to access classes, methods, and fields inside the Java or Dalvik code. This
allows the programmer to write arbitrary parts of his program in native code with practically no limitations on the
interactions between both worlds. Programmers mainly use this feature to re-use existing native libraries through
encapsulation. The native crypto libraries present on many operating systems are a good example for such practice.
The Soot compiler framework, however, is not capable of processing native code, neither as source code nor as
binaries. Additionally, it is unclear whether native costructs such as pointer arithmetics can be expressed in the
Jimple intermediate representation without major enhancements to the language itself. Therefore, a tool such as
FLOWDROID which is based on Soot is unable to conduct a data flow analysis on native code.
In general, the same considerations that apply to library methods also apply to native methods, with the only
difference that there is no choice as to whether to analyze them or not. Instead, FLOWDROID must rely on external
data flow models for these methods. According to our prior research [111], only 14.5% of all Android apps use
native code. The number is in line with the findings of other researchers (15% of all apps with less than 50,000
downloads use native code according to Viennot et al. [140]). Especially on Android, the use of native code is
usually centered around computation-intensive operations such as graphics or video rendering. Therefore, native
code is also more prevalent in the big, popular apps that have been heavily engineered and optimized. According
to Viennot et al., 70% of all apps with more than 50 million download make use of at least one native library.
Luckily, these performance-critical operations commonly performed in native code do not typically process sensitive
data. Therefore, excluding (i.e., under-approximating) custom native methods does not affect the results of a data
flow analysis for the average Android app. Still, this leaves an attacker with the possibility to deliberately hide data
flows by transforming data in native code, or simply by calling a native method that contains the full data leak. As
explained above, a native method has full access to the Dalvik part of the app: It can, for instance, call the source
and directly leak the data, which keeps the data flow completely outside the Java/Dalvik part of the code. In this
case, not even consernatively over-approximating the behavior of custom native method would detect the leak.
For the purely Java- or Dalvik-based static data flow tracker, no tainted data is ever passed into the native code
and no data is ever returned from the native code to the Java or Dalvik part. Therefore, combining FLOWDROID

with external approaches for analyzing native code is an interesting area of future work. The models created by
the external tool would then be parsed and applied by FLOWDROID’s native call handler. The ROSE [108] compiler
framework, for instance, contains a static data flow tracker for native code, though this approach cannot work on
binaries. It requires the source code of the native library. Still, even such a white-box approach is helpful when
dealing with common open-source libraries embedded into Android apps. Alternatively, techniques for conducting
a dynamic data flow analysis on JNI code have been proposed in the literature [107].
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1 void test() {

2 String s = source();

3 Object o1 = s;

4 Object o2 = new A();

5 leak(convert(o1));

6 convert(o2);

7 }

8
9 String convert(Object o) {

10 return o.toString();

11 }

Listing 34: Context-Sensitivity Example

1 void test() {

2 A a = source();

3 Object o = a;

4 if (random() < 0.5) {

5 A a2 = (A) o;

6 leak(a2.data);

7 }

8 else {

9 B b2 = (B) o;

10 leak(b2.data);

11 }

12 }

Listing 35: Type Propagation Example

Even without considering custom native code, some native methods are directly contained in the Java / Dalvik
runtime. The most commonly used example is System.arraycopy which copies a range of elements from one array
to another. Without modeling this native method correctly, data leaks can easily be missed even if the developer does
not deliberately hide malicious behavior in native code. As a manual investigation of popular Android apps and Java
programs shows, these system-defined native methods are, however, few. In FLOWDROID’s default implementation
of the native call handler, we therefore opted to include hand-written models for the behavior of these methods.

4.11 The Effect of Data Type Propagation

FLOWDROID invokes its entry point creator (see Section 4.15) to create a dummy main method which serves as the
entry point for callgraph construction. The callgraph construction in itself is done through one of Soot’s built-in
callgraph algorithms, depending on the FLOWDROID configuration. These algorithms include CHA, VTA, RTA, and
SPARK with full precision. All of these callgraph algorithms are context-insensitive. In a number of cases very
common to Java programs and Android apps, this can lead to imprecision as shown in Listing 34. The original data
was of type java.lang.String, but at the call site in Line 10, the variable is only declared as java.lang.Object.
A context-insensitive analysis such as SPARK can only propagate all possible types to this position and merge
them into a single list. Therefore, the call to toString() is assumed to go to at least String.toString() and
A.toString(), because both String and A-typed objects arrive at that call site. If the method A.toString() leaks
its parameter value, this would lead to false positive. The method A.toString() is never called with any tainted
data, but due to the context-insensitive callgraph algorithm, the analysis cannot distinguish that the sensitive data
only goes to String.toString(), and the non-sensitive data only goes to A.toString(). A context-insensitive
analysis cannot distinguish that there are different callee methods at line 10 depending on the calling context and
instead merges all of these contexts, leading to the described false positive.
On possible solution would be to switch to a context-sensitive callgraph algorithm as discussed in Section 4.2.6.
In this section, we discuss an alternative approach that also aims at pruning impossible edges from the callgraph,
but without the high construction-time overhead required for context-sensitive callgraphs. Concretely, FLOWDROID

propagates the types of tainted variables as part of the taint abstraction, more precisely: as part of the access path.
In other words, an access path not only consists of a base object (that is potentially null in the case of static fields)
and an array of fields, but also of a base object type and an array of field types. Note that this information is not
redundant, because the additional type information can be more precise than the statically-declared types of the
base object or fields. In the example in Listing 34, the statically-declared type of variable o2 is java.lang.Object.
The propagated type information, however, stays java.lang.String which is the type of the data returned from
the source, even if there are implicit downcasts in the source code as in Line 3. The propagated type information is
only adapted if there is an explicit cast to more precise type.
This type information can then be used for pruning infeasible callees at call sites. In Line 10, the base object o of
the method call is tainted. The access path of the taint has java.lang.String as its propagated base type. The
callgraph still contains outgoing edges to A.toString() and String.toString() and the IFDS call flow function
is called for both possible callees. FLOWDROID, however, detects that A is not cast-compatible to the propagated type
java.lang.String and therefore kills all taints on the call flow function for callee A.toString(). In other words,
the flow functions prune the over-approximated context-insensitive callgraph according to propagated types. Note
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that the implementation for this pruning is done in the Typing Propagation Rule which is active by default, but can
also be disabled on user request.
Precise type information on access paths further allows FLOWDROID to prune taints on incompatible operations.
Take the example in Listing 35. The call to the source method in Line 2 returns an object of type A. The source is
configured such that a.* is tainted, i.e., not only the object itself, but also all of its fields. The object is then cast
down to java.lang.Object. In Lines 5, and 9, the object is cast back to type A and B respectively. The cast to B

will always fail, because class A is not cast-compatible to class B. Therefore, the sink call in Line 10 can never be
reached. All control flow into this branch of the condition will fail with a ClassCastException. Only the call to
the sink in Line 6 leads to a leak. With the type information in the access path, the Typing Propagation Rule in
FLOWDROID can check every typecast. If the target type of the cast is not cast-compatible with the propagated type
in the access path, the taint along the current control flow path is killed. This avoids a false positive when analyzing
Listing 35. Note that code similar to the one in Listing 35 is common if code deals, e.g., with serialized data. After
deserialization, the declared type is always java.lang.Object and the code must use instanceof checks and
typecasts to retrieve the different data objects.
One limitation to this approach is that precise type information is only available for tainted objects. If the tainted
data is passed through a parameter and the base object itself is not tainted, no propagated type information for
that base object is available. In such a case, FLOWDROID cannot filter the callgraph edges and must assume that
all call targets are possible. Therefore, the type propagation does not increase precision as much as a full context-
sensitive callgraph algorithm would. On the other hand, the type propagation does not induce any overhead into the
callgraph generation. The overhead for checking for spurious callgraph edges or impossible typecasts is negligible.
Therefore, we propose type propagation as an alternative to the classical approach of scaling callgraph precision vs.
callgraph generation performance. We report on the impact that this feature has on the performance of the analysis
and the number of leaks that are detected in Section 8.6.
Recall that IFDS uses method-level summaries to improve the performance as explained in Section 3.4. When
augmenting access paths to contain type information, this, however, decreases the reusability of the IFDS method
summaries. Consider again the example in Listing 34. If the access path does not contain any type information
beyond the declared types, the IFDS solver will create a single summary for method convert(). This summary
maps the data flow fact on the first and only parameter to the data flow fact on the return value. The summary can
then be applied to all call sites of method convert() that pass in a tainted object as the first and only argument.
With types in the access path, a single summary is no longer sufficient. If the method was originally called with
a string argument, the resulting summary is only applicable to other call sites that also pass in a string. If a call
site passes in some other object, the incoming taint abstraction is not equal to the abstraction for string and the
summary is thus not applicable, requiring the IFDS solver to re-analyze the method. In cases in which the behavior
of the method is independent of the incoming data types, splitting the summaries according to types induces
extra computational cost. This leads to a tradeoff between the savings of not having to analyze spurious callees
as explained above, and the extra cost of not being able to apply certain summaries. Note that simply ignoring
type information when applying summaries is unsound. As explained above, when analyzing a method body, the
type information is used to kill taints at impossible type conversions. In the code in Listing 36 this leads to two
semantically different summaries based on the input type. Only if the argument (which is declared as class Foo) is
of type Bar, the result is tainted as well. If the argument is of a type that is not compatible with Bar, the return
value is not tainted. A single, type-agnostic summary could not capture this behavior. Therefore, there is no simple
solution to the tradeoff between more summaries and increased call target precision presented above. This issue
is related to storing the activation statement in the taint abstraction to ensure that FLOWDROID’s context-sensitive
aliasing algorithm is flow-sensitive as well as described in Section 4.8.4.

1 String typeDependent(Foo o) {

2 if (o instanceof Bar)

3 return o.toString();

4 else
5 return null;
6 }

Listing 36: Type-Dependent Method Summaries
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4.12 The FastSolver: An Optimized IFDS Solver

Since FlowDroid propagates millions of taint abstractions for average-sized Java programs or Android apps, the
performance of the core IFDS solver is very important. This solver must only require a minimal amount of time and
memory per propagated flow fact. Originally, FLOWDROID was built on the generic Heros [23] IFDS/IDE solver. For
large problems, this solver, however, proved to be inefficient. Additionally, by relying on Heros, the possibilities for
problem-specific enhancements to the solver were limited as Heros is a general-purpose solver library. Therefore,
we opted to derive our own solver, called FastSolver. While FastSolver is a drop-in replacement for Heros to allow
for A/B-testing our new solver against Heros, it is limited to analysis problems that share some characteristics with
FlowDroid. The design of FastSolver is based on the following observations:

1. FlowDroid is only based on IFDS, not IDE.

2. FlowDroid never needs access to the graph of IFDS abstractions after they have been propagated. There is
never a query such as “give me the computed abstractions at statement n for context d1.” Leaks are directly
detected and recorded while evaluating the flow functions.

3. Flow functions can be complex. Their outputs are semantically correct, but not always minimal or optimally
efficient.

The remainder of this section explains optimizations we derived from these observations that reduce the memory
consumption and improve the performance of the FastSolver in comparison to Heros.

4.12.1 IFDS vs. IDE Solving

Internally, Heros is not a native IFDS solver, but a solver for the more general IDE [120] problem. It provides IFDS
support by encapsulating IFDS problems as a special case of IDE. While this is conceptually valid and produces
sound results, it makes use of an engine that is not tailored to the specific problem at hand. The IDE engine
must keep state and perform computations to provide for features that are never used if only IFDS problems are
considered. We therefore designed FastSolver as a native (i.e., non IDE-based) IFDS solver.
IFDS is a fixed point algorithm on the exploded supergraph. Whenever a new taint abstraction is generated, the
solver needs to check whether this abstraction has already been seen for this context at this statement. If not, the
taint abstraction is new and needs to be propagated to all of its successors in the interprocedural control flow
graph. On the other hand, if it has already been seen, the taint propagation has reached a local fixed point and
this taint abstraction does not need to be propagated onwards. Fomally, this means that for every pair of context
and statement 〈d1, n〉, a set of data flow facts d2 ⊂ D needs to be stored. Technically, this can be represented
using a set of fact tuples Fifds ∈ P(〈d1, n, d2〉). There is only one performance-critical operation that this set Fifds
needs to support which is containment check and union for detecting the fixed point (see observation 2). In the
implementation, this corresponds to the add operation of a hashset. This operation is executed once for every newly
created taint abstraction.
For IDE, the data storage is more complex. One additionally needs to store a set of edge functions for each context,
statement, and data flow fact. Therefore, one needs to store a set of function tuples Fide ∈ P(〈d1, n, d2, g〉). When
emulating IFDS using an IDE solver, the function g is always the identity function. Therefore, this additional
element in the tuple is wasted. Given that it needs to be stored for every combination of context, statement, and
data flow fact, this is a considerable memory waste. Additionally, at the scale of millions of abstractions (and thus
tuples Fifds or Fide), the performance penalty for maintaining the data structures that hold the tuples (e.g., growing
a hash set) is notable. Therefore, storing as few elements as possible is vital.
Additionally, IDE contains a second phase which evaluates these functions g on the graph obtained from the initial
propagation of data flow facts. The edges of this graph would be, in the notation from above, e ∈ P(〈d1, d2) for
every statement n. To be able to evaluate these functions, one needs to traverse the taint propagation graph. With a
plain set representation Fide, this is not efficiently possible. Therefore, additional lookup maps are required. In the
Heros implementation, Fide is actually represented by three different maps which, in turn, again contain maps to
provide the three levels of indirection that arise when allowing queries on Fide. For data flow tracking, this phase
is not necessary. Recall that the functions g are always the identity function. By tailoring the solver at IFDS and
dropping the IDE support, these lookup maps are no longer required, and can be replaced by one flat set. This cuts
the overhead memory usage (maps, map entries, etc.) spent on storing the taint abstractions by about one third.
As explained above, it also greatly reduces the time spent on managing data structures.
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4.12.2 Flow Function Efficiency

Additionally, the FastSolver supports a memory manager. The memory manager is an interface that allows clients
of the solver such as FLOWDROID to specify additional operations that are applied to new data flow facts before they
are propagated onwards. In other words, the abstractions returned by the flow functions are passed to a central
component that can modify or drop them before they are actually propagated by the IFDS engine. The memory
manager feature is a consequence of observation 3 from above. It enables flow functions to focus on semantics,
rather than performance details. In the following, we describe some of the concrete actions the FLOWDROID memory
manager takes.

Access Path Pooling
The FLOWDROID memory manager caches access paths. Recall that FLOWDROID is a flow-sensitive data flow analysis
tool, i.e., must store the taint state per statement. If a certain access path is tainted at one statement, it is, however,
likely that the same access path is also tainted at other statements in the same method. The access path cache
allows to re-use the same object in this case, reducing the memory footprint of the analysis. Note that we only cache
access paths, not full taint abstractions. When combining access paths with the additional information introduced
by e.g., the alias analysis (activation statement) or the path reconstructor (links to predecessors and neighbors, see
Section 4.13), the performance improvements gained through the cache are smaller than the additional overhead
introduced through the cache management.

Abstraction Stripping
The flow functions always record the current statement when creating a new taint abstraction. The allows to later
reconstruct the taint propagation path. If path reconstruction is not enabled, the memory manager removes this
information before propagating the abstraction onward. This simplifies the abstractions without adding further
complexity to the flow functions.

Abstraction Path Compression
As explained in Section 4.14, the taint abstractions do not directly reference the source from which they were
originally derived. Instead, they point to their respective predecessor to construct a taint propagation graph. To keep
the flow functions simple, every change to a taint abstraction is modeled as constructing a new taint abstraction
with the changed data item. This new abstraction then points to the original one as its predecessor. Keeping taint
abstraction objects immutable and allowing only to derive new ones from them makes sure that we can store the
abstractions in sets without changing the hash code of an object after it has been put into the set. On the downside,
this means that every single change to a taint abstraction creates a new object and increases the length of the
current path through the taint graph. To resolve this issue, the memory manager compresses predecessors: If a
taint abstraction a1 was the input to a flow function and abstraction a2 was its output, the predecessor of a2 is
forced to be a, skipping over all the intermediaries. Since these intermediaries are no longer referenced anywhere
in the taint graph and have never been propagated on their own (recall that we dealing with the output of a
single flow function application), they will be garbage collected by the JVM. This results in a reduced memory
consumption as well as smaller taint graphs.
When the user is not interested in the full propagation path, but only wants to retrieve the source-to-sink connecti-
ons, the taint graph can be compressed even more. In this case, the abstractions inside callees are not interesting,
only the outcome of the method call is of interest to continue with the taint propagation. Consequently, when
returning from a method, the memory manager sets the predecessor of the abstraction at the return site to be the
incoming taint at the call site. This simulates that the callee is an atomic operation on the taint. When the taint
finally reaches a sink, the backwards search then has to process fewer nodes before it finds the source, speeding up
the process.
The memory manager also checks whether the new predecessor is the same object as the current abstraction. This
can happen if a flow function just passes on the current abstraction without changing anything. Especially in the
case of method invocations, the reduction can also yield such a case: The intermediaries might have been different,
but in total, the method might be an identity function. The memory manager then passes on the original object,
leaving not even a single distinct abstraction for the method call.

Semantic Validation
The memory manager is also a good central place for performing basic sanity checks on the generated abstractions.
While walking up the predecessor chain of an abstraction, one should, for instance, never run into a loop. If a
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loop occurs, this means that a taint is transitively dependent on itself which does not add any useful information
to the overall taint analysis problem. In FLOWDROID’s memory manager, we detect such cases and report them
to the log file. In most cases, loops are caused by bugs in the implementation of the flow functions or a custom
implementation of one of the many interfaces (taint wrapper, native call handler, etc.)

4.12.3 Memory Thresholding

Since the IFDS solver performs a fixed point iteration on the exploded supergraph, the set of function tuples
Fifds ∈ P(〈d1, n, d2〉) is constantly growing. The solver must keep references to all these combinations of context,
statement, and data flow fact, to properly detect when a fixed point has been reached. Not storing one entry could
mean that, if there is a loop on the respective statement, the same fact is computed over and over again and the
analysis does not terminate, because it simply cannot detect that the outcome of the respective flow function is
not new, but has already been processed. On the other hand, keeping references to these tuples means that the
respective taint abstractions d1 and d2 can never be garbage-collected by the Java Virtual Machine (JVM) at any
time during the analysis. This in turn steadily increases the memory consumption of the analysis over time.
As long as enough free heap space is available, this is not an issue. Once the JVM starts to run out of heap
space, it will perform more aggressive garbage collection and try to find and clean up objects that are no longer
referenced. Note that there are, as in any other Java program, many intermediate objects that do not have “eternal”
references to them. In some situations, the analysis can, however, not realistically find enough memory to store
all the different taint abstractions. Assume that the program under analysis is very large and complex (i.e., passes
tainted data through many different objects), and that a long maximum access path length has been configured.
In this case, there are more different tainted access paths than what can fit into memory on most machines.
Consequently, the analysis will at some point exhaust its available heap space. With the default configuration, the
JVM will, however, not directly abort the process. Instead, for every newly allocated object, it will try to free up just
enough space to fit this new object. Therefore, every new allocation suffers from a garbage collection overhead that
greatly exceeds the time required for an allocation under normal (i.e., non-memory-pressured) circumstances. This
factor is called the garbage collector’s overhead, or GC overhead for short. The JVM will only abort when the GC
overhead has reached a limit that makes it unlikely to be able to allocate even smaller objects anymore. In total, a
FLOWDROID analysis will appear “stuck” to the user, while in fact, it is mainly spending most of its time on garbage
collection instead of on actually processing the data flow analysis.
From a user’s point of view, this behavior is undesirable. One solution would be to decrease the GC overhead limit
using the respective JVM parameter. This will, however, make the JVM terminate the analysis process and no results
will be available to the user. If such a termination happens, a Java program has no possibility of saving its results or
state (let alone that it would not have any free memory left to conduct any such operations). Therefore, we have
extended FLOWDROID with a Memory Thresholding mechanism. This mechanism uses the memory management
beans available in the JVM to be notified when the percentage of free heap space left in the JVM drops below
a certain threshold. If this happens, the IFDS solver is instantly aborted by converting all flow functions into kill
functions. Afterwards, the global set of function tuples is set to null, allowing it to be garbage-collected together
with all taint abstractions that are not referenced by any other object. This frees enough memory to allow for
building taint propagation paths on the already-discovered results as explained in Section 4.13. Note that all
abstractions that reach a sink are stored in a different set, so they and their respective predecessor chains are still
available, even when the global set of function tuples is garbage-collected. This mechanism allows FLOWDROID to
supply the user at least with a subset of the results, even though the complete analysis could not be finished.
From the technical side, it is important to note that this approach, while effective in practice, is a race condition by
design. When the threshold warning is triggered, the solver’s executor threads, which compute the flow functions
and propagate the data flow abstractions onward, are still active and execute concurrently. In other words, while
the memory warning is processed and the flags to stop the IFDS solvers are being set, more memory is being
allocated. In the worst case, if processing the warning takes longer than using up the remaining heap space, an
OutOfMemoryException may be thrown before the corrective measures are applied22. To counter this problem, the
threshold must be set low enough so that enough memory is still available for the intermediate processing. Setting
the threshold too low, on the other hand, leads to the warning being triggered too early, while enough memory to
continue and maybe even finish the analysis is still available. In practice, setting the threshold to 90% of the total
JVM heap size seems to be a reasonable tradeoff.

22 In practice, the risk is more that the analysis gets “stuck” in excessive GC cycles, but the effect of rendering the thresholding ineffective
is the same.
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4.12.4 Flow-Insensitive Solver Variant

When conducting a flow-sensitive IFDS analysis, the solver needs to store each data flow abstraction at each
statement at which it holds. On this mapping, the solver can check whether it has reached a fixed point. If a flow
function computes a fact at a statement for which a fact equal to the new one has already been registered, the
new fact is discarded. At some point, no previously-unseen facts are generated anymore and the solver terminates.
Maintaining this list of tuples Fifds ∈ P(〈d1, n, d2〉) (recall that the context d1 under which the data flow fact holds
must also be stored) can lead to memory exhaustion, becuse it requires many objects to be kept in memory for
the full runtime of the solver. One possibility to simplify (and thus reduce the size of) this set of tuples is to
eliminate elements. FLOWDROID therefore supports a flow-insensitive, but context-sensitive variant of the solver.
In this implementation, the tuple stores the method m containing the statement n, but not the statement n itself.
Semantically, data flow facts hold for complete methods in this solver variant instead of for individual statements
inside the method.
This also changes the semantics of taint propagation. Normally, when a new flow fact is generated in IFDS, this
flow fact is then used as the input of the flow functions associated with all successors of the current statement. In
other words, taints are propagated over the edges of the control-flow graph. In the flow-insensitive variant, a flow
fact always holds for the entire method. Therefore, the flow functions associated with all statements in the current
method must be evaluated on the new flow fact. Each fact generated for any of the statements in the method then
again holds for the whole method and is again used as an input to all flow functions for all statements until a fixed
point has been reached. This technique is obviously flow-insensitive. It reduces the size of each tuple Fifds by one
third. On the other hand, it can never kill taints inside a method, because there is no semantic for defining a state
before and after the kill. This may lead to additional, unnecessary taints to be propagated, which can decrease
performance. Secondly, there is no notion of reachability inside a method. Normally, flow functions only need to be
evaluated for a certain flow fact if the statement with which the flow-function is associated is reachable from the
statement that originally introduced the data flow fact. This constraint is no longer valid when applying flow facts
to whole methods, which can, again, decrease performance. In summary, the performance tradeoff is only positive
if evaluating a flow function is cheap, but storing copies of data flow facts is not. We evaluate the impact of using
a flow-insensitive data flow solver on performance and memory consumption in Section 8.8.

4.13 Building Taint Propagation Paths

The description of the FLOWDROID static data flow tracker has so far focused on propagating taint abstractions
through the target program. Once a taint has reached a sink, a leak must be reported, including the original source
of the tainted data and the sink where the leak was detected. Optionally, users must be able to also retrieve the
taint propagation path, i.e., the sequence of statements over which the taint was propagated between source and
sink. A trivial approach would propagate the source information as part of the taint abstraction. This allows the
analysis to trivially extract the source at any time during the taint propagation, not only at the sink.
The drawback of this simplistic approach is, however, that taints from two different sources can never be merged
during the taint propagation. Consider the example in Listing 10(a). The data stored in the variables data1 and
data2 is obtained from two different sources and then flows into the same method id() which is essentially an
identity function. Then, the two strings are concatenated and leaked. If the source statement is part of the taint
abstraction, the id() method is called in two different contexts. Therefore, it must be analyzed twice, though the
effect of the id() method on the tainted data passed in as a parameter does not depend on the source. Conceptually,
this context splitting based on the source is unnecessary. Note that this additional analysis can severely negatively
affect the performance of the overall taint analysis. Not only the callee, but the whole call tree rooted at it must be
analyzed multiple times. Without the artificial splitting, this whole tree would only be analyzed once. Afterwards,
an IFDS method summary for the callee would be available which can then be applied when processing the next
call to that callee.
To solve this issue, we propose not storing the source information in the taint abstraction. The core idea is to
make taint abstractions (and thus method call contexts which are modeled through incoming taint abstractions)
indepedent of all information that is not required for the actual taint propagation. This maximizes the re-usability
of the IFDS method summaries. Still, when a taint abstraction reaches a sink statement, the analysis must be
able to recover the original source information. One approach that achieves both goals would be to switch from an
IFDS analysis to one formulated in the more general and more expressive IDE framework. In the first IDE phase, the
analysis could then leave the taint source out of the individual taint abstraction and generate a source-agnostic taint
propagation graph. Over this graph, it could afterwards then propagate the concrete source information during the
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1 String id(String data) {

2 String x = data;

3 String y = x;

4 return y;

5 }

6
7 void onCreate() {

8 String data1 = source1();

9 String s1 = id(data1);

10
11 String data2 = source2();

12 String s2 = id(data2);

13
14 String leakData = s1 + s2;

15 sink(leakData);

16 }

(a) Path Reconstruction Example

data1 = source1();

s1 = id(data1);

data2 = source2();

s2 = id(data2);

leakData = s1 + s2;

sink(leakData)

x = data;

y = x;

return y;

data1

data2

leakData

s1

s2
s1

s1

x

y

(b) Taint Graph for Example

Figure 10: Path Reconstruction - Example as Code and Taint Graph

second phase of IDE. The main drawback of this approach is that it is incompatible with the optimization discussed
in Sectionr̃efsec:FlowDroid:fastSolver. These optimization are are mainly based on leaving away the additional
lookup tables for jump functions that one has to maintain when running a full IDE solver. Additionally, building
FLOWDROID on an IDE solver would always lead to this overhead and would not leave room for configurable
tradeoffs between performance and precision such as the ones we present later in this section using our different
path builders.
Instead, we propose to keep IFDS as the underlying framework, and chain each taint abstraction to its predecessor.
This technique implicitly builds a graph from the current abstraction upward to the source, an approach inspired
by the work of Lerch et al. on FlowTwist [82]. Let us for now assume that the control flow is strictly linear without
any join points. Only the taint abstraction at the source statement contains information about the source. All
abstractions derived from it only point to their respective predecessor. Two abstractions a1 and a2 are equal if they
model a taint on the same value, regardless of their predecessor. In the example in Listing 10(a), this means that
incoming abstraction for the call at line 9 (i.e., the calling context) is equal to the incoming abstraction for the
second call to the id() method at line 12. Therefore, the IFDS summary generated on the first call can be re-used
on the second call.
For handling join points, having one single predecessor for each taint abstraction is not sufficient. In line 14 in the
example, two tainted values are concatenated. The result is a combined taint on variable leakData. This new taint
would normally have two predecessors. Recall that taint propagation in IFDS is point-wise. When the taint on s1

arrives at line 14, the taint on leakData is first created. When the taint on s2 arrives, the flow function again
creates a taint on leakData. When attempting to propagate this second taint onwards, the IFDS solver, however,
detects that an equal taint on leakData already exists. Therefore, the second taint on leakData is not propagated
onwards which is again a saving in comparison to propagating independent taints for every source. Instead, the
second instance of the taint on leakData is registered as a neighbor of the first taint on that variable. More generally,
each taint has a link to its predecessor plus a (possibly empty) set of neighbors. A neighbor is an equal node (i.e.,
taints the same value) with a different predecessor.
Let a taint abstraction be defined by a tuple of tainted value, predecessor, and neighbor set: a = 〈v , p, n〉 ∈ A with
p ∈ A, n ⊆ A. The result of the taint propagation is a directed taint graph G = 〈N , E〉, N ⊆ A, E ⊆ A× A. The nodes
n ∈ A of the graph are the taint abstractions generated by the flow functions. The edges e = {n, m} ∈ E describe
predecessor relationships. Formally, n, m ∈ E ⇐⇒ n = pred(m) ∨ (∃o ∈ E : o ∈ nb(m) ∧ n = pred(o)). Note
that there is not only an edge from n to m if n is the predecessor of m, but also if m has a neighbor that has n as a
predecessor. Abstractions at source statements do not have predecessors and thus no incoming edges in the graph
either. Figure 10(b) shows the taint graph of the example code from Listing 10(a). Call edges are printed in red,
return edges are printed in blue to improve legibility. Since the taint graph edges are constructed from predecessor
relationships, the edges point in the inverse direction of the original taint propagation (“backwards”). Note that in
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the taint graph, there are no more method boundaries. Since every abstraction optionally stores the statement at
which it was created, one can reconstruct this information if needed, though.
After the taint propagation has finished, FLOWDROID collects those taint abstractions that have arrived at sink
statements. From these abstractions, FLOWDROID must then traverse the graph backwards to find the respective
source nodes, i.e., the head nodes of the graph from which there is a path to the detected sink abstraction. For this
traversal, FLOWDROID provides an interface IAbstractionPathBuilder through which various search strategies can
be integrated into the tool. In the remainder of this Section, we describe different path reconstruction algorithms
and the tradeoffs between them.
Note that the path reconstruction (i.e., the traversal through the taint propagation graph) can only be conducted
after all taint propagation is complete, and not directly when a single abstraction arrives at a sink statement. In
the latter case, more neighbors might be added along the path between source and sink later on, that must also be
taken into account to obtain a full list sources that can influence the current sink23.

4.13.1 Path Builder Interface

The path builder implementation is given a set of pairs 〈a, s〉, a ∈ A where s is a sink statement and a is an
abstraction that has arrived at that sink statement. The goal of path builder is to identify the set of sources from
which, according to the taint propagation graph, the taint a could have originated. Optionally, a path builder can
also support enumerating the path between source and sink. In this case, it also outputs the list of statements that
processed the sensitive data before it reached the sink. A path builder is usually required to be sound, i.e., to never
miss a possible source for a given sink. Depending on the concrete implementation, the set of sources for a given
sink can, however, be a conservative over-approximation.
In the taint propagation graph, there may be more than one path between a given source and a given sink. When
only finding sources (and not enumerating propagation paths), this can be ignored. Reporting the same source-
to-sink connection multiple times does not add any additional value to the output for the human analyst. When
enumerating the propagation paths as well, the question becomes, however, more complex. Reporting all possible
paths between source and sink can lead to an exponential number of paths. If there are n branching statements in
the relevant portions of the target program’s code, the total number of possible taint propagation paths is in O(2n).
Enumerating all of them is a prohibitive computational effort and floods the human analyst with an unusable
number of reports. Therefore, we chose to not make this full enumeration the default in FLOWDROID, though it
can be explicitly enabled if needed. By default, if the user choses to enumerate paths, the tool only enumerates
a single witness, i.e., one path between source and sink. This witness is selected randomly (more precisely: the
tool aborts after the first path for a given pair of source and sink is found, whichever it is). This witness usually
gives the analyst a good impression of the data flow for further manual investigation without overloading him or
his machine. Still, it has one important drawback: If the human analyst looks at the witness to check whether a
reported leak is a false positive or not, he cannot generalize his finding beyond the current witness. Marking the
current witness as a false positive does not necessarily mean that there is no correct propagation path between the
current source and sink. In other words, even if the witness is wrong, the leak as such might be correct. In practice,
we, however, find that if the witness is a false positive, the other paths are usually similar and the complete leak
can be ignored. We also exploit this observation in our work on Tasman [12] in which we use constraint solving on
the FLOWDROID results in order to prune false positives.
To support the path builders, all abstractions store the statements at which they were derived. If a new taint
on variable str is derived at a statement str = x;, this statement will be associated with the taint. Without
this information, no taint propagation path could be reported. Additionally, to allow for context-sensitive path
builders, we also store the corresponding call site for each abstraction derived at a return site. Note that the
current statement and the corresponding call site do not influence the equality relation of taint abstractions. This
is similar to the predecessor link which is ignored in equality checks as well.

4.13.2 Context-Insensitive Source Finder

The goal of the context-insensitive source finder (CISF) is to quickly over-approximate the set of possible sources
connected to a given sink. It does not support reconstructing taint propagation paths. The algorithm starts at the
abstraction that has reached the sink and conducts a backwards breadth-first search. Every visited taint abstraction

23 Incremental path building is in fact possible with additional bookkeeping. The analysis must keep a set of taint abstractions for which
new neighbors have been added, after the respective abstraction has already been traversed in path reconstruction. For these new
neighbors, the path reconstruction must then be triggered again.
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Algorithm 2 Context-Insensitive Path Builder (CIPB) Algorithm

Require: Tainted access path ap at sink s
Ensure: Set of paths ps from source to sink

1: ap.paths =← {Pathempt y}
2: ps← ;
3: Q← [ a ]
4: while Q 6= empty do
5: curAbs← Q.pop()
6: if curAbs.pred = null then
7: ps← ps ∪ curAbs.paths{We have arrived at a source}
8: else
9: for each Path p ∈ curAbs.paths do

10: curAbs.predecessor.paths p← curAbs.predecessor.paths ∪ { p.extend(curAbs) }
11: Q.push(curAbs.predecessor)
12: for each Abstraction nb ∈ curAbs.neighbors do
13: for each Path p ∈ nb.paths do
14: nb.paths p← curAbs.predecessor.paths ∪ { p.extend(nb) }
15: Q.push(nb)

is marked as visited to avoid infinite loops. It is important to note that this path builder is multi-threaded, i.e., the
searches for all sink abstractions are conducted in parallel. Keeping a set of already-visited abstractions per thread
(or, more precisely: per search task) would lead to a substantial memory consumption. Instead, the abstraction
objects have a field that is null during taint propagation and that gets filled with a bitset during path reconstruction.
Every search task has a unique numeric id. When it reaches an abstraction, it checks whether the respective bit for
this id is already set. If so, the task ignores the abstraction as it has already been processed. Otherwise, it looks at
the abstraction’s predecessors.
Note that, if multiple consecutive path reconstructions are to be performed, these bitsets must be reset. Otherwise,
a new reconstruction task might arrive at a taint abstraction that is already flagged with the current id. Since the
path reconstruction stores its state in the taint abstractions themselves, the reconstruction job actually alters the
taint graph. During the development of FLOWDROID, we accepted this non-intuitive design in favor of increased
performance and reduced memory consumption.

4.13.3 Context-Insensitive Path Builder

The context-insensitive path builder (CIPB) is conceptually similar to the context-insensitive source finder. The key
difference is that the CIPB also reconstructs the taint propagation path between source and sink. Consequently,
the method of detecting loops on in the taint path is also different. In addition to the bitset, the taint abstraction
objects also have a field for a set of taint paths. During taint propagation, this field is set to null, similar to the bitset
for the CISF. When the path reconstruction is initialized, an empty path object is added to the sink abstractions.
Afterwards, a breadth-first backwards search on the taint graph is performed. Whenever the path reconstruction
processes an abstraction, it takes all existing paths in the current abstraction and adds the abstraction’s predecessor
to them. These new paths are then added to the predecessor’s set of paths. If at least one path was added, the
predecessor is scheduled for processing. The path reconstruction terminates if no new paths are created anymore,
i.e., all predecessors have reached a fixed point on their path set. Note that the paths are made of abstractions, not
statements. This makes sure to retain the maximum information as the statements are stored inside the abstractions.
Algorithm 2 shows the path reconstruction in detail. It takes a taint abstraction ap that has arrived at a sink
statement s. First, it associates this incoming abstraction ap with a set of taint paths that only contains the empty
path in line 1. This path will then gradually be extended when walking up the predecessor chain. When this walk
arrives at a source (i.e., an abstraction that has no more predecessors, see line 6), it will store the final propagation
paths in the set ps as shown in line 7. For abstractions that are not sources, the path reconstruction must extend all
paths of the current abstraction with the predecessor to build the path upwards one more step as shown in lines 9
and 10. A similar processing happens for all neighbors of the current abstraction as shown in lines 12 to 14.
If the target program contains loops, the taint graph can be circular. Therefore, the graph encodes an infinite
number of data flow paths through the program. While picking only a single witness solves this issue, one also
needs to consider that an individual path can also grow infinitely long. Keep in mind that reconstructing paths
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1 String id(String data) {

2 String x = data;

3 String y = x;

4 return y;

5 }

6
7 void onCreate() {

8 String data1 = source1();

9 String s1 = id(data1);

10 sink1(s1);

11
12 String data2 = source2();

13 String s2 = id(data2);

14 sink2(s1);

15 }

(a) Path Reconstruction Example

data1 = source1();

s1 = id(data1);

sink1(s1);

data2 = source2();

s2 = id(data2);

sink2(s2);

x = data;

y = x;

return y;

data1

data2

s1

s2

s1

s1

x

y

(b) Taint Graph for Example

Figure 11: Path Reconstruction - Example as Code and Taint Graph

in the taint graph is an inherently path-sensitive problem and can be thought of as “unrolling the graph”. The
analysis has no upper bound on the number of times a circular subgraph (which commonly corresponds to a loop
or recursion in the client program24) needs to be traversed. We therefoere artifically set such an upper bound and
only unroll loops once. Whenever the path reconstruction algorithm detects that the current abstraction has already
been added to the path, it does not extend the taint path anymore and aborts the graph traversal on this path in the
graph. In the algorithm, this is implemented inside the extend() method. It checks whether the current abstraction
with which the path is to be extended is already on the path. If so, the unmodified existing path is returned. We
introduce an additional check not to push the predecessor or neighbor onto the worklist if it did not contribute any
new paths.
Note that path building is always optional. Users can also select to only find the source-to-sink connections without
enumerating the abstractions in between. In this case, the path that gets propagated by the ICPB only contains the
latest abstraction. All previous abstractions are discarded. Infinitely growing paths are impossible in this case as
the path length is always 1. Therefore, no special checking or limiting is required.

4.13.4 Context-Sensitive Path Builder

The context-sensitive path builder (CSPB) is similar to the context-insensitive path builder (CIPB) in its general
algorithm. Recall that path reconstruction is done backwards (i.e., in the opposite direction of the original taint
propagation), starting at the sink statement. It will thus also traverse methods in the inverse direction, i.e., from exit
node to start node. When the algorithm arrives at a method call, it must find the corresponding call sides to continue
the path traversal inside the correct caller. Otherwise, context-sensitivity would be lost. In Listing 11(a), the id

function is called twice. Only the data from source1() is passed to sink1 and only the data from source2() is
passed to sink2. Without being able to identify the correct call site, the path reconstruction algorithm would merge
these flows when returning backwards from the id() method, leading to false positives: a flow from source1() to
sink2 and a flow from source2() to sink1.
The abstraction at the start node, however, has a predecessor and usually several neighbors, one per call site. In the
taint graph in Figure 11(b), there are two outgoing edges from the beginning of method id. With only this local
predecessor information, it is not possible to distinguish the predecessors and continue only with that single prede-
cessor that comes from the correct call site. Therefore, additional bookkeeping in the taint abstractions is required.
When the taint propagation engine processes a method return, it adds a reference to the corresponding call site
(the call site to which the taint propagation returns) to the taint abstraction. With this data, the context-sensitive
path reconstructor can maintain a call stack as a part of the current taint path. When walking backwards through
the taint graph, it checks whether the current taint abstraction belongs to a method return. If so, the corresponding

24 When using FLOWDROID’s context-sensitive alias strategy, circular subgraphs of the taint graph can also be created when passing taint
abstractions between the forward taint analysis and the backward alias analysis.
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Algorithm 3 Context-Sensitive Path Extension

Require: Taint propagation path t p and abstraction abs
Ensure: New taint propagation path p2

1: if abs.correspondingCallSite 6= null then
2: tp.callStack.push(abs.correspondingCallSite){Extend the call stack}
3: if isCallSite(abs.currentStmt) then
4: tcs← tp.callStack.pop()
5: if tcs 6= abs.correspondingCallSite then
6: return NULL{This call sequence is impossible}
7: p2 = tp.clone()
8: p2.path.push(abs)
9: return p2

call site is pushed on the call stack. On a method call, only the predecessor abstraction that comes from the method
that is on top of the call stack is accepted. All other predecessors (current + neighbor predecessors) are discarded.
Method calls can easily be detected using the current statement that is stored together with each taint abstraction.
We implement this feature by further extending the extend() function introduced in Algorithm 2. The new function
has to maintain the call stack and prune impossible paths that do not correspond to valid call-return pairs. Algo-
rithm 3 shows the implementation in detail. Recall that each taint abstraction stores the current statement. Those
abstractions that were created by return flow functions also contain a reference to the corresponding call site. In
line 1, we therefore check whether the current abstraction contains a corresponding call site. If so, it was construc-
ted at a method return. When reconstructing the taint propagation path, the algorithm traverses the taint graph
in the opposite direction to the one in which it was originally constructed. At a method return, the reconstruction
therefore enters a method and need to put it on the call stack (line 2). We do not speak of forward or backward
here, because FLOWDROID uses two solvers with different propagation directions. The normal taint propagation can
already change directions when aliasing is involved as explained in Section 4.8.4. The path reconstruction traverses
the resulting taint graph in the opposite direction, which means that the direction of each edge (be it forward or
backward) is reversed. We therefore generalize the call stack to only speak of method calls and returns, regardless
of the original direction.
When the path reconstruction leaves a method (which is at those positions at which the taint propagation originally
entered it, i.e., at statements that are call sites), the algorithm must check whether the call site at the top of the
call stack matches the call site which it is about to extend the path with (lines 3 to 6). This check makes sure that
the mismatch displayed in Figure 11 cannot happen. When returning to the wrong call site, this statement does not
match the corresponding call sie that was put on the stack when the method return was processed. Therefore, the
infeasible path will be discarded.
Note that the current statement must be stored in the taint abstraction anyway to be able to reconstruct taint
propagation paths as this information is not available from anywhere else. The only additional data required in
the taint abstractions is the corresponding call site which is only non-null for abstractions created on method return
edges. Conceptually, the corresponding call site for a taint abstraction is similar to the incoming set of the IFDS
solver which links abstractions in callees to the contexts under which they were created. Theoretically, FLOWDROID

could, instead of matching the corresponding call sites, also track back the contexts via the incoming sets. This
approach, however, is highly complex if multiple IFDS solvers interact and inject taint abstractions into each other’s
worklists which is the case with FLOWDROID’s flow-sensitive alias analysis. As explained in Section 4.8.4, the alias
analysis’ backwards solver is a second IFDS solver that is triggered during the normal forward propagation and
that, in turn, can again trigger the normal forward solver. These external triggers happen at heap assignments
inside methods (i.e. not at method boundaries), making it hard to reconstruct which incoming set to use during
the backwards reconstruction. Therefore, we opted to abstract away from contexts in terms of taint abstractions
and to compare call sites instead.

4.13.5 Recursive Path Builder

All path reconstruction algorithms presented so far are multi-threaded and based on a worklist. FLOWDROID also
supports a simpler variant of the context-sensitive path builder which is single-threaded and based on recursion
instead of a worklist. This algorithm mainly exists for educational and demonstration purposes because its imple-
mentation is very concise. For larger graphs, the algorithm, however, quickly exhausts the available stack space due
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to the many stack frames that need to be stored. Even if the stack space is increased sufficiently, storing as many
stack frames as there are nodes on a path is highly inefficient in terms of memory consumption. On small examples,
the recursive path builder can be used for cross-checking the results of the other path builders. In other words, it
can save as a test oracle for the more efficient algorithms.

4.14 Code Optimization

The performance and precision of the static data flow analysis greatly depends on the code to be analyzed. In the
code in Listing 37, the logging statement in Line 11 is only executed if the debug flag in Line 1 is set to true. Such
code is common if developers want to be able to quickly switch between a development / debugging build and
a production build. One can think of such constructs as equivalents to C-style preprocessor macros (ifdef). The
difference between a preprocessor directive in C and a Java conditional as shown in the example, however, is that
Java compilers usually do not erase unreachable code. The compiler output thus still contain the conditional and
both of its branches. Therefore, a static analysis must assume that both branches are possible and propagate taints
along both of them. In the example, this would lead to a false positive, because the debug flag is not set in this
build and, consequently, the data is never leaked into the log. Aside from the loss in precision, such constructs can
also lead to unecessary computation efforts. If certain additional checking and validation code is only executed if
the debug flag is set, analyzing this code is unnecessary and a waste of computation time if the flag is not set. To
overcome these issues, FLOWDROID implements certain code optimization techniques before conducting the taint
analysis. Note that for optimizations geared towards reducing the code size for faster analysis, there is always a
tradeoff between the time required for applying the optimization and the time saved during the taint analysis.

1 private final static boolean DEBUG_VERSION = false;
2
3 boolean isDebugVersion() {

4 boolean isDbg = DEBUG_VERSION;

5 return isDbg;

6 }

7
8 void onCreate() {

9 String data = source();

10 if (isDebugVersion())

11 log(data);

12 display(data);

13 }

Listing 37: Interprocedural Optimization Example

The problem shown in Listing 37 can be solved by performing an inter-procedural constant value (ICVP) propaga-
tion on the whole program to be analyzed. ICVP was originally proposed by Callahan et al. [27] with a prototype
implementation for Fortran and has subsequently been applied to many programming languages. The implementa-
tion in FLOWDROID was developed independently from this work with the goal of (a) re-using existing transformers
available in Soot and (b) achieving high performance, potentially compromising on completeness. In other words,
the FLOWDROID implementation rather misses a possibility for simplification than spending too much time on it.
In the remainder of this section, we will explain FLOWDROID’s optimizer implementation, which is shown in Algo-
rithm 4, using the example optimization problem from Listing 37. The optimizer maintains a worklist containing
those methods for which the optimization still needs to be performed. This worklist is initialized with all reachable
methods in the program under analysis in Line 1 of the algorithm. For each method, the FLOWDROID optimizer
first applies Soot’s intra-procedural constant value propagator and folder in Line 5. This step may render some
assignments unnecessary , because all uses of the respective target variables have been replaced by constants. The-
refore, FLOWDROID removes dead code in Line 6 of the algorithm. In the example from Listing 37, these first steps
propagate the value from the assignment to variable isDbg in Line 4 and insert it directly into the return statement
in Line 5. This renders the original assignment (and variable) unnecessary, because all uses of this variable have
been replaced with the corresponding constant value. Consequently, the assignment is removed. After these two
steps, the method isDebugVersion in Listing 37 returns the constant value false and does not contain any other
code anymore.
Afterwards, the interprocedural part of the analysis is conducted. It consists of two parts: (1) Propagating constants
from call sites into callees (algorithm lines 7 to 12), and (2) propagating constant return values from callers back
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Algorithm 4 Inter-Procedural Constant Value Propagation

Require: Set of methods methods in the program
Ensure: Optimized set of methods

1: Q← methods
2: while Q 6= empty do
3: m← Q.pop()
4: if ¬isExcluded(m) then
5: intraproceduralPropagation(m)
6: deadCodeElimination(m)
7: for Parameter p ∈ paramsOf(m) do
8: val←⊥
9: for CallSite c ∈ callSitesOf(m) do

10: val← val ∨ arg(p, c)
11: if val 6=>∧ val 6=⊥ then
12: replaceUses(p, val)
13: Q.push(m)
14: retVal←⊥
15: for Stmt rs ∈ exitStmts(m) do
16: retVal← retVal ∨ rs.value
17: if retVal 6=>∧ retVal 6=⊥ then
18: for CallSite c ∈ callSitesOf(m) do
19: replaceAssignment(c, retVal)
20: Q.push(methodOf(c))

into callees (algorithm lines 14 to 20). For the first direction, FLOWDROID iterates over all parameters of the current
method and collects all call sites of the current method. Constant propagation for a parameter is only possible if
all call sites that can potentially call the current method agree on a single value for the respective call argument.
If a method is called at two different call sites with different values for the same parameter, the method must stay
generic to cater for both cases, and no constant can be propagated. For the same rationale, constant propagation
cannot be performed if the call argument is not a constant in at least one call site. In that case, FLOWDROID cannot
assume that all call sites agree on the same constant call argument at runtime and conservatively refrains from
concretizing the callee. In the algorithm, the lattice join in line 10 must lead to a concrete value, not the top
symbol. The value is initialized with the bottom symbol. Joining the bottom symbol with a value yields that value.
Joining it with the same value again does not change anything. Joining a value with a different value yields the
top symbol. Therefore, the algorithm checks in Line 11 whether the lattice value is neither top (call arguments did
not agree), nor bottom (no call argument found at all). If this condition is satisfied, i.e. constant propagation is
possible, all accesses to the parameter inside the callee are replaced with the shared constant value obtained from
the call sites as shown in Line 12. Note that this intra-procedural propagation may again lead to a constant arriving
in a call site inside the callee, allowing for further inter-procedural propagation. Therefore, whenever a constant
propagation across a method boundary was possible, the target method is again put on the worklist to be processed
again. This also makes sure that Soot’s intra-procedural constant value propagation and folding is triggered inside
the callee to propagate this new constant onwards inside the callee’s method body.
The second direction (propagating constant return values from the callee back into the caller) is more complex.
Whenever a constant value arrives at a return site (either in the original code or as a result of the intra-procedural
propagation), all calls to that method can be replaced with the respective constant value. This replacement is,
however, only sound if the respective call site only has a single possible callee. Otherwise, all callees must agree
on the same constant return value. Furthermore, the callee must not have any side-effects. Otherwise, replacing
the call with the constant value would remove these side-effects from the program. In the example in Listing 37,
both conditions are satisfied. Therefore, the constant return value from Line 5 can be propagated into the caller
at Line 10. This statement now becomes if (false). The algorithm iterates over all return statements in the
current method in Line 15 and performs the same kind of lattice join operation that was already conducted for the
parameter values. If the outcome is neither the top symbol nor the bottom symbol (Line 17), the algorithm iterates
over all call sites of the current method. These call sites, as long as they are assignments (and not just ignore
the current method’s return value) are replaced by constant assignments. Afterwards, the algorithm places each
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call site into the worklist. This ensures that Soot’s intra-procedural constant propagator and folder is run on these
methods, which can lead to further opportunities for code optimization. In the examples, this extra step removes
the conditional in Line 10, because it can never evaluate to true. Dead code elimination finally removes Line 11.
There are some further checks that need to be conducted before propagating constants across method boundaries
which we left out of Algorithm 4 for not cluttering the presentation. FLOWDROID’s support for explicit library models
must, for instance, also be taken into account when deciding whether an assignment containing a method invoca-
tion can safely be replaced by a constant or not. A taint wrapper is allowed to also generate taints on fields as the
result of a call to a library method. If the optimization would remove a call to such a method and replace it by its
constant return value, the taint wrapper would no longer be able to apply its model. Therefore, as a conservative
approximation, FLOWDROID’s code optimization checks whether the taint wrapper (if any is registered) supports the
current method (see Section 4.9 for details on taint wrappers). If so, no constant propagation is performed and the
call site is retained as-is. Similarly, the replacement also breaks the semantics of the program if the callee in turn
calls a sink method. Replacing the call would then remove a leaking control flow path. We therefore keep method
calls if they (directly or transitively) call sinks. If the callee is a source method, calls to it may not be replaced with
its constant return value, either. Programs that use sensor data (such as smartphone apps) are often developed
against stubs of the libraries that provide the sensor data. Though the stub may return constant placeholder data
for a source that reads sensor data, the actual implementation will not. Therefore, propagating this stub value
onwards would break the semantics of the target program. As a rule, we therefore exclude sources from the con-
stant propagation. Finally, the dummy main method generated by the entry point creator (see Section 4.15) must
be excluded from the optimzation. Otherwise, the opaque predicates would be evaluated, thereby damaging the
lifecycle model that was originally encoded.
If the callee can potentially throw exceptions, these exceptions correspond to additional edges in the interprocedu-
ral control flow graph. If the optimization replaces a call site to such a method with a constant values, these edges
get removed as well. A constant assignment cannot throw any exceptions and thus will never divert the control
flow as the original callee did. To make up for these lost edges, FLOWDROID creates calls to artificial static exception
methods right after the constant assignment that replaces the original call site. There is one such method per ex-
ception. It uses opaque predicates to, in one branch, throw the exception, and, in the other branch, return without
doing anything. This simulates that the original callee might have thrown the exception, but not necessarily. Note
that these exception methods are shared between all call sites handled by FLOWDROID’s optimizer. Only the decision
which methods to call is done per call site for precisely capturing the precise set of possible exceptions for that
particular call site.

4.15 Entry Point Creation

By default, FLOWDROID uses the Soot’s SPARK callgraph algorithm [84] to obtain maximum precision. SPARK is
based on first identifying allocation sites and then propagating this type information along assignments. As this
gives SPARK a precise set of possible types for every variable (including the base objects of virtual method calls), it
can accuratrely resolve call targets. This approach, on the other hand, requires that all allocation sites are visible to
the analysis. This limits the usable entry points to static methods. If one wants to analyze an instance method of a
class, there needs to be an allocation site that properly creates an instance of the respective class. If this allocation
site is missing and the analysis starts directly inside the instance method, there is no type information for the this

local inside the method. Consequently, no outgoing edges for any calls to this.m() for any method m can be created.
The callgraph becomes not only unsound, but unusable. The new library mode for SPARK [114] allows more
conservative approximations such as assuming any possible subtype of the class containing the instance method
(CHA-style handling) when handling accesses to the this local. While this solves the issue of the missing edges,
it can still cause a loss in precision if the exact type is in fact known to FLOWDROID due to external information.
Furthermore, just considering a (potentially ordered) list of methods as entry points is often imprecise. Many
platforms such as Android or the Java Applet Engine define a lifecycle for the user code, i.e., complex rules on
when and whether certain user code methods are called. To capture these semantics, all of these rules must be
modeled. Just assuming that every method can be called at any time will likely lead to an over-approximation and
thus false positives.
FLOWDROID therefore provides an interface for entry point creators. An entry point creator generates a dummy main
method which serves as an artificial entry point for callgraph construction. This method can instantiate the correct
target classes to be analyzed and call the desired instance methods in the right order. Conceptually, an analysis of
some instance method inside a larger program is reduced to analyzing a normal Java program. The dummy main
method takes the place of Java’s normal main() method for the purpose of the analysis. Note that the resulting
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fake program is not required to compute any meaningful output when executed by the JVM. It might even crash
with an exception or violate requirements of the Java specification. The dummy main method is only required to
be equivalent to the actual use of the target methods with respect to the static analysis (consisting of the callgraph
construction algorithm and the FLOWDROID static data flow tracker). From this dummy main method, the callgraph
algorithm can derive precise type information and thus generate a precise callgraph.
The dummy main method can also be used to emulate external platform behavior in a flow-sensitive analysis. When
analyzing Android apps, Java Server Pages, or Java Applets, the target code is a plug-in into a larger system. A Java
applet is implemented by creating a new class that inherits java.lang.Applet. The framework (the applet viewer
or the JVM plugin inside the browser) is responsible for instantiating this user-defined class and for calling certain
methods such as init() to execute the user code. Note that these method invoked by the framework are ordered.
The call to invoke() will always happen before the call to destroy(). A flow-sensitive analysis must take this
order into account. The easiest approach to faithfully handle such constraints is to model the framework behavior
in the dummy main method. In this case, the dummy main method is not only the seed for callgraph construction,
but also provides those parts of the control flow to the analysis that would otherwise be hidden in the (usually
non-analyzable) library code. This is especially important in the context of Android as we will show in Section 5.
For the common use cases of the data flow analysis FLOWDROID provides the following entry point creators:

• SequentialEntryPointCreator The dummy main method generated by this class simply contains a sequential
list of calls to the target methods.

• DefaultEntryPointCreator This class generates a dummy main method that simulates that every target me-
thod is called an arbitrary number of times in an arbitrary order. Therefore, this class can be seen as a
conservative over-approximation of arbitrary lifecycles.

When generating a dummy main method, several challenges arise. In the remainder of this Section, we will discuss
these challenges. In FLOWDROID, these aspects are centralized in the abstract base class BaseEntryPointCreator

from which all concrete entry point creators are derived.

4.15.1 Creating Class Instances

If one wants to analyze an instance method m() in a program or a library, the dummy main method must first create
an instance of the parent class and then invoke the method m(). This means that it must first call a constructor of
that class. For simplicty, we assume that all constructors are semantically equivalent, i.e, it does not matter for the
call to m() which constructor was initially used to create an instance of the parent class. This assumption is in line
with good programming practice and class design, but can of course be exploited by a determined programmer
who wants to hide properties of his program from the analysis. Based on this assumption, the entry point creator
can collect an ordered list of public candidate constructors. The order of constructors in the list reflects the effort
for calling the respective constructor. The effort is directly proportional to the number of arguments. For every
parameter, the entry point creator must find a suitable (fake) value. Therefore, a call to a constructor that requires
no parameters is easier to model than a call with one parameter, which is in turn easier to model than a call to
a constructor with a dozen parameters. Note that simply passing null as a parameter whenever an object type is
required does not faithfully model the semantics of many constructors. Recall that the SPARK callgraph algorithm
works by propagating type information from allocation sites to call sites. If a class saves a constructor parameter’s
value into a field and later calls a method on that value, passing a null value to the constructor will lead to missing
callgraph edges. If two constructors have the same number of arguments, we pick the one with the larger number
of primitive parameter types.
Once the list of candidate constructors has been created, the entry point creator tries to create calls to these
constructors, starting with the simplest one. If this fails, for instance because no suitable parameter values could
be found, the next candidate constructor in the list is taken. Finding a value for each parameter is done by a
recursive algorithm. Primitive types are the base case for the recursion. For them, hard-coded default values can
be used. Note that we also consider strings as primitives as they are immutable. For object types, the algorithm
recursively tries to construct an instance (i.e., a constructor call in the dummy main method) of the respective
class. If the constructors of this class again take object types as parameters, the recursion continues by constructing
instances of those classes as well. The recursion stops if it either reaches a simple constructor call (i.e., that takes no
parameters or only primitive-typed ones) or if the algorithm runs into a loop. In the latter case, the algorithm uses
null as a parameter for the constructor call that has caused the instance creation loop. Again, the idea is to model
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the target class use as faithfully as possible. Therefore, the null value is not injected into the top-level constructor
call, but at the position at which the loop occurs.
This model so far assumes that whenever a constructor is invoked, a new class instance is created for each para-
meter that is of an object type. While this is technically correct, it fails to capture relationships between separate
constructor invocations. Note that usually more than one target method must be called by a dummy main method,
which in turn, usually requires invoking the constructors of multiple classes. Consider the case of an inner class. In
Java, the constructors of inner classes always take an instance of the respective outer class as a parameter. If the
construction of outer and inner class are considered separately, a new instance of the outer class is created when
creating the instance of the inner class, even if the outer class already exists because of an earlier method call. If
the inner class accesses fields from the outer class, this leads to lost taints in a field-sensitive analysis as the base
objects do not match anymore. The analysis would capture that the two instances of the outer class are separate
and do not alias.
Since the use of inner classes (and other dependencies between classes) is common in Java programs, the entry
point creator must avoid such discrepancies. In FLOWDROID, we use the following heuristic: Whenever a constructor
call is generated, the entry point creator saves the target variable of the new instance in a map from type to
variable. If a parameter of that type is needed later on, the entry point creator performs a lookup in this map to
see if there is already an instance. If so, the variable of this instance is passed as a parameter. Only if no instance
exists yet, a constructor call is generated. This maximizes instance re-use. In some cases, it may lead to unnecessary
connections between classes, but since the process is fully automated, no information about the actual use of the
target classes is available. Thus, one needs to make assumptions and provide heuristics that fit most (or at least the
most important) cases. In our tests, this heuristic yields correct results.

4.15.2 Creating Method Invocations

Method invocations are similar to constructor invocations. For instance methods, the entry point creator first needs
to create an instance of the respective class as described above. Finding parameter values for the method also
works exactly as for constructor calls. The only difference is that the entry point creator needs to perform a virtual
method lookup. If it shall call a method m in class c, but class c inherits that method unchanged from its superclass
d, then the call target must reference d.m as c.m does not exist. Requiring the input specification to already take
care of virtual method lookup has proven to be impractical. Methods can move from a class to its superclass when
libraries or frameworks change, even in minor updates. Allowing for such inaccuracies in the specifications makes
the entry point creator gracefully handle such changes.

4.15.3 Modeling Call Sequences

When capturing the interaction between the framework and the application under analysis in a dummy main me-
thod, control flow is not necessarily sequential. A Java applet, for instance, can be started and stopped by the
runtime at any time. After stopping a component, it can decide whether to destroy the component completely
or whether to restart it and loop through its lifecycle once again, see Figure 12(a). The entry point creator must
account for such non-linear behavior. A static analysis cannot a-priori decide which path through the lifecycle the
framework will use, so it must account for all possible paths. In other words, it must encode a non-deterministic
finite state machine (NFA) in which the transition function corresponds to the lifecycle methods called by the fra-
mework. A simplistic approach would enumerate all paths through the NFA similar to loop unrolling in symbolic
execution, i.e., generate a set of purely sequential lifecycle simulations. This approach, however, inherits the boun-
ding problem of loop unrolling. In general, the number of iterations through the lifecycle that the framework will
conduct at runtime is unknoiwn to the static analysis and potentially unlimited. Therefore, the analysis would need
to introduce an artificial upper bound, making the analysis unsound. Furthermore, the set of emulated lifecycle in-
stances (i.e., paths through the NFA) can grow very large, imposing scalability issues on the analysis. Consequently,
unrolling is not a solution for modeling non-linear lifecyles.
Instead, non-linear call sequences are modeled using opaque predicates. At every point where the control flow can
divert, the entry point creator inserts a conditional as shown in Listing 12(b). Note that the listing uses a bytecode-
like notation that allows labels and jumps. The predicate of the conditional is designed such that it cannot be
evaluated by the static analysis (opaque() in the example). The analysis must thus assume that both outcomes
are possible and analyze both the then branch and the else branch as possible successors of the conditional.
Semantically, this exactly matches a non-sequential lifecyle. The analysis must propagate all facts it has dervied
so far into both branches and continue the analysis independently for each branch. Note that this approach does
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init()

start()

stop()

destroy()

(a) Java Applet Lifecycle

1 static void dummyMain(String[] args) {

2 l0: MyApplet applet = new MyApplet();

3 applet.init();

4 l1 : applet.start();

5 applet.stop();

6 if (opaque())

7 goto l1;

8 applet.destroy();

9 goto l0;

10 }

(b) Java Applet Entry Point Code

Figure 12: Java Applet Lifecycle Schematic and Entry Point Pseudocode

not suffer from the path explosion problem that arises when enumerating all paths, since the analysis can merge
data flow facts on merge points. It does not compute one solution per possible path, but a single solution that is a
merge of all possible paths through the lifecycle. This exploits that IFDS, on which FLOWDROID is based, computes
a meet-over-all-paths solution.
The design decisions made when generating the dummy main method significantly influence the precision, recall,
and performance of the data flow analysis. Obviously, missing calls to lifecycle methods can lead to false negatives
for the overall analysis. Some tradeoffs, on the other hand, can be subtle. If a program under analysis consists of
multiple concurrent components, the analysis developer who implements the dummy main generator must decide
on which granularity he needs to model the possible runtime interactions between the components. The most
trivial approach is to generate a sequence of independent lifecycles, which can be thought of as multiple copies
of the same template beneath each other. While this approach is simple to implement, it misses leaks that are
caused by concurrent interactions. One component could, for instance, write tainted data into a static field, which
is read and leaked by another component, before the first component overwrites it with null again. In this scenario,
analyzing neither component alone (or as part of an unconnected sequence) is sufficient for detecting the leak. On
the other hand, assuming that concurrent interleaving is possible after each method call, requires a more complex
structure of conditions with opaque predicates. Furthermore, it can also lead to irrelevant leaks being detected,
i.e., leaks that are technically possible under the given model, but that very unlikely or even impossible to occur at
runtime. Note that the method level is the most fine-grained granularity of interleavings possible with our concept
of a dummy main method. Already this granularity is, however, infeasible in practice. Most commonly, dummy
main methods therefore treat components individually and rely on external semantic models to precisely capture
the inter-component communication semantics supported by the target platform. For the case of Android, we will
disucss this issue further in Section 5.6.2.

4.16 The Overall FLOWDROID Workflow

The description of the FLOWDROID data flow tracker has so far been focused on the various components in the
architecture of the data flow tracker to simplify the presentation. In this section, we will present how the com-
ponents fit together in a full workflow from input parsing to writing out the discovered data flows. As shown in
Figure 13, FLOWDROID first initializes a Soot instance by loading Soot’s basic classes that must be available in every
Soot Scene such as java.lang.Object. At this point, Soot also initializes its classpath for dependencies. Recall
that FLOWDROID explicitly configures Soot not to load the bodies of classes from the Java Standard Library or the
Android SDK and instead leaves library handling to the taint wrapper as explained in Section 4.9. Nevertheless,
the class definitions and hierarchy are loaded to make sure that type checks can be performed. This is not only
important for resolving polymorphic call sites, but also for the type checking explained in Section 4.11. Also note
that FLOWDROID cannot call Soot’s standard main() method, but instead needs to explicitly trigger the class loading
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Figure 13: FLOWDROID Workflow Diagram

and initialization, because Soot’s main() method would immediately execute transformations such as callgraph
construction. FLOWDROID, on the other hand, must fit additional steps such as creating the entry point in between.
After Soot has been initialized, the entry point is created as described in Section 4.15. This entry point emulates the
main() method which is not available for many analysis targets. This is especially important when analyzing Java
applets or Android apps that tightly integrate into their respective execution environments. Given this entry point,
Soot’s built-in algorithms can then generate the callgraph. Once the callgraph exists, the IFDS solver can be started
on the the IFDS tabulation problem that models the FLOWDROID core. Note that, depending on the alias algorithm
to be used, a second IFDS solver is spawned to process the backward propagation of alias taints. All solvers keep
track of the taint propagation tasks they have spawned. The IFDS step is considered to be finished when the task
counter of all IFDS solvers has reached zero. Note that as long as there is still at least one active task in a single
solver, this task is able to potentially spawn new tasks in any of the solvers.
Once all spawned IFDS solvers have finished, FLOWDROID has a set of abstractions that have reached sink statements.
From these sink abstractions, the original sources as well as the taint propagation paths are reconstructed as
explained in Section 4.13. The results of this step are the final results of the FLOWDROID analysis. Depending on the
configuration, these data objects are either returned directly for further processing in an external analysis tool, or
are serialized into an XML file on external storage.

4.17 Supported Language Constructs & Limitations

This section describes the Java language constructs supported by FLOWDROID and discusses the limitations of the
data flow engine with regard to Java language features. Note that this section only serves as a summary. The details
of the explicitly supported features have already been discussed in the respective previoius sections.

Arrays
FLOWDROID over-approximates the taint state of arrays by considering the complete arrays as tainted once a single
element inside it gets tainted as explained in Section 4.4. This ensures that no leaks are missed, but can lead to
false positives. On the other hand, FLOWDROID is able to distinguish whether only the elements of an array, or its
length, or both are tainted.

Dynamic Code Loading
FLOWDROID assumes the complete program under analysis to be present when performing thr analysis. If the pro-
gram under analysis loads additional code at runtime, FLOWDROID ignores this load operation and does not resolve
the location from which the code is loaded. To cover such code as well, a human analyst can, however, manually
obtain a copy of the dynamically-loaded code and present it to FLOWDROID as an additional input. Technically,
FLOWDROID can put an arbitrary number of code files on Soot’s process-dir parameter and construct a common
Soot Scene from the union of all classes in all of these files. In other words, this will perform a simplistic merge
operation that assumes that there are no naming conflicts. In the Java case, one can compare this approach to mer-
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ging all class files from all JARs into a single JAR which is then used as the analysis target. In many cases, this is
an appropriate solution to the dynamic-code loading. Note that there are inherent complexities involved in further
automating the merging. The location from which the additional code is loaded might not even be accessiblke to a
static analysis if it is, for instance, read from a configuration file.

Exceptions
FLOWDROID supports exceptions in two different ways. Firstly, the inter-procedural control flow graph contains
exceptional edges, i.e., exceptions from statements that can potentially throw an exception to all possible exception
handlers that are valid for the respective code range and excetion type. Secondly, if tainted data is stored inside
an exception object which is then thrown, FLOWDROID is able to track the data flow to the exception handler. If the
exception handler reads the tainted data from the exception object and passes it to a sink, this leak is correctly
detected. More information on FLOWDROID’s exception tracking can be found in Section 4.5.

Implicit Flows
Sensitive data cannot only be transferred through explicit assignments, but also by making the program’s control
flow dependent upon the value of the sensitive variable or field. FLOWDROID can optionally track such control-flow
dependencies and report leaks if sinks are only called under conditions dependent on sensitive data, or if the leaked
data is computed in a way that is control-flow dependent on a tainted value. We refer the reader to Section 4.6 for
further details.

Native Code
The Soot framework, on which FLOWDROID is based, was originally designed for analyzing and transforming Java
code. Consequently, the Jimple intermediate representation has no means for representing low-level constructs
such as pointer operations that are prevalent in native code. Therefore, integrating native code analysis into Soot
is a non-trivial undertaking. Soot abstracts from the native code at the interface level, i.e., at the Java part of the
JNI declaration. In other words, methods can be marked as native and are then treated just like abstract methods.
FLOWDROID can make use of a native call handler (see Section 4.10) to provide explicit data flow models for these
methods. We provide pre-defined models for common native methods such as System.arraycopy().

Recursion and Loops
Since FLOWDROID is a path-insensitive data flow tracker, it allows for arbitrary-length recursions. Though the pro-
gram’s control flow is circular, the taint state is guaranteed to reach a fixed point. The solver does not keep track
of how often a variable is assigned tainted data. Once the tainted access path has a reference to all possible prede-
cessors that assign tainted data to it (regardless of how often the respective statements are executed), it no longer
needs to process that access path anymore. When no new distinct access paths and no further predecessors are
added anymore, the global fixed point is reached and the analysis terminated. Refer to Section 4.13 for a detai-
led explanation on how FLOWDROID uses predecessor references instead of propagating pointers to the respective
source along with each taint abstraction.
Note that when the user chooses to reconstruct taint propagation paths, i.e., the paths that a tainted varoiable has
taken through the program between source and sink, recursion and loops can become and issue. If there is a loop
or a recursive method call along the path, then there is one possible path per execution count. In other words,
there is one path from source to sink on which the loop was passed once, another path on which it was passed
twice, etc. We solve this issue by not enumerating all the paths between source and sink, but instead returning one
witness that shows the source-to-sink connection by example. This will usually be the path that either skips the
loop entirely or executes it only once (in case at least one execution is necessary to create the leak), because this is
the shortest path possible and will thus be reconstructed first.

Reflection
FLOWDROID inherits its support for reflective method calls from the Soot framework on which it is based. Conse-
quently, it can handle all those reflective call sites for which the SPARK callgraph algorithm integrated into Soot can
find outgoing call edges. SPARK is based on propagating type information from allocation sites to virtual call sites. In
the case of reflective calls, this type information is, for instance, available, if the base object of the call is constructed
as usual (i.e., without using reflection), and only the virtual method call itself is done using reflection. Additionally,
SPARK also automatically converts calls to class.forName() with constant arguments (i.e., class names) into class
constants. It creates fake allocation sites when the newInstance() method of such a java.lang.Class object is
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called. Afterwards, the type propagation towards the virtual call site works as usual, without requiring any further
special-casing for reflection.
Given that type infomation for the base object of the virtual method call is available, SPARK resolves reflective
method calls by matching the types of the arguments to potential receiver methods. It looks for candidates in the
propagated base type and all of its subtypes. Each method that takes parameters that are cast-conmpatible with
the given argument types at the call site is considered a potential callee. Note that this approach can lead to false
positives if unrelated methods with the same argument types, but different names are found. At the moment, SPARK
does not check any constraints on the method name, even if the name of the target method is available statically.
SPARK’s reflection support is work in progress (including contributions from the author of this thesis) at the time
of writing and is likely to improve with regard to both precision and recall in the future.

Static Fields
Static fields can receive taints just like any other field. This is handled by the FLOWDROID Core (see Section 4.2).

Threads
Threads allow code to be executed in parallel. On modern multi-core processor architectures, this leads to true
parallelism, i.e., the order in which statements in different threads are executed relatively to one another is com-
pletely undefined aisde from explicit synchronization introduced by the programmer. This challenges static analysis
approaches which traditionally rely on a single control flow that executes all statements of a whole program exe-
cution sequentially. When this ordering constraint is removed, new types of data- and control-flow dependencies
can be introduced. Consider a scenario with two threads, in which one thread reads sensitive data from a source
and writes it into a field. The second thread reads the data from the field and leaks it. In normal sequential code,
there would be an order that defines whether the data is first read, then transmitted through the field and finally
leaked, or whether the read happens before the write and thus no leak occurs. In a concurrent program, it depends
on external effects such as scheduling and system load, which of the two scenarios happens at runtime. To be
complete and not miss leaks, an analysis would have to take into account all possible thread interleavings and
check whether they can lead to leaks. Modelling all interleavings, however, is a challenge on its own, because the
analysis must then precisely handle synchronization constructs and atomic operations provided by the JVM (such
as the AtomicInteger class as opposed to a normal int). An imprecise thread model, on the other hand, would be
less complex, but is likely to introduce a considerable number of false positives. In this work, we therefore leave
the issue of thread interleaving 25 aside and assume that each thread completely executes when it is started. In
other words, we inline the thread code at the position where the respective thread is started. On a conceptual level,
this design decision assumes that there are no dependencies between threads at all. Threads are rather assumed to
process separate atomic work items. In this model, a thread is allowed to consume data from other threads when
it starts, but then needs to execute atomically. Once it has finished its work, it can pass back data to other threads.
Technically, this reduces the problem of thread handling to creating a callgraph edge from Thread.start() to the
run() method of the respective thread.
Threads can be created using various APIs, including ones that are present in the normal Java class library and
special ones added by the Android framework. For creating the aforementioned fake edge to Thread.run(), all of
these APIs must be modeled. FLOWDROID inherits support for some basic cases from Soot’s SPARK implementation.
For other cases, the tool injects stub implementations of the respective API that are equivalent to the original
implementation in terms of data flow, but that are minimal in terms of complexity and code size. This stub injection
is explained in Section 4.9.3.

Virtual Dispatch
FLOWDROID relies on existing callgraph algorithms to resolve virtual call sites. As explained in Section 4.2.6, the
data flow tracker uses Soot’s integrated SPARK algorithm by default. SPARK offers higher precision than the other
callgraph algoroithms integrated into Soot (CHA, VTA, RTA). The core concept of SPARK is to propagate type
information from allocation sites to call sites. This type information is then used to limit the possible receiver classes
for the call. Still, because SPARK is context-insensitive, some false positives occur, especially with callbacks such
as Java’s built-in threading mechanism. Our experiments on DroidBench (see Section 7.2) show that FLOWDROID,
together with its own type propagation feature for tainted objects (see Section 4.11), is highly precise in practice
when resolving the targets of virtual call sites.

25 The Joana static data flow analysis supports the RLSOD criterion for concurrent programs [25]
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5 Static Data Flow Analysis for Android

In the previous sections, we have provided the necessary background knowledge and presented the generic part
of the FLOWDROID data flow tracker. Recall that FLOWDROID’s data flow engine is generic with the goal to support
arbitrary target platforms. The platform-specific parts of the FLOWDROID static flow analysis such as modeling
sources and sinks, and dealing with library methods have therefore been decoupled from the core solver using
interfaces. The default implementations of these interfaces discussed in the previous section model the behavior
of the Java Runtime. They allow FLOWDROID to analyze traditional Java programs for data flows and information
leakage. In this section, we now describe the Android-specific extensions to FLOWDROID. In general, we explore
Java programs and Android apps as analysis targets in this thesis. Other researchers have applied FLOWDROID to
web services based on Java EE.
We will first discuss how the lifecycle of Android apps is modeled in Section 5.1. Afterwards, we will expain how
FLOWDROID deals with references to UI ocntrols in Section 5.2, before going over the details of how we handle
the omnipresent callbacks provided by the Android framework in Section 5.3. In Section 5.4, we present various
optimizations for making the analysis more efficient. Section 5.5 presents related work and shows how other
researchers handle the Android-specific parts of a static analysis. Finally, we present the most important extensions
to FLOWDROID in Section 5.6.

5.1 The Android Component Lifecycle

Android apps can be thought of as plugins into the Android operating system rather than as standalone apps. A
normal Java program has a main method that is invoked by the runtime environment and that is then completely
self-responsible for the remainder of the program execution. The Android runtime, on the other hand, is much
more tightly coupled with the apps it executes. Developers create apps by implementing own Java classes that
inherit predefined system classes and by overwriting callback methods in these classes. This allows the Android
OS to, e.g., pause or resume the execution of an app at any time. Apps must be designed to tolerate such external
influences without losing their state or corrupting any data. This tight coupling between the operating system and
the apps is mainly due to the restrictions of mobile devices. Shared resources such as processing power, memory,
or energy, are much scarcer than on a traditional desktop or even laptop computer. If the user switches between
apps, it may thus become necessary to re-allocate these resources to the new foreground app and away from the
old one. This can include pausing or even stopping the old app altogether to free up memory. When the device’s
battery gets low, the operating system may also stop or pause apps in favor of other apps or the system itself.
An Android app consists of a set of well-defined components. There are different component types for different
tasks. An activity represents a single, focused task in the graphical user interface such as selecting a song to play.
A service is used for long-running background tasks that are independent of user interaction such as playing the
selected song, even when the user switches to a different app. A broadcast receiver listens for system-wide broadcast
messages such as the request to mute all audio output for silent mode. A content provider models an application-
specific database such as the media library of the music player app. For each component type, the Android SDK
provides a base class from which the developer can inherit. Furthermore, each component type has its own lifecycle
that defines how the operating system can interact with the component by calling methods pre-defined in the
base classes. Conceptually, this retricts the possible sequences of method calls made by the operating system.
Figure 14 shows the activity lifecycle26. The activity has the most complex lifecycle of all four component types.
Still, even Figure 14, which is taken from the official Android documentation, is incomplete. As explained above,
an activity must always be prepared to save its state before being stopped, and to restore its state after being
resumed. For this state handling, Android provides the two additional lifecycle methods onSaveInstanceState and
onRestoreInstanceState. Carefully reading the documentation (including the API’s Javadoc) and investigating
the Android source code reveals more such methods (e.g., onPostCreate) that are missing from the lifecycle
graphics. Nevertheless, all these methods must be added to the lifecycle to precisely capture the actual interaction
between the Android operating system and the app at runtime.
For the static analysis, the component lifecycles are modeled by creating a dummy main method as explained in
Section 4.15. The Android extensions for FLOWDROID therefore provide an own, specialized entry point creator
implementation. This entry point creator parses the AndroidManifest.xml configuration file which is present in
every Android app. The manifest is a declarative specifiication of the app’s components. Conceptually, it registers
the components with the operating system: Which components do exist, for which activities shall there be icons

26 Picture taken from the Android documentation at http://developer.android.com/guide/components/activities.html
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Figure 14: Android Activity Lifecycle
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in the phone’s launcher, etc.? For every component in the manifest, the entry point creator checks which lifecycle
methods it overwrites. For each such method, a corresponding call is then created in the dummy main method.
As explained earlier, the entry point creator uses opaque predicates to model optinal jumps through the lifecycle,
such as after onPause. The activity may then either be destroyed, or resumed, leading to two possible successor
callbacks after onPause. The opaque predicate models that both of them are possible and must be consideres valid
paths through the lifecycle.
Note that we model component lifecycles independently from each other. A state transition in one component’s
lifecycle does not trigger or influence any state transitions in other components. Since the Android framework is
single-threaded, there is only one lifecycle method active at a time. In other words, if an activity and a service
are running inside the same app at the same time, the Android framework uses the same event queue for them.
Whenever a lifecycle method from one component has finished, the framework can either call the nextr lifecycle
method from that component, or can perform a context switch and call the next lifecycle method from the other
component. There is no a-priori definition of when such context changes happen. Theoretically, this allows for
hidden dependencies between components, because all components share their memory space and can, e.g., access
the same static variables. Thoeretically, one component can write sensitive data into a static variable and the
other one (which is running at the same time) can leak it on the next context change. Since the context changes
are, however, not known a-priori, we assume that apps do not use such unreliable channels. Furthermore, since
FLOWDROID is a purely intra-component data flow tracker, we simply place the lifecycles of all components beneath
each other and only simulate that they can be executed in an abritrary order using opaque predicates. In our model,
a single component lifecycle, however, is atomic and cannot interfere with other component lifecycles.

5.2 UI Control Handling

Android apps are usually highly interactive. The Android framework contains various readily available mechanisms
that app developers can use to display user interface controls and interact with them. For a data flow analysis,
modeling an app’s user interface is important in two ways: Firstly, user interface controls may be associated with
callback handlers for e.g., button clicks or key presses inside a text field. Omitting these callbacks would lead to
an incomplete callgraph and thus potential false negatives in the data flow analysis as explained in Section 5.3.
Additionally, UI elements are, however, also potential sources of sensitive information. Assume that a user enters
a password into a text field. If this password is leaked to an adversary, the user may be subject to identity theft
or allow the attacker access to other privacy-sensitive services. Therefore, a data flow tool for Android such as
FLOWDROID must build a complete model of an app’s user interface and look for sensitive interactions.
Not all inputs are sensitive, though. A weather app will, for instance, rightfully leak the user’s city of interest to
a remote web server in order to obtain the weather forecast for that city. Even if this data is also leaked to an
additional third-party, it might not infringe upon the user’s privacy. Therefore, FLOWDROID supports three different
modes for handling data entered through UI elements:

• Ignore all UI data. This leads to a potentially incomplete set of leaks.

• Only consider password fields as sensitive inputs. This is the default as it captures the implicit expectations
of most users and provides a balance between incompleteness and a technically correct, but useless flood of
detected leaks.

• Treat all UI input elements as sources. While this option makes the UI analysis complete, it can greatly incre-
ase the number of detected (expected) leaks. Note that this option still excludes non-mutable UI elements
such as buttons as they cannot obtain any information from the user.

In Android, the user interface of an app is described in layout XML files as shown in Listing 38. In other words,
the layout XML file is the visible part of an activity or fragment. The example shows a text input field that is
configured to accept passwords, i.e., hide its contents. At compile time, the layout XML files are converted from
normal plain text into Android’s internal, binary XML file format. The control names are erased. Instead, they
are only referenced by unique numeric identifiers which are unique across the whole app. If the developer wants
to reference a UI element or layout control from his code, he can identify it through a constant defined in an
automatically generated resource file called R.java. The names of the constants in this file (R.id.pwField in the
example) correspond to the names the developer has given to his layout controls in the XML file via the id tag
(pwField in the example). The constant value corresponds to the automatically-generated unique identifier of the
layout control. For accessing a UI element, the developer calls the findViewById API function with this value as
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1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5 <EditText

6 android:id="@+id/pwField"

7 android:layout_width="wrap_content"

8 android:layout_height="wrap_content"

9 android:layout_alignParentTop="true"

10 android:layout_centerHorizontal="true"

11 android:layout_marginTop="150dp"

12 android:ems="10"

13 android:inputType="textPassword" >

14 </EditText>

15 </RelativeLayout>

Listing 38: Password Field in a UI Layout

1 public class PrivateDataLeak2 extends Activity {

2 @Override

3 protected void onStart() {

4 super.onStart();
5 EditText mEdit = (EditText)findViewById(R.id.pwField);

6 Log.v("Password", mEdit.getText().toString());

7 }

8 ...

9 }

Listing 39: Accessing UI Elements in Code. Adapted from PrivateDataLeak2 in DroidBench.

shown in Figure 39. The returned UI model object allows read and write access to the layout properties (positions,
sizes, etc.), as well as the contents of the control.
Note that Android’s dx compiler performs a constant propagation during compilation. The classes in R.java are
erased. Instead, the values of the automatically-generated constants are directly injected into the calls to e.g.,
findViewById. This leaves the compiled app without any semantic layout information in the code except for these
IDs. FLOWDROID must therefore map the IDs back to layout controls to find potential sources. Recall that IDs are
unique across the whole app, even if the app contains multiple activities. For correctly resolving accesses to UI
elements, one therefore does not need to associate a layout XML file with its corresponding activity. One only needs
a mapping from the unique identifier in the code to a model of the corresponding UI element with the same ID.
FLOWDROID therefore conducts the following steps to build a UI model and collect the UI sources:

1. Parse all layout XML files. Inside an APK file (which are just renamed zip archives), the folder res/layout
contains all layout XML files. For every layout control, add a mapping between ID and the UI model element.

2. Create artificial sources for all calls to findViewById() that are passed IDs of sensitive UI controls. Depending
on the configuration explained above, this includes a check of the element type (only consider password fields
or treat all UI input elements as sources). Static controls such as buttons, etc. are always excluded.

The Android layout XML format also supports indirections. One layout XML file can reference other ones using an
include directive. These files are then merged into the same layout when the respective app is started. FLOWDROID

statically merges these includes into the model. A simplistic layout file parser could also ignore include directives
and simply load all xml files in the layout directory. While this would be sufficient for resolving layout control IDs
referenced from the source code, it does not faithfully represent the hierarchical structure of the original UI layout.
This structure will, however, be important when analyzing UI callbacks in Section 5.3.
As usual in Android, references in include directives of layout XML files are created as plain strings at development
time, but are converted into numeric identifiers at compile time. As the files inside the APK container still have their
original name, the generated ID is not sufficient to locate the referenced file in the APK. This creates additional
complexity as FLOWDROID must resolve these IDs to obtain the file name of the respective target file. Such ID
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1 void onCreate() {

2 LocationManager mgr = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

3 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER , 5000, 10,

4 new LocationListener() {

5 @Override

6 public void onLocationChanged(Location loc) {

7 sink(loc.toString());

8 }

9 ...

10 }

11 );

12 }

Listing 40: Location Leak in Callback

references are pointers into the global resource configuration database (resources.arsc) included with every
Android app. The resource configuration contains mappings from IDs to resource objects for potentially multiple
configurations. One configuration could for instance translate ID 1001 to “Hello” and gets activated on English
phones, whereas a different configuration could translate the same ID 1001 to “Bonjour” and gets activated on
French phones. Similar distinctions between configurations can be made based upon screen size, screen orientation,
type of available keyboard, or Android API version. A static analysis tool such as FlowDroid cannot identify which
configuration will be used at runtime. One possibility would be to merge all possible configurations to ensure
soundness. Since data leaks usually, however, do not depend on configuration-dependent constant value lookups
in resource files, FLOWDROID opts to only consider the first (and usually only) configuration by default.

5.3 Callback Handling

Smartphones and tablets nowadays not only provide computational resources, but also various types of sensors
that can be read by apps. In addition to traditional readings (get the current value of the sensor), the Android
operating system also provides event-driven access to this sensor data. The latter allows the app to be notified
whenever the sensor value changes, e.g., the smartphone is moved to a different physical location and new GPS
data is available. These events can happen at any time in an arbitrary order. The respective callbacks inside the
app are then invoked by the Android operating system. Note that apps need to explicitly subscribe for receiving a
particular kind of events such as location changes. Otherwise, no events are delivered, i.e., no callback is invoked.
This distinguishes event-driven callbacks from the lifecycle methods described in Section 5.1. The lifecycle methods
are always invoked if the respective component changes its status (regardless of any subscription) and can only
occur in a pre-defined order.
For a static data flow analysis tool, handling callbacks is important for obtaining a complete callgraph. The dummy
main method explained in Section 5.1 must invoke the callback methods during the simulated runtime of the
component hosting the particular callback. If an activity, for instance, listens for GPS location changes, the dummy
main method must simulate an arbitrary number of invocations of this callback method between the onResume

and onPause lifecycle events. An activity that has not been started yet or that has been paused or stopped cannot
receive events. Placing the call at the right position is important to correctly model leaks where e.g., the sensitive
data is obtained in the onCreate() method of an activity and leaked in the callback that fires when a certain timer
expires. Such time-dependent leaks are called timing bombs and are quite prevalent in modern malware [33].

5.3.1 Dynamic Callback Registration

An Android app can subscribe to events by calling particular pre-defined API functions. In the example in Listing 40,
the app first obtains a reference to the LocationManager component and then registers a new callback that is in-
voked whenever the GPS location changes. In general, a method for subscribing to an event receives an instance
of the class implementing the callback method and further, optional parameters. For GPS location changes, these
additional parameters, for instance, control at which granularity the callback shall be invoked, i.e., for every small
movement of the device or only for larger relocations. In the example, updates are requested every 5000 millise-
conds if the distance has changed by at least 10 meters. For a data flow analysis tool, this additional information can
safely be ignored as it does not influence whether a data leak happens or not. It only gives additional information
about the circumstances of the leak which is not in the focus of the analysis.
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To be completely precise, a static analysis tool that looks for calls to subscription methods would have to maintain
a list of all methods in the Android SDK that register callbacks. Such a comprehensive list would not only be large,
it would also have to be updated for every new version of the Android operating system. Given that checking
whether a certain API method registers a callback or not is a manual effort, maintaining such a list of subscription
methods is practically infeasible. Instead, FLOWDROID over-approximates this list based on the observation that every
callback subscription method must at least accept the callback interface as one of its parameters. We therefore
re-formulate the problem as maintaining a list of callback interface types (i.e., fully-qualified names of callback
interfaces). Whenever a method takes such a type as a parameter, we assume it to register the respective interface
implementation as a callback. In Android, there is only a small number of interfaces. Furthermore, all callback
interfaces start with “On” and end with “Listener”. This enables us to perform a simple grep over the Android API
documentation or source code whenever a new Android version is released to obtain the up-to-date list of callback
interfaces. This heuristic is assumed to be safe as the coding rules of the Android Open Source Project enforce
naming conventions on all Android core framework developers. In FLOWDROID, the list of callback interfaces is
saved in the AndroidCallbacks.txt file. In practice, we have not yet observed any false positives because of
over-approximating subscription methods using parameter types.
The call to a subscription method for an event also further restricts the time at which the respective event can
be received (and thus the callback can be invoked). If the app, for example, only subscribes for GPS location
changes when a low battery event has been received, this restricts the set of possible event sequences. The first
location update must then always be preceded by a low battery event. Directly jumping from the onResume method
of the hosting activity to the location update is not possible without the low battery callback in between. This
problem of possible event sequences has been discussed by Yang et al. [151]. In FLOWDROID, we do not capture
such dependencies and instead conservatively over-approximate the set of possible events. We assume that every
event can happen at every time during the runtime of the respective host component. With similar reasoning, we
also chose not to model calls to API methods that unsubscribe an app from events. Instead, we assume that events
are never unregistered. In total, event subscriptions are considered to be always active between the onResume and
onPause lifecycle events of the hosting component if they are being subscribed to anywhere in that component. In
practice, we have not yet observed any false positive due to this inaccuracy in a real-world app.
One issue, however, arises when calling event callbacks from pre-defined positions within the dummy main method.
Anonymous inner classes may reference final variables from their enclosing methods as shown in the example in
Listing 41. In this example, the onCreate method registers a new button click callback handler as an anonymous
inner class which leaks data from a final variable of the enclosing method once the button is clicked. In the
bytecode, the anonymous inner class becomes a normal class that receives a reference to the outer class as a
constructor parameter. The reference to the final data variable is modeled through a second constructor parameter.
When creating an instance of the callback class in the dummy main method, the original meaning of this second
parameter is lost and there is no longer a connection to the original data it received. Recall from Section 4.15 that
parameters of method or constructor calls in the dummy main method are generated artificially. In the example,
the inner class will be constructed with an empty string for the data parameter instead of the actual source data.
Consequently, no leak will be detected by FLOWDROID. To properly handle such dependencies and ensure that such
leaks are detected, the computation of the respective values (the data variable in this case) would have to be copied
over to the dummy main method. Only then, the correct values would be available when invoking the constructors
of the inner classes. This would require a full backward slice on all variables the callback depends upon. As this
would result in significant additional computational effort, we chose to not model such dependencies. In practice,
sensitive data is usually not passed in this way, but rather obtained and leaked in the callback as one operation. If
sensitive data is passed between callbacks and other code, it usually happens through explicit fields in the outer
class.

5.3.2 Dynamic Broadcast Receiver Registration

As described in Section 5.1, an Android app consists of various components that are declared in the
AndroidManifest.xml file. Broadcast Receivers are special as they can also be registered dynamically, i.e., the
list in the manifest file is not necessarily exhaustive. This dynamic extension feature is not available for any other
component type. Conceptually, this means that content providers can be divided into two groups: Those known
from the manifest that are handled as described in Section 5.1 and those added at runtime. For the latter, FLOW-
DROID must scan for registration methods in the very same way to scans for callback subscription methods. The only
difference is how the dummy main method is transformed when a new dynamically-registered instance is detected.
For a callback, a method call is added between the onResume and onPause lifecycle events of the host component to
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1 void onCreate() {

2 final String data = source();

3 Button button2 = (Button) findViewById(R.id.button2);

4 button2.setOnClickListener(new View.OnClickListener() {

5 @Override

6 public void onClick(View v) {

7 sink(data);

8 }

9 });

10 }

Listing 41: Callback in Anonymous Inner Class

simulate the respective callback happening while that component is running. A dynamically-registered broadcast
receiver, on the other hand, becomes a new top-level component. Consequently, FLOWDROID creates a new secti-
on in the dummy main method from the same blueprint that was also used for the statically-declared broadcast
receivers.

5.3.3 Method Overwrite Callbacks

In addition to explicitly-registered callbacks and broadcast receivers, one can also implicitly divert the app’s control
flow from the Android operating system into user code by overwriting framework methods. In Android, users im-
plement components by creating own classes that inherit system-defined base classes. This fact is already exploited
when users overwrite well-documented lifecycle methods such as onCreate. Additionally, users can, however, also
overwrite arbitrary other public or protected methods that have never been intended for the use of app developers.
These methods exist because of the internal design of the Android SDK. Consequently, these additional methods are
not part of the documented component lifecycle and may change between Android versions without prior notice.
Ignoring these methods would, however, yield an incomplete callgraph.
Therefore, FLOWDROID scans through all classes that transitively inherit an Android component class (Activity, Ser-
vice, BroadcastReceiver, ContentProvider) and checks for overwritten methods. The lifecycle methods are filtered
out, because they are handled explicitly according to the respective component’s lifecycle model as explained in
Section 5.1. Calls to these overwritten methods are handled just like dynamically-registered callbacks. At the run-
time of their respective component (i.e., between onResume and onPause), an arbitrary number of calls to these
methods is simulated. This disregards the original order in which the Android framework calls these methods and
does not consider the circumstances under which they are called. In practice, this approximation is, however, suf-
ficient. Note that this technique is only intended to capture methods that are either not official interfaces (and
thus rarely used) or have not yet been explicitly modeled in FLOWDROID (“catch-all clause”). Therefore, maximum
precision is not the goal here.

5.3.4 Iterative Callback Collection

The above description of dynamically-registered callback handlers and broadcast receivers assumes that the calls
to the subscription methods are found by the static analysis tool. For callback handlers, one additionally needs to
know in the context of which component the subscription method is called. Otherwise, it would, for instance, not
be possible to associate a button click handler with the activity that hosts the respective button. Conceptually, the
analysis must thus traverse a callgraph. If a subscription method is transitively reachable from a lifecycle method of
a component, then the respective callback belongs to that component. Furthermore, relying on a callgraph ensures
that unreachable calls to registration methods are not considered and thus do not produce false positives.
This means that collection subscription methods requires a callgraph. On the other hand, it also extends the very
dummy main method from which this callgraph has been constructed. Therefore, the callback handling in FLOW-
DROID has been implemented using an iterative approach. FLOWDROID first creates a simple dummy main method
that only contains calls to the lifecycle methods of the various components as described in Section 5.1. This pre-
liminary dummy main method is then used to compute a first (unsound) approximation of the app’s callgraph.
The idea is that the methods in this first callgraph approximation are (transitively) called by the framework. They
are the seeds for the control flow inside the app. Only from these methods, the first callback can be subscribed to.
FLOWDROID then iterates over all reachable methods and checks for calls to callback subscription methods. Whe-
never a call to a subscription method is found, the target class that implements the callback interface is recorded.
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This gradually grows the dummy main method to also emulate calls to the newly discovered callback methods.
Conceptually, one needs to include this callback implementation into the callgraph and continue the search for
further callback registrations. Note that callback handlers may also register new callbacks, so the search must also
continue within newly discovered callback handler methods. This technique gradually expands the callgraph until
it covers all methods that can be potentially become reachable at runtime at some point.
For every recorded callback implementation, FLOWDROID must also record the component to which it belongs. As
explained above, if an activity subscribes for location updates, these updates can only be received as long as the
subscribing activity is running. On a more technical level, the association between callback method and component
dictates where the call to the callback method needs to be placed in the dummy main method. Ideally, the updates
to the dummy main method and to the callgraph would be concurrent: The preliminary dummy main method with
only the lifecycle methods is used to create the first iteration of the callgraph. Then, the dummy main method
and the callgraph are both extended whenever a new callback subscription is found. In the end, one would have
a complete callgraph on which to directly run the taint analysis, and a fully-implemented dummy main method
that serves as a model for reference. Unfortunately, the SPARK callgraph algorithm implemented in Soot is not
incremental. It was not designed to react to changes in the target program (though purely additive) and extend
the callgraph accordingly. Therefore, FLOWDROID currently collects all callback subscriptions that are currently
reachable, then extends the dummy main method, computes the callgraph anew, and continues the search. This
re-computation of the callgraph is a source of inefficiency that could be mitigated by switching to an incremental
callgraph algorithm such as the one by Souter and Pollock [125].

5.3.5 Fast Callback Collection

The iterative callback collection is precise, because it can filter out callbacks that are registered in unreachable
code. Furthermore, it can precisely associate callback registrations with their respective parent components. On the
other hand, this requires iterative extensions to the callgraph which are time-consuming. For cases in which this
precision is not needed, FLOWDROID offers an alternative callback collection algorithm that favors performance over
precision. The idea of the fast collector is to make a single pass over all application classes, i.e., all classes loaded
from the analysis target. Only classes loaded from additional libraries on the classpath are not considered. For each
class, FLOWDROID cans for method override callbacks and then scans over all statements in all its methods to find
dynamic broadcast receiver registrations and dynamic callback registrations.
This approach completely evades the need to construct a callgraph. On the other hand, without a callgraph, there
is no longer a notion of reachability. Recall that the relation between callback and parent component was based
on reachability; a callback is used inside a component if the call site that registers the callback is transitively
reachable from a lifecycle method of that component. With the fast approach, this definition is no longer suitable
and must be replaced by an over-approximation. We instead associate every callback with every component, i.e.,
build the Cartesian product of components and callbacks. This over-approximation gives rise to a tradeoff: While the
imprecise callback collection as such is substantially faster than the precise one, the dummy main method generated
from its outputs is also substantially larger, leading to more possible data flow paths through the program. This
can, in turn, increase the runtime of the data flow tracking itself. As we show in our evaluation in Section 8.7,
such an over-approximation greatly increases the time and memory consumption of the analysis. In other words,
a precise callback collection, though it increases the initial effort, is a substantial requirement for an efficient data
flow tracking afterward.

5.3.6 Declarative Callbacks on UI Elements

Callbacks on UI controls such a button click handlers can not only be registered imperatively through subscription
methods, but also declaratively in the layout XML file that declares the respective UI element as shown in Listing 42.
Recall from Section 5.2 that all layout XML files are transformed into a binary format at compile time. After
compilation, the button is only referenced from the program code by its unique numeric identifier instead of the
name myButton. In Section 5.2, we explained how accesses to such IDs in the program code can be mapped to the
respective UI element. For declarative callbacks, the process is more complex: Not the code accesses a UI element,
but a UI element registers a callback in the code. There need not even be a reference from the program code to
this particular button as such a requirement would violate the declarative nature of callbacks defined in XML. On
the other hand, note that the layout file only specifies the name of the callback method, but not the activity class
that hosts the button. In general, there is no reference from a layout XML file to its parent activity. Instead, the
code of an activity implementation binds to the parent element of the layout (the RelativeLayout in the example)
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1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent" >

5 <Button

6 android:id="@+id/myButton"

7 android:layout_width="wrap_content"

8 android:layout_height="wrap_content"

9 android:layout_alignParentTop="true"

10 android:layout_centerHorizontal="true"

11 android:layout_marginTop="26dp"

12 android:text="@string/button3"

13 android:onClick="onButtonClick" />

14 </RelativeLayout>

Listing 42: Declarative Callback Definition

1 public class MainActivity extends Activity {

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.activity_main); // 0x7f030018

6 }

7 ...

8 }

Listing 43: Code Reference to View from XML File

at runtime by calling the setContentView API method as shown in Listing 43. The example shows the Java code;
note that the reference to the constant field R.layout.activity_main will be replaced with its value 0x7f030018

at compile time. The referenced element and its sub-elements are called a View. In the Android terminology, this
API method sets the active view of an activity. The setContentView API call also maps the method names for the
callbacks in the view to the respective methods in the calling activity class. Also note that multiple activities can
bind to the same layout for re-using the layout definitions.
The challenge for a static analysis tool lies in creating a static (potentially over-approximating) view of this dynamic
mapping between layout XML file and implementing activity class. Technically, this mapping is two-fold as shown
in Figure 15. Firstly, the analysis needs to find the one-to-one mapping between ID and layout XML file. Secondly, it
must then map this ID to the correct code class(es) which can be arbitrarily many. We will now describe how both
challenges are tackled in FLOWDROID.

Mapping Layout Control Files To View IDs
The ID of a layout control file (which is the ID that gets passed to the calls to setContentView in the code)
references the name of the layout XML file in the app’s resource database. This database is a custom hierarchical
data structure which is located in a file resources.arsc contained in the app’s APK file. Figure 16 shows the
overall layout of the data structure. It has two top-level elements: A string table and a table of packages. The

layout.xml ID 9x7f030018 Activity2

Activity1

Activity3

Figure 15: Mapping Between Layout Controls and Activity Implementations
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resources.arsc

Strings Package
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Integer

Null

Reference

Reference

Figure 16: Android Resource File Data Structures

string table is only used internally by the arsc database which we will explain later. Each package has a name
and a list of declared types. Per package, there is a set of type specifications and of types. For simplicity, we treat
type specifications simply as forward declarations for types and do not associate them with a semantic on its own.
A type can then be seen as the actual implementation of the type. Each type is associated with one more more
configurations. A configuration defines restrictions on the device for which the respective type is applicable. This
allows the app developer to, for instance, use different texts for different target locales, or to use different images
depending on the screen size and resolution of the target device. Much of the complexity this data structure is
hidden from app developers by modern development environments such as Android Studio, though. Types contain
an arbitrary number of resources. A resource can be a string, a reference to some other resource, a color, etc.
Technically, string resources are references into the global string table.
Each element of the resource file has a unique ID. The ID of a single resource is an integer that represents a
combination of the IDs of the containing package, containing type, and the resource-specific ID according to a
well-defined bit-shift pattern as shown in Figure 17. For finding the mapping between layout control files and
IDs, FLOWDROID only needs to read the string resources of the respective type from the resource file. The IDs in
the source code exactly correspond to resource IDs in the resources resources.arsc file. Therefore, FLOWDROID

implements the optimization of only querying those layout IDs that appear in the code.

Mapping IDs to Activity Implementations / Source Code
The next step for the overall goal of matching views to host components is to match the layout IDs to the activity
implementations that bind to the respective view. Recall that this binding is done through a call to setContentView

as shown in Listing 43. This means that the task is to map activities to the IDs for which they call setContentView
at some point during their lifecycle.
Usually, the call to setContentView is one of the first statements in the onCreate lifecycle method of the activity.
This is also how activities are created by common Android development tools such as ADT or Android Studio. In
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Figure 17: Android Resource ID Layout

theory, an activity is, however, free to switch between views at runtime by calling setContentView again later
on, or to use different views depending on the outcome of a computation. FLOWDROID over-approximates this
association. All activities that call setContentView with the ID of a particular view at some point are considered
to link to that view. If an activity references multiple views, FLOWDROID assumes them all to be active at the same
time. This design decision over-approximates the set of possible callbacks per activity, but is guaranteed to never
miss a callback. Technically, FLOWDROID iterates over the bodes of all methods reachable from the lifecycle methods
of an activity and looks for calls to setContentView. If the argument is a constant integer value, it is directly
collected. Otherwise, FLOWDROID performs a backward use/def analysis to find the definition of the argument until
it reaches a constant value. If the ID of the view is not constant, but calculated at runtime (e.g., due to deliberate
obfuscations), FLOWDROID cannot perform the mapping. One could conservatively assume that such non-constant
view registrations link all possible views to the respective activity, but this can lead to an unacceptable number of
false positives.

5.3.7 Callback Sources

Handling callbacks correctly is not only important for obtaining a complete callgraph of an Android app, but also
for detecting callback-based sources. In Section 3.2, sources have been defined globally, i.e., certain methods were
said to always return sensitive data. In addition to these source methods, data can, however, also be passed from
the Android operating system into an application through the parameter of a callback or lifecycle method. In
Listing 40, the app is notified whenever the physical location of the device changes. The data object containing the
new location (mainly the longitude and latitude) is passed in through the loc parameter of the callback and then
leaked by the app in Line 7. In FLOWDROID, we therefore model all parameters of callback and lifecycle methods
as additional sources. For the Android operating system, this conservative over-approximation is also precise as
incoming data is usually either sensor data or data received via inter-component communication (i.e., incoming
intents).
The only exception in which such data is not relevant and should thus not be tainted is UI callbacks. A button click
handler, for instance, receives the button that was clicked through a parameter. The button itself, however, usually
does not carry sensitive data as programmers do not commonly store such data in the button’s text or tooltip. Since
data read from the button is usually not passed to a sink either, the over-approximation explained above does not
lead to false positives in the examples we have examined in our evaluation. On the other hand, since apps are
highly UI-driven in Android, they contain many UI elements with callbacks and thus many of such parameters that
are irrelevant to the taint analysis, but captured by the rule above. Consequently, FLOWDROID needs to track the
taint status of all those parameters, even though no leak is to be expected, which can have a negative impact on
performance. To circumvent such problems, FLOWDROID checks whether the type of the callback parameter is a class
from one of the Android UI packages, e.g., android.widget. If so, the parameter is only considered as a source if
the mode for handling UI controls (see Section 5.2) is configured to treat all UI elements as potential sources. By
default, only password fields are considered as sources. In this case, callback parameters from other UI widgets can
safely be ignored as well.

5.4 Performance Optimizations

The normal FLOWDROID data flow tracker is, given appropriatre implementations of the platform-specific interfa-
ces, applicable to all analysis targets that can be converted to Jimple code. Even in its optimizations, it needs to
maintain this generality. With platform-specific domain knowledge, on the other hand, one can greatly improve
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the performance of the data flow analysis for that particular platform or use case. In this section, we describe such
optimizations introduced by the FLOWDROID extensions for Android. We also report on optimizations we tried, but
that did not prove effective during our experimental evaluation.

5.4.1 Overtaint Filtering

In every static taint analysis, over-tainting can occur. In such a case, more data is considered tainted than actually
necessary. Besides the increased risk of false positives, this additional taint state can also drastically increase the
runtime and memory consumption. Each tainted access path must be propagated over all control flow nodes that
(transitively) follow the node that created the taint. In the worst case, a spurious taint is propagated over each
statement in the whole app. To reduce the impact of over-tainting, one can generally improve the precision of the
data flow tracker, which has limits on its own. Access paths, for instance, are usually (as in FLOWDROID) bounded by
a specific, fixed length as explained in Section 3.3. All access paths that would exceed this length are truncated and
are defined to taint all subsequent field dereferences as well. If the length limit is three, an access path a.b.c.d.e

is truncated to a.b.c.d.*, tainting not only a.b.c.d.e, but also all other longer access paths for which it is a
prefix such as a.b.c.d.f. In this case, the analysis can no longer distinguish the truncated last field access from
any other field access with the same prefix and may create false taints if such other fields are accessed.
In practice, the sources of over-tainting in Android apps focus around few root causes. In many apps, activities
hold references to other activities. If this activity is tainted completely, it will taint all other activities to which it
holds references as well. Since the over-tainting propagates transitively, all objects referenced by those activities
will be tainted as well. This can easily lead to significant portions of the app being tainted. In many such cases,
the analysis of the app will no longer terminate in realistic time and memory bounds. One reason that can lead to
complete activities being tainted are circular references between the activity and a data object. With inner classes,
this occurs by default. The activity holds a reference to the data object, which holds a reference to the instance
of the outer class that created it (i.e., the activity) in its compiler-generated this$0 field. Therefore, access paths
can grow infinitely large by pointing from the activity to the inner class and back, before reaching the actual field
they are meant to point to. When cutting the access path at a fixed length, the result may point to the activity as
a whole. While this problem cannot easily be solved without adapting the basic concept of access paths, it can still
be easily detected.
As described in Section 4.12.2, FLOWDROID supports a memory manager that inspects every newly created taint
abstraction before it is propagated inside the IFDS solver. The memory manager has the ability to alter or completely
drop the abstraction in case it is inefficient or unnecessary. In the FLOWDROID extensions for Android, we provide
an extended memory manager that, in addition to the normal access path pooling and compression, checks for
hints of over-tainting. If an access path points to a complete component such as an activity or a service, the taint
is dropped. While this can lead to a false negative, the analysis would most likely not terminate at all with this
over-tainting access path in place.

5.4.2 Callback Filtering

The Android operating system interacts with apps through callbacks as explained in Section 5.3. Through the
generated dummy main method, FLOWDROID emulates a complete execution of the app including all possible calls
to these callback methods. Consequently, the size of the callgraph depends on the precision of the dummy main
method. If a callback method is invoked at several spurious places, e.g., a button click is emulated in several
components that do not acually host the respective button, these edges must be processed by the data flow analysis.
Given that there is tainted data flowing over the spurious edge, one invalid callgraph edge may lead to many more
edges in the IFDS solver’s exploded supergraph, because the spurious taint is not only propagated into the false
callback, but also into all of its transitive callees. Therefore, the performance of the taint analysis can be improved
by increasing the precision of the mapping between callbacks and their respective host components. This ensures
that the dummy main only calls the callback during the running phase of these components (or, most commonly,
the one single component) that actually host it.
Just as in the case of over-taint filtering, increasing the precision of the algorithm that creates the callback-to-host
component mappings has its limitations. A callback is assumed to belong to a component if the call site that registers
the callback with the Android operating system is reachable from a lifecycle method of the respective component.
This check is a reachability problem and is answered by traversing the interprocedural control flow graph which,
in turn, is based on the callgraph. Consequently, imprecisions in the callgraph can lead to spurious associations
between callbacks and host components. FLOWDROID’s callback collector provides an interface for callback filters to
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allow for additional checks. Only if all filters accept a given mapping, it will be used for creating the dummy main
method.
FLOWDROID implements a number of heuristics in such callbacks filters to remove improbable callback-to-host com-
ponent mappings. If a callback method is implemented inside a component class, e.g., an activity, this component
may only be associated with that particular component. We assume that in apps developed with reasonable soft-
ware engineering practices and design patterns in mind, developers will not create buttons in activity A that have
an onClick handler implemented in activity B. This assumption is backed by the fact that such cross-referencing
is only possible when registering callbacks by hand in the code. The more convenient declarative registration in
the layout XML file that is also generated by the UI editors of popular development tools such as Android Studio
requires the callback to be implemented in the current component’s class. With similar reasoning, we also restrict
callback implementations in inner classes inside component classes to be associated with only the component that
is implemented by the respective outer class.

5.4.3 Analzying One Component at a Time

FLOWDROID is an intra-component static data flow tracker. Without any extensions such as the ones described in
Section 5.6.2, it does not model inter-component communication through intents. The only possible information
exchange between two components that FLOWDROID does support on its own is through shared memory, i.e., a
static field that is written by one component and read by another one. Note that it is not an explicit design decision
to model such shared memory communication. It is rather a consequence of how FLOWDROID tracks taints through
static fields. A static field is always in scope. Consequently, regardless of the component to which the current state-
ment belongs, it can access the static field and the taint can be transferred. Different components are just different
parts of the dummy main method, so this taint propagation comes naturally. Consequently, since shared memory
communication is not a well-defined feature of the data flow tracker, we can make the simplified assumption that
FLOWDROID does not handle inter-component communication at all. With this assumption, each component in the
app can be analyzed in isolation. Instead of generating one large dummy main method that contains the lifecycle
of each component, it is also possible to first generate a dummy main method only containing the first component,
fully analyze it, and then repeat the whole process for each subsequent component.
The advantage if this approach is that the dummy main method is significantly smaller, and that the number of
taint abstractions that must be kept in memory concurrently is also much lower. The latter is for two resons. Firstly,
inside a single component, there is less code that can transfer taints. Since we need to store pairs of statement and
taint abstraction for flow-sensitivity, not only the number of tainted variables, but also the number of statements
counts. Secondly, inside a single component, there are usually fewer calls to source methods than in the overall app.
Consequently, less tainted data is introduces into the app in the first place. Therefore, analzying one component at
a time can help analyze apps for which the data flow tracker would otherwise exhaust the available memory before
it is able to complete the analysis. We analyze the detailed impact this mode has on analysis time and memory
consumption in Section 8.4.

5.4.4 Analzying One Source at a Time

Each source introduces new, unconditionally-tainted data into the analysis that must then be propagated over all
statement that are reachable from the source. Taints can be killed early due to strong updates (see Section 4.7),
but in general, each configured source negatively affects the performance of the analysis. This effect is multiplied
by the number of taints the respective source is called in the code. One trivial approach to improve the scalability
of the analysis is, thus, to limit the sources to those the analyst is actually interested in, instead of using one large
comprehensive list including all potentially sensitive sources there could be in the Android SDK. While this may
increase the risk of missing interesting sources and increases the manual effort for the user to correctly configure
the analysis, it also saves time while processing the results, because the analyst need no longer process a potentially
large number of uninteresting findings.
In some cases, even a reduced list of sources is, however, still very large. In this case, we exploit the observation, that
taints introduced by different sources are independent. Therefore, it is possible to run the analysis with one source
at a time and afterwards merge the results. FLOWDROID supports such a mode in which it automatically iterates
over the sources and runs the IFDS data flow analysis only with one source at a time. Note that this requires special
support from the source/sink manager (see Section 4.3). The interface for source/sink managers is extended with
iterator-like functions for selecting the next source and checking whether there are any more sources the analysis
needs to process.
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We observe that the inter-procedural control flow graph, which includes the callgraph and the intra-procedural
control flow graphs of all method bodies inside the app, is completely independent of the source currently under
consideration. Therefore, we build this data structure only once and make it available to all the different per-source
runs. This also means that FLOWDROID need not re-construct the dummy main method for each per-source run,
which avoids a major performance penalty. Still, we find that this approach does not yield acceptable performance
for most apps. Compared to the normal analysis with all sources together, the one-source-at-a-time mode can
consume up to 90 times the computation time for apps with many sources. We therefore leave this mode as an idea
for future research, but do not encourage its use in practice.

5.5 Related Work

In this section, we present related work that has similar goals as the FLOWDROID data flow engine together with its
extensions for the Android platform.

Callback and Lifecycle Modeling
In FLOWDROID, we explicitly model the Android lifecycle, a technique that other approaches in literature [142] have
inherited from the work presented in this thesis. Our callgraph is context-insensitive. When a callback method is
called, there is no distinction as to what has triggered the callback. Yang et al. [152], on the other hand, have
built an approach for context-sensitive callgraph construction on Android apps. Their approach is based on the
assumption that the same event handler can be registered for multiple events (e.g., on different UI widgets) and
then acts differently based on the context of the current callback, e.g., which widget was clicked. At the moment,
their approach is limited to a handful of event types (creation and termination callbacks). The model that defines
these callbacks is still supplied manually. Such manual definitions, even for parts of the model, however. have the
drawback that, when a new Android version is released, the model must be updated to reflect the changes. Such
changes are usually purely additive and scarce, but can occur. In version 3.0 (“Honeycomb”), for instance, the frag-
ment API was added. It allows app developers to sub-divide activities into smaller, re-usable parts called fragments.
To avoid the manual engineering effort of modeling new or extended features, Blackshear et al. have proposed
Droidel [21]. Droidel automatically generates application-specific stubs that summarize the behavior of the Andro-
id libraries for that app. This stub exposes a single entry point which takes the place of FLOWDROID’s dummy main
method. Droidel assumes that all of the (current and future) relevant behavior in the Android operating system
is implemented in Java code and statically analyzable with sufficient precision. EdgeMiner by Cao et al. [29] is
an approach to automatically detect control flow transitions through the Android framework code. Their core idea
is to run a static analysis on the entire Android framework once and store the discovered control flow edges as
summaries that can be plugged into the individual app analyses.
The authors of DroidSafe [60], on the other hand, argue for manually-crafted stub implementations of the Android
operating system. These stubs take the place of the original system libraries during analysis. As the stubs are
implemented by human analysis experts, the stub developers can avoid constructs that are hard to analyze statically
or that could potentially lower the precision of the analysis. On the downside, this approach requires far more expert
labour than Droidel or FLOWDROID. The authors state that they had to emulate (i.e., re-implement in Java) 3,176
native methods, 45 classes of proprietary code, and simplify 117 classes in the Java standard library and the Android
system libraries. All these classes and methods need to be checked and potentially extended (and/or augmented
with new classes and methods) for every new release of the Android operating system.

UI Control Handling
UI controls can be sources of sensitive data as explained in Section 5.2. UIPicker by Nan et al. [101] and Supor
by Huang et al [66] are approaches for automatically identifying those UI elements into which users tend to input
sensitive data. Their UI models go beyond FLOWDROID’s three-fold distinction between (1) ignoring all UI elements,
(2) considering only password fields as sensitive, and (3) considering all UI elements as sensitive.

Reflection Handling
Many frameworks and tools for static analysis cannot handle reflective method calls, or can only resolve trivial
cases in which the target class and method names are constants. The problem of resolving reflective method calls
is orthogonal to the problem of static data flow tracking, but warrants a brief discussion. Li et al. have proposed
DroidRA [85, 87] which reduces the problem of finding the runtime values of reflective method calls to a constant
propagation problem which is then solved using the COAL [102] solver. The analyzer by Del Vecchio et al.[138]
first conducts a backward slice starting at the point where the string of interest is used, i.e., the reflective method
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call, and then performs abstract interpretation on the obtained slice. Harvester [112], on the other hand, is a hybrid
approach that can extract arbitrary runtime values from Android apps through a combination of static backward
slicing and dynamic execution. Harvester first extracts those statements that contribute to the computation of the
value of interest. These statements are then used to construct a new app in which exactly this code is run in
isolation, ignoring all evasion techniques such as emulator checks that might have been present in the original app.
Once the value of interest has been computed, it is written into a log file.

Data Flow Analysis
FLOWDROID is based on taint tracking. We tried to implement and evaluate trade-offs that made the analysis ap-
plicable to real-world app stores without requiring fundamental changes to existing apps or infrastructure. Other
approaches such as the IFC type system by Ernst et al. [43] or the RSCP analyzer [90] are geared towards high-
assurance app stores that rather force the app developer to cooperate and than miss potential violations of the data
flow policies. For such stores, not accepting an app, because it cannot be proven to comply with the data flow policy,
is acceptable, and it is the duty of the app developer to modify his app in such a way that the app store is able to
verify it. This can, as in the case of Ernst et al., include the requirement for the app developer to upload source
code instead of only the binary app, and to furthermore annotate his source code with a flow policy. The store then
only checks the flow policy against the code, and in case of a match, checks whether that policy is acceptable given
a store-wide or user-specific reference policy. We, on the other hand, argue that such approaches, while they can
give formal security guarantees, inherently restrict the developers. To be fully sound, such approaches must refrain
from concepts that cannot be analyzed statically such as dynamic code loading, reflection, and native code. Forcing
developers to restructure their apps around such restrictions and, in addition, provide the required annotations is,
in our opinion, only possible for restricted domains such as military contract work, but not for a general-purpose
app store. General-purpose app stores face competition27 and overly restricting developers has the potential to
scare them away to other competitors. One possible comprise could be to require developers to submit test cases,
in the hope that they create these test cases anyway for ensuring the functional quality of their apps. Bastani et
al. [19] propose to use these test cases to limit the static analysis to those code parts that are reachable by tests to
reduce the code size that needs to be analyzed as well as the number of false positives. Additional instrumentation
injected into the app makes sure that the app is terminated when it attempts to execute code that was not covered
by any test case and, thus, has not been analyzed. Their strategy is an interactive one. The analyzer is sound, and
when it fails to verify a program, the developer has the chance to provide additional test cases that more completely
cover the reachable statements in the app.
Huang et al. [68, 96]’s approach is also based on type systems, but with a focus on precision. Their type system
DFlow is context-sensitive, but flow-insensitive. For automatically inferring the type specifications, they propose
the DroidInfer algorithm based on CFL-reachability [116]. This technique by Tom Reps reduces a number of static
analysis problems to graph reachability problems, in which a path between two nodes is only considered to be
valid if the concatenation of the labels along this path is a valid word in a context-free language. In fact, Reps
describes the IFDS framework on which FLOWDROID is built as a particular instance of CFL-reachability. In Huang
et al.’s work, each use of a tainted variable amounts to a type constraint. All type constraints together build the
context-free language. Only valid sequences of data uses, however, correspond to valid words in that language.
Anadroid by Liang et al. [88] is a static analysis framework for Android that also features static taint flow analysis.
Anadroid uses a pushdown system to model dynamically-dispatched interprocedural and exceptional control flow.
They use a formal language that closely resembles the Dalvik bytecode language, and for which they then define
a formal semantics that manipulates the push-down automaton. They use existing techniques from Reps [118]
to compute reachability in the pushdown system, i.e., enumerate the reachable control states. These states can
afterwards be checked against a policy to find unwanted data flows. To cope with the large number of events and
especially potential interleaving of events in Android, Liang et al. use a technique called entry-point-saturation
(EPS). The key idea is to run the analysis on one callback, take the results, use them as the starting state when
procssing the next callback, and widen the result with the new information from that next callback until a fixed
point has been reached [95]. A approach based on model-checking has been proposed by Song and Touili [124].
They define unwanted behaviors in Android apps using Computation Tree Logic (CTL) or Linear Temporal Logic
(LTL), to reduce data flow checking to CTL/LTL-based model checking. Van der Merve proposed an extension
to Java Path Finders (JPF) to traverse, statically simulate, and verify all execution paths through the app [94].

27 For Android, there are various third-party stores such as the Amazon store (default app store for all Amazon phones). In countries
such as Russia and China, the landscape is even more diverse, with Google Play not even being available in China.
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HornDroid by Calzavara et al. [28] abstracts from the semantics of the app using SMT formulas which are then
solved by an off-the-shelf SMT solver and is accompanied by a formal soundness proof.
PIDGIN by Johnsol et al. [70] provides a generic query language for program dependence graphs, the same data
structure also used by JoDroid [97]. Since PIDGIN allows a wide range of policies to be expressed over the PDGs, it
not only supports data flow analysis, but can also check for a variety of common security vulnerabilities in Android
Apps at the cost of requiring the user to correctly formulate the corresponding queries. Standard analysis tools
that check for privacy violations also usually assume all leaks to be equally important, regardless of the type of the
information that was leaked, and regardless of whether the data was leaked in full or only partially. Such a partial
leak could, for instance, be a substring of an identifier. While the IMSI number, for example, unique identifies a
user, its first three digits only represent the country of the mobile network operator that issued it. Leaking this
partial information is thus a much lesser privacy infringement. Barbon et al. [17] therefore propose an analysis
that quantifies information leakage. MorphDroid by Ferrara et al. [51] has a similar goal, but also accounts for
composite data (e.g., a GPS position being composed of logitude and latitude) and semantic transformations such
as associating an address with a GPS position. They use their quantitative model to distinguish accepted leaks such
as sending out the user’s city name for obtainting a weather forecast from leaking the exact location data which is
unnecessary for the purpose of a weather app. In their DAPA work,

5.6 Extensions to FlowDroid for Android

While FLOWDROID is a general-purpose data flow engine, it does not directly solve some of the higher-level questions
an analyst might have with respect to an app. This section presents approaches that extend FlowDroid to answer
such higher-level question. The approaches here build on FLOWDROID, rather than replace it or provide different
options for the algorithms used in FLOWDROID.

5.6.1 Detecting Malicious Flows

Analysts are usually interested in the trustworthiness of an app. FLOWDROID can enumerate the data flows inside
that app, but it cannot judge whether these data flows constitute expected behavior or malware. Such a judgement
usually requires the contextual knowledge of a human analyst as the very same data flow can be completely
expected in one app, whereas it is a strong indicator for malware (or spyware) in another app. Assume that an app
sends the user’s location to a remote web server in constant time intervals. In most applications, this is considered
a privacy violation. In a GPS navigation app, this is, however, expected, as the user wants to constantly know his
current location on the map to adapt his driving directions.
While manually judging data flows is feasible for individual apps, it does not scale to the market level with thou-
sands of apps. On would have to manually check the data flows of every app that is either freshly updated to the
store or updated to a new version. Clearly, automation is necessary for such a scale. To tackle the problem, Mud-
flow by Avdiienko et. al [14] rephrases the original question. Instead of asking whether a certain flow is malicious,
it asks whether a certain flow is uncommon for a certain category of apps. In the example, the question would
therefore be “Is it common for a GPS app to send out location data?” in comparison to “Is it common for a notepad
app to send out location data?”. In the first case, the respective flow will be detected in the majority of apps from
that category. In the latter case, such a flow will instead be an outlier with regard to the majority of apps from
that category. If one assumes that most apps are benign (and therefore most flows in them are benign), this gives
a good indication of possible malicious data leakage in an app.
Another approach to judging whether a data flow is expected by the user of the app or not is AppIntent [154].
While not based on FLOWDROID, it also uses static taint tracking to first collect all paths through the app on which
data can be leaked. It then attempts to find the root cause for the transmission, i.e., a sequence of user inputs and
interactions. This sequence is then given to a human analyst for a final judgement. Though this apporach is not
fully automatic and requires a final decision made by a human expert, it greatly reduces the effort of this expert in
comparison to a full manual judgement of all flows.

5.6.2 Inter-Component and Inter-App Analysis

FLOWDROID is limited to tracking data flows inside a single component within an Android app. Modern apps,
however, contain a large number of components. Every screen shown to a user is usually modeled as a distinct
activity. Due to this model, the Facebook application, for instance, has more than 300 activities. Additionally, many
apps also contain multiple broadcast receivers, services, and content providers. Data is often not only processed
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inside a single one of these components, but passed between them. The Android operating system provides a built-
in remote procedure call (RPC) mechanism for this purpose called Binder. The purpose of the Binder service is to
pass messages, called Intents, between components. A component that receives such an intent can act to it and
further process the data contained in the intent.
For a static data flow analysis tool to track data passing over intents, it must be able to correctly identify the
targets of an intent. In other words, one needs to construct an inter-component control flow graph [104]. While
this is easy for intents that directly contain the fully-qualified class name of the receiver (called explicit intents),
it is non-trivial for intents dispatched by the Android operating system (called implicit intents). An implicit intent
does not contain a pre-defined receiver class. Instead, it only defines metadata about the request such as an action
string. Components inside the sender app or arbitrary other apps installed on the same device can register to
receive intents containing specific actions. If an app sends an implicit intent and there is only one possible receiver
registered for the respective action, the intent is automatically forwarded to that component. If multiple receivers
are possible, the Android OS asks the user to select the intended receiver. If a user, for instance, clicks on a link
inside a document, such an implicit intent for opening the URL from that link is started. If multiple browsers are
installed on the device, the user can choose which one shall be taken.
Implicit intents make it generally impossible to always pick the single receiver for an intent that is actually used
at runtime. Instead, the analysis needs to conservatively assume that all components that are registered for the
respective action are possible recipients of the intents. While such a conservative over-approximation is usually
feasible within a single application, one quickly encounters scalability issues when assuming that an intent can be
received by components inside other apps as well. In the example with the web browser, one would need to assume
that all (possibly unknown) web browsers in the world could receive the respective intent. If one limits “all web
browsers in the world” to the scope of an app store, i.e., only considers browsers available inside the store, the
list of recipients can still be extensive. Therefore, one usually limits the scope to not look for data flows from a
certain app to all possible recipients a user could have installed on his phone, but rather exactly enumerates the
concretely installed set of apps. Note that one does not need to consider inter-component communication if one is
only concerned about outgoing traffic from a specific app without considering how the data is further used by the
recipient. In such a case, one can simply define all methods that send intents as sinks and record the data leaving
the app through an intent.
If true inter-component data flow tracking is required, it is important to obtain the intent values used for dispatch
(class name for explicit intents and action string for implicit intents) as precisely as possible. The fewer possible
values a static analysis needs to consider, the fewer potential recipients need to be analyzed. Not knowing the action
string of an implicit intent at all due to analysis imprecision can be considered the worst case; every component in
every app on the device could be the potential recipient. IC3 [103] tackles exactly this problem. It uses composite
constant propagation to find not only precise values, but also precise complex structures consisting of multiple
values. Support for complex objects is important for inter-component communication on Android as one can not
only use the action string described above, but also various other values (and combinations thereof) to filter
potential receivers.
For combining the intra-component data flow analysis provided by FlowDroid with the inter-component control
flow graph created by EPICC [104], two different techniques can be used. ICCTA [86] first creates the inter-
component control flow graph and then combines all the different components of all apps under consideration into
one big single component. All IPC calls (i.e., calls that send intents) are replaced with direct method calls. Instead
of sending intents through Android’s Binder mechanism, the intent object is passed to the receiver method of the
target component as a normal parameter of a Java method call. This simplified app does not need any IPC handling
anymore and can directly be analyzed by an unmodified version of FlowDroid.
DidFail [77] uses the reverse approach. It first conducts data flow analyses on each individual components and later
combines these individual specifications to obtain the full picture. In the first step, all methods that can potentially
receive intents are considered as sources and all methods that can potentially send out intents are considered as
sinks. For every component, this gives a full specification of the respective component’s behavior with regard to
inter-component communication. Note that the ICC sinks extend the normal set of sources and sinks instead of
replacing it. This is important for also detecting cases in which a component is no a middle-man, but an endpoint
of an inter-component data flow. In other words, the app either loads data from a source and sends it out as part
of an intent, or receives potentially data as part of an intent and passes it into a sink. In total, DidFail creates a set
of specifications for each component that are of the following form:

• Source src flows to intent X
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• Intent X flows to sink snk

• Intent X flows to intent Y

• Source src flows to sink snk

In the second step, the inter-component control flow graph created by EPICC is used to combine the individual
component specifications to obtain the full data flows. Conceptually, ICCTA and DidFail compute the same results.
Researching the exact benefits of one approach over the other is an interesting subject of future work.
The approaches mentioned so far take a purely static approach to inter-component and inter-app data flow tracking.
DroidForce [110], on the other hand, combines FLOWDROID’s static intra-component data flow tracking with a
runtime mapping between components. The key idea to pre-compute all data flows within a component in a
conceptually similar way as DidFail. Instead of statically merging these summaries over components, this step is,
however, delayed to the runtime of the app. The static data flow summaries are injected into the apps as lookup
tables. Additionally, DroidForce augments the app with additional code for reading out and gluing together the
right flow summaries at runtime.
Consider a simple scenario with two components, regardless of whether they are in the same app or not. Component
A reads data from a source and then passes this data on to component B via an intent. Component B writes the
received data into a sink. The instrumented code in component A is triggered just before the intent is about to
be sent. It uses the pre-computed static data flow tables to look up which data flows have the current intent-
sending call site as a sink. The respective sources of these data flows are considered potential sources of the data
being transmitted. This set of potential sources is then appended to the intent before it is sent. When component
B receives the intent, the instrumented code of component B is triggered. This code looks up all data flows that
begin at the current intent receiver callback in the table of statically pre-computed data flows for component B. It
then assigns the received sources from component A as sources to these flows. The resulting flows look as if they
had been computed for a combination of component A and B similar to the output of DidFail. More concretely, if
component A knows that the phone’s unique device ID is sent via an intent, this source information gets appended
to the intent. Component B knows from its own lookup table that the incoming intent data is leaked via SMS. When
it learns from the additionally- injected intent data that this data was originally the phone’s unique device ID, it can
combine the two partial paths. In sum, it can conclude that the unique device ID is leaked via SMS: getDeviceID()
-> Intent -> sendTextMessage().
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6 Automatic Library Summary Generation: STUBDROID 29

As explained in Section 4.9, Android apps as well as Java programs usually rely on large libraries to provide their
functionality. In version 4.2, the Android SDK offers over 110,000 public methods and the number constantly
grows with every new release. For an analysis to be precise, it must not only analyze the application code, but
also consider the effect of these library methods on data flows inside the application. Existing approaches to static
analysis deal with library methods in one of three ways. The first class of analyses precisely models a subset of
these framework methods manually [49, 54, 60, 75, 91, 155]. This also includes FLOWDROID’s EasyTaintWrapper
component explained in Section 4.9.1. The second class of approaches analyzes the entire Android framework
together with every application [90]. The third class uses simple rules of thumb such as “taint return value of call
if one or more arguments are tainted”, which are expected to cover the most common cases [67]. All of these
approaches exhibit serious drawbacks.
Providing hand-written models for the framework is cumbersome to implement and requires manual re-evaluation
of (and possibly changes to) the model for every new framework version, which is a prohibitive effort given the size
of the code to be understood and modeled. CHEX [91], for instance, opts to not analyze the framework together
with the application, and instead resorts to externally-defined models. However, the source of the models is mostly
left open, effectively burdening the user with this non-trivial task. FLOWDROID’s EasyTaintWrapper, for instance,
provides models for the most commonly used classes such as Java collection classes or String APIs, but may miss
some less-used APIs. Therefore, the analysis may miss leaks or require the user to double-check whether all APIs
used in his target app are modeled in the EasyTaintWrapper’s configuration file prior to the actual taint analysis.
Including the libraries (e.g. all of the Android framework’s code) in the automated code analysis evades this manual
effort, but it introduces an often prohibitive overhead on the code analysis in terms of the overall code size to be
analyzed. The Android operating system consist of millions of lines of code, thereby greatly exceeding the size of
usual applications to be analyzed, causing the analysis to spend significantly more time in analyzing library code
than in analyzing application code, i.e., the code that is of actual interest to most analyses. We found such an
approch to induce a significantly increased analysis time—for every single app, over and over again. Furthermore,
in the case of system-specific libraries, the code might not even be available on the analysts machine, as it is specific
to a very specific execution environment, i.e., one smartphone model. This problem is underlined by the fact that
Google only ships stub classes together with its Android SDK which are sufficient for type information and to link
apps against them, but contain no actual implementation. These stub methods only throw exceptions stating that
the respective method is not implemented.
Applying rules-of-thumb instead of a proper library implementation or external model evades the problems of high
runtime overhead and high manual effort. However, it remains unclear to what extent these rules actually cover
all important libraries, or whether false-negatives may occur due to missing taint propagations. Worse, if these
rules are designed to avoid false-negatives, they necessarily need to over-approximate the behavior of method calls
and can thus lead to an increased number of false-positives. Recall that these rules are oblivious to the individual
callees, but aim at a generic model for all library calls.
In conclusion, none of the approaches presented so far solves the challenge of handling libraries during static ana-
lysis to full satisfaction. In this section, we thus present STUBDROID, the first fully automated approach for inferring
taint-flow models from binary distributions of libraries such as the Android framework or the Java JDK. STUBDROID

first performs a taint analysis on selected public methods. We demonstrate this for the collections API, which is
the most commonly used part of the framework. STUBDROID then generalizes the resulting source-to-sink data-flow
mappings and stores them in a summary file. When a static client-side taint analysis later processes the invocation
of a framework method within the code of an Android app, the analysis can simply plug in the information from
the summary file, and short-circuit further analysis of the framework call and all its transitive callees. While see-
mingly simple, a significant challenge lies in establishing summaries that are field sensitive and handle aliasing,
and in treating correctly the various callbacks that the framework code might use to interact with the application.
Furthermore, note that the generated summaries are independent of any concrete client application. They must
thus abstract from all possible state or call sequences while still retaining maximum precision.
We show that on commodity hardware it is usually possible to generate library summaries in under three minutes
per framework class— a one-time effort. Using STUBDROID’s summaries for conducting a taint analysis on client
applications with the FLOWDROID taint tracking tool can improve the analysis performance by over 90%. For many
applications, the use of summaries even enables the analysis, as the full analysis of those apps would time out after

29 Large parts of this Section are taken (directly or with minor modifications) from our 2016 ICSE paper[5]
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spending 30 minutes and consuming tens of gigabytes of memory if summaries were not used. STUBDROID avoids
these blowups because, opposed to client analyses, its analysis can focus on one framework entry-point method at
a time.
In summary, our work on STUBDROID provides the following research contributions:

• STUBDROID, a method for automatically generating correct and precise models of the Android framework
methods with respect to taint analysis,

• a full open-source implementation of the above,

• as an artifact, taint summaries for various important Android APIs, and

• an evaluation of the peformance effect of summary usage in the FLOWDROID taint-analysis tool.

Note that the STUBDROID approach is conceptually generic and can be applied to all taint analyses based on ac-
cess paths. Our current implementation is based on FLOWDROID and optimized inside the Soot and FLOWDROID

frameworks. STUBDROID’s full source code and the library summaries generated with it are publicly available as an
open-source project at: http://blogs.upb.de/sse/tools/stubdroid/
The remainder of this section is structured as follows. In Section 6.1 we motivate why simple rules of thumb
are not sufficient to handle library methods in a taint analysis. Section 6.2 shows what taint summaries for a
method look like and also introduces the concept of access paths which STUBDROID uses to model field references.
Section 6.3 explains STUBDROID’s architecture for generating and applying summaries, before we report on our
summary-computation process in detail in Section 6.2. Section 6.5 focuses on STUBDROID’s callbacks handling,
before we go into the process of applying summaries in Section 6.6. In Section 6.7, we report on the performance
and correctness of STUBDROID. Section 6.8 presents related work.

6.1 Motivating Example

Using summaries, static analyses can gain considerable performance improvements. A summary, plugged in at a
call site, not only renders unnecessary the analysis of any direct callees, but also of all of the methods called
transitively. A summary thus truncates a whole call tree and replaces it by a single leaf containing the summarized
data-flow facts. Even the summary for a simple method such as HashSet.add() will shortcut the analysis of about
a dozen methods as shown in Figure 18. When analyzing the client program, the whole tree is flattened into a
single rule: “For a HashSet s and an element x, if x is tainted, then s is tainted after executing s.add(x).” Given
that HashSet.add() is used many times in many applications, this can save considerable analysis time.

HashSet.add() HashMap.put()

Entry.recordAccess()

HashMap.indexFor()

HashMap.hash()

HashMap.addEntry()

HashMap.createEntry()

HashMap.resize()

Entry.<init>

Figure 18: Call Tree for HashSet.add()
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1 public void doLeak() {

2 ByteArrayOutputStream out = new ByteArrayOutputStream();

3 ObjectOutputStream oos = new ObjectOutputStream(out);

4 oos.writeObject(source());

5 oos.close();

6 sink(out.toByteArray());

7 }

Listing 45: Complex Inter-Object Tainting

It is important, however, that summary rules are sufficiently precise, as imprecisions can carry over into the analysis
result and can again degrade analysis performance. Ad-hoc rule sets often fail to distinguish different fields of the
same object or different parameters of the same method call. A simple generic rule as above generally taints,
whenever invoking any method o.m(x) with a tainted parameter x, the base variable o. As we show in Listing 44,
such a coarse model can easily yield imprecisions, and therefore false positives. In this example, upon processing
the constructor call at line 19, the analysis would taint the variable p, and implicitly all fields reachable through
it. In the example, this would cause a false positive at line 20: as the return value of getO1() is retrieved from the
tainted reference p, this return value is (falsely) considered tainted as well.

1 public class Pair {

2 private Object o1, o2;

3
4 public Pair(Object p1, Object p2) {

5 this.o1 = p1;

6 this.o2 = p2;

7 }

8
9 public Object getO1() {

10 return this.o1;
11 }

12
13 public void setComplex(Data a) {

14 this.o1 = a.b.c;

15 }

16
17 public static void main(String[] args)

{

18 String s = source();

19 Pair p = new Pair("not tainted", s);

20 sink(p.getO1());

21 }

22 }

23
24 public class Data { public Data2 b; }

25 public class Data2 { public Object c; }

Listing 44: Complex Data Structure and Method

In some cases, too simplistic rules can also lead to false negatives such as in the example in Listing 45. In this
example, oos.writeObject(..) (line 4) writes data to out, via an internal field reference. The standard rule set
would mark oos as tainted as well as all fields reachable through it, but not out. But the data is leaked through
out, causing analyses using such a summary to miss the flow to the sink. A sound summary must thus be able to
encode that the call to oos.writeObject(..) has an implicit side-effect on (internal fields of) out.
As these examples show, too simplistic rules can lead to serious cases of over and under-tainting. Nevertheless,
simplistic rules are the current state of the art [9, 60, 91, 155]. The only simple alternative to summaries, however,
would be to analyze the complete Android SDK together with every app being inspected. Past experience as well
as our experiments in Section ?? show, however, that the performance penalty of such an approach is prohibitive.
STUBDROID thus seeks to pre-compute precise summaries ahead of time, in an automated one-time effort. These
summaries can then speed up any subsequent analysis runs without jeopardizing precision, and while reducing
memory consumption.
Library summaries model the effects of library methods on data accessible to the client while abstracting from all
the internal processing of the library. This allows client programs to be analyzed even if the library implementation
is not present. Even more importantly, by producing summaries, the library and all its transitive dependencies only
need to be analyzed once. After a summary has been computed, it can be applied for an arbitrary number of client
program analyses; which is especially useful if the library is common and large, such as the Java collections API.
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6.2 Summary Model

Assume the Pair class from Listing 44 to be part of a library. The summary for the Pair class’ constructor needs
to model that data flows from the first parameter to the field this.o1, i.e., that this.o1 inherits the taint state
of the first parameter. The same connection exists between the second parameter and the field this.o2. There is,
however, no connection between the two fields or between the first parameter and field this.o2.
The taint summaries generated by STUBDROID take the form of rules. Given a certain incoming taint, they model
the effect of a certain method call on this taint. The constructor of the Pair class can therefore be described using
two rules:

1. this.o1 is tainted if parameter 1 is tainted. (R1)

2. this.o2 is tainted if parameter 2 is tainted. (R2)

When applying a summary, the rules are used to perform a fixed-point iteration on the set of tainted variables at
the call site that invokes the summarized method. Every taint state that is not explicitly changed by a summary rule
is kept unchanged. (There are no strong updates.)
In Listing 44, which calls the constructor of Pair with only Parameter 2 tainted, summary rule (R2) is applicable,
while rule (R1) is not. Thus, o2 is marked as tainted for the current instance of Pair while o1 remains untainted.
Note that summaries can also model effects on private fields of objects. While those fields are invisible to application
code, they can be used to model object state, akin to ghost fields in JML [79]. This makes summaries field sensitive,
which is important for maintaining precision. The Pair class in the example contains a method getO1() returning
this.o1. The return value of this method thus inherits the taint state of this.o1, which is distinct from the taint
state of this.o2. Without field sensitivity, one could not distinguish between the taint states for the two fields, and
a false positive would occur at line 20.
Highly precise data-flow analysis tools such as FLOWDROID or Andromeda [135] work by tracking not only fields
but so-called access paths as explained in Section 3.3. Recall that an access path is of the form l. f .g where l is
a local variable or parameter and f and g are field accesses. Access paths can have different lengths up to a
user-customizable maximum, at which they are truncated. An access-path of length 0 is a simple local variable or
parameter, e.g., l. Truncated access paths act as placeholders for all runtime objects reachable through them, and
end with an asterisk, e.g., l. f .∗ for all objects reachable through l. f (including l. f itself, but also l. f .g, l. f .h, ...). To
retain this level of precision, STUBDROID’s summaries are also based on access paths, with a customizable maximal
length. A taint-summary rule thus always taints an acess path given that a certain incoming access path is tainted.
One would thus write the above rules more precisely as:

1. this.o1.* is tainted if parameter 1.* is tainted.

2. this.o2.* is tainted if parameter 2.* is tainted.

In all rules, the asterisk character acts as a placeholder. Assume an application calls the constructor of Pair as in:

Data d = new Data(); d.f.g = source();

Pair p = new Pair("not tainted", d);

In this example, rule 2 applies. It will, however, not simply taint this.o2.*, but copy over the suffix of the access
path, tainting instead this.o2.f.g. More formally, the asterisk on both sides of a rule references the same univer-
sally quantified variable (∀x: this.o1.x is tainted if parameter 1.x is tainted). In result, STUBDROID’s summaries
can retain the client analysis’ precision as long as the library summary was generated with at least the same maxi-
mal access-path length that is also used to analyze the application. By default, access paths are truncated at length
5, the same default that also the FLOWDROID client analysis uses. Longer access paths can require significantly more
computation time during summary generation, but are possible by simply changing the STUBDROID configuration.
In previous work, we found FLOWDROID’s default length of 5 to be sufficiently precise in practice [9].

6.3 Architecture

Figure 19 shows the general workflow involving STUBDROID. STUBDROID generates one summary file per library
class, from a binary distribution of the respective library. At this stage, no application code is present. We assume
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Figure 19: STUBDROID’s Process and Architecture

that applications only interact with libraries through public methods and fields, rather than applying reflection to
access private members. Therefore, all public methods (and only those) need to be summarized.
The summary generator cannot anticipate in which order or with which parameters the library method will later
be called inside the application code. The generated summaries must work in all possible apps and usage contexts.
Therefore, STUBDROID must assume all possible call sequences, must abstract from all library state and parameters
before a method call, and must then analyze the effect of the method on these abstract descriptions as explained in
Section 6.2. STUBDROID can thus analyze the effects of every API method in isolation, which helps the tool to keep
its memory requirements low despite the analysis’ high precision.
STUBDROID generates summaries as XML files, one file per library class. The generated summary files can afterwards
be used during the analysis of an arbitrary number of applications. At this stage, the library code no longer needs
to be available, as the summaries are self-contained. When using the libraries during an analysis, the XML files are
loaded on demand. A client-side summary storage keeps track of all classes for which summaries are available. Only
when a taint can potentially reach a field or method of a certain class, the summary file for this class is requested
from the storage and loaded into memory. This greatly reduces memory consumption if summaries for large (or
many different) libraries are available on disk.
In our particular implementation, STUBDROID uses the FLOWDROID open-source data-flow tracker for generating
and as a client applying library summaries. Nevertheless, the summaries are encoded in generic XML, which makes
them usable also for other taint-analysis clients. We based STUBDROID on FLOWDROID, because it is precise (context-,
field-, object-, and flow-sensitive) as well as easily extendable. Further, as FLOWDROID is based on Soot [78], it can
be run on Java source code, Java bytecode, and Android’s Dalvik bytecode30. STUBDROID inherits these capabilities.
To integrate library summaries into its taint analysis, FLOWDROID offers the concept of so-called Taint Wrappers (see
Section 4.9). Those wrappers implement shortcut rules that circumvent the analysis of certain callee methods. To
enable FLOWDROID to process STUBDROID’s summaries, we implemented shortcut-rule handling as a taint wrapper
which obtains the summary rules directly from the summary storage.

6.4 Summary Generation

STUBDROID generates data-flow summaries and must thus conduct a data-flow analysis on the library’s bytecode
or source code. As explained before, STUBDROID analyzes the library by focusing on one API method at a time.
Given such a method, STUBDROID conducts a taint analysis starting at a number of different potential data sources.
In general, every access path within the method in question must be considered a source. This includes all access
paths involving parameters, the this reference for instance methods, but also all visible static fields. Every access to
one of these access paths becomes the left-hand side of a summary rule. For example, in Listing 44, the constructor
of the Pair class induces rules for the access paths this.*, p1.* and p2.*.
Further, note that this.* is used as a source instead of the combination of this.o1.* and this.o2.*. STUBDROID

starts with such more abstract top-level access paths only, and reconstructs on demand which fields have actually
been used. We will detail this later. Using longer access paths to start with would require STUBDROID to consider all
access paths reachable through the above base variables, which could cause a combinatorial blowup.
STUBDROID, further considers every method return as a sink at which the summarized flow is concluded.31 The
summary rules are generated by comparing the taint state of access paths before and after the execution of the
method to be summarized. Every taint derived from one of the source access paths that reaches the end of a
method must be translated into a summary rule. In the example from Listing 44, a flow derived from p1.* reaches

30 The new ART runtime uses the same bytecode as Dalvik.
31 Exceptional method returns are ignored in the current implementation, but do not pose any specific further challenges aside from the

implementation effort.
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1 <method id="test.Pair: void setComplex(test.Data)">

2 <flows>

3 <flow isAlias="true">

4 <from sourceSinkType="Parameter" ParameterIndex="0"

5 BaseType="test.Data"

6 AccessPath="[test.Data: test.Data2 b, test.Data2: java.lang.Object c]"

7 AccessPathTypes="[test.Data2, java.lang.Object]" />

8 <to sourceSinkType="Field"

9 BaseType="test.Pair"

10 AccessPath="[test.Pair: java.lang.Object o1]"

11 AccessPathTypes="[java.lang.Object]" taintSubFields="true" />

12 </flow>

13 </flows>

14 </method>

Listing 46: Taint Summary for Pair.setComplex()

the end of the constructor method as a taint this.o1.*. This leads to the generation of rule (R1) from Section 6.2.
Note that identity flows are not encoded, e.g., no rule is generated for the flow that starts with o1.* and ends with
the same o1.* at the end of the method. This is because generally STUBDROID does not support strong updates to
kill flows. All taints that existed at the beginning of a method are implicitly assumed to still exist also after the
summarized method’s invocation. We will consider strong updates in future work.
As the sources are only top-level access paths, rule generation is not trivial. Assume that at the end of method
setComplex from Listing 44, an access path this.o1.* is tainted. As taint is linked to the source a.*, not a.b.c.*,
this can lead to all of the following rules:

• this.o1.* is tainted if a.* is tainted.

• this.o1.* is tainted if a.b.* is tainted.

• this.o1.* is tainted if a.b.c.* is tainted.

To restrict the rules it needs to generate, STUBDROID must find the concrete fields that were accessed during taint
tracking. This is achieved by analyzing the concrete taint-propagation path backwards. The taint analysis is con-
figured to record every statement that influenced a taint, i.e., for which the tainted access path changed during
the propagation. For method setComplex, this generates the following taint-propagation path. (The temporary
variables are artifacts of the Jimple-representation [78] that STUBDROID operates on.)

tmp$0 = this.a;
tmp$1 = tmp$0.b;

tmp$2 = tmp$1.c;

this.o1 = tmp$2;

As the path shows, the taint this.o1.* was derived from tmp$2.* which in turn was derived from tmp$1.c.* etc.
Note that this backwards-analysis makes taints more precise. Whenever an assignment defines the base variable of
the current taint, its right-hand side replaces the current base variable of the access path. On the second statement,
the taint tmp$1.c.* is mapped to tmp$0.b.c.*, because the second statement defines tmp$1 as tmp$0.b. In other
words, STUBDROID uses assignments to extend the access path with the field information from the right-hand side of
the assignment. With the first statement, the final result of this.a.b.c.* is reconstructed. This is the most precise
source access path for the new rule. Therefore the actual rule that STUBDROID computes is: this.o1.* is tainted if
a.b.c.* is tainted.

6.4.1 XML File Storage

STUBDROID stores its summary facts in one XML file per class. This allows clients to load summaries on demand. Only
when a taint reaches a method declared in a specific class, that class’ summary file must be loaded. Listing 46 shows
the summary of the setComplex() method from the example class in Listing 44. A summary file contains method
elements which in turn contain flow elements, one per pair of source and sink between which the method causes
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1 int charToInt(char c) {

2 int[] vals = new int[] { 0, 1, 2, 3, 4, ... };

3 int idx = (int) c;

4 return vals[idx - 48];

5 }

Listing 47: Implicit Flow Sample Code

a data flow. For each flow, STUBDROID stores the source (from) and the sink (to) in terms of the method’s interface.
Sources and sinks differentiate between method parameters, fields, and return values. Method parameters are
referenced by index. Fields are represented by their full signature. If not the parameter or field itself, but an access
path starting at the respective element is referenced, the fields on the access path are stored as an ordered list of
full field signatures.
Additionally, STUBDROID further stores the propagated types of all fields referenced in a flow summary. While the
normal field signature only contains the declared type of the field, the taint analysis also provides STUBDROID with
an (often more precise) type propagated along with the respective taint as explained in Section 4.11. When applying
the summary, this allows STUBDROID to inject these precise runtime types back into the client’s taint analysis. This
is useful as some clients use type information to refine call-graph information on the fly. A library method, for
instance, might be declared to return java.lang.Collection, but always return a more precise type HashSet. In
this case, the taint analysis can make use of this information: when seeing a call c.add(..) on a tainted collection
c, if the client knows that c is a HashSet then it can resolve the add-call precisely to HashSet.add(..).

6.4.2 Summaries and Implicit / Native Flows

The computation of library summaries is based on a taint analysis which can either only be performed for explicit
data flows through assignments, or also for implicit flows through control-flow dependencies. Listing 47 shows an
implicit data flow within a method for converting characters containing digits to integers. The conversion functions
in the Oracle JDK and the Android platform are implemented in a similar fashion. Method charToInt does not
directly assign the parameter value to the result value, but still the result depends on the parameter, and a summary
should contain a rule which taints the result value if the parameter is tainted.
STUBDROID offers different possibilities to handle such cases. The FLOWDROID data-flow tracking tool that STUBDROID

uses internally supports computing implicit flows just like “normal” explicit flows if the respective option is enabled
as explained in Section 4.6. In many cases, however, implicit flows do not fully leak the data in question but rather
leak information about that data. Determining whether this information leak is problematic is a hard semantic
problem [76]. Given that tracking of implicit flows is also expensive, we thus recommend not to track them and
instead specify manual summaries for the small number of relevant data-type conversion methods by hand. These
are basic JDK methods such as Integer.toDecimalString() that are hardly ever extended or changed. This is
how we use STUBDROID in our daily work and how we conduct our experiments.
Similar problems occur when libraries reference native code. In the Oracle JDK’s ConcurrentHashMap implemen-
tation, for instance, native code is used for fast non-blocking access to the underlying data structures. Since the
FLOWDROID, and thus STUBDROID, cannot analyze native code, we created summaries for such methods manually.
This is semantically equivalent to using FLOWDROID’s native call handler (see Section 4.10) that hard-codes summa-
ries for the most prevalent cases. Note that STUBDROID does not support sanitizers or flows across external resources
such as files. We leave this to future work.

6.5 Callbacks

In general, Java (and Android) methods can contain callbacks in which a library method invokes client code. We
distinguish generic callbacks such as toString() from the special case of Android lifecycle callbacks.

6.5.1 Generic Callbacks

Every library method can invoke methods on objects passed in from application code to call back into the client
code, see Listing 48. A correct summary of method append(..) requires knowledge about the concrete implementa-
tion of IAppender (more concretely: of IAppender.getString()) passed to append(..). Without this knowledge,
one has to manually choose an approximation. An under-approximation of the effects of the call to getString()
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1 public String append(String inStr, IAppender appender) {

2 return "Hi" + appender.getString(inStr);

3 }

Listing 48: Callback Example

would assume its return value never to be tainted. An over-approximation, though, would assume the return value
always to be tainted. A probably more useful approximation would be to assume the return value of getString()
to only be tainted if the inStr parameter is tainted when append(..) is called. Even such an approximation might
be incorrect, though, depending on the concrete possible implementations of IAppender.
To handle such callbacks precisely, STUBDROID adopts the principle of component-level analysis introduced by Roun-
tev et. al. [119]. During the analysis of a method to be summarized, one may reach call sites for which the library
itself contains no callees. We call these call sites gaps. The summary rules presented so far connect interface com-
ponents of the respective library method, e.g., link a parameter to a return value. With callbacks, flows may start
and end at gaps as well. A gap can be thought as a “hole” inside a summarized method flow. STUBDROID cannot ma-
ke any assumptions as to what transformations are made to a taint abstraction inside a gap. It can only summarize
the part of the flow that is inside the library method until it reaches the gap. For all possible outgoing taints, it can
then again summarize how they flow further inside the library method. In other words, a call to a gap method is
treated like an additional interface of the method to be summarized. In the example of Listing 48, this leads to the
following rules:

• <Gap1>Parameter0.* is tainted if inStr.* is tainted

• Return.* is tainted if <Gap1>Return.* is tainted

Note that STUBDROID must generate rules for every possible outgoing taint of the gap method. In the example, only
the return value of the gap method getString is used within append. If, however, a gap method is, for instance,
called with a heap object as a parameter and that object is used later on, this must also be represented by a flow.
This flow would then account for gap implementors that taint fields inside the heap object they received as a
parameter. In short, all possible ways in which a taint can be passed back from a callee to its caller can lead to new
flow rules.
When the summary is later applied to a target program, the gaps must be filled with either a different summary
or with the results of analyzing client code. STUBDROID first attempts to find other summaries that can fill the gaps
in question without any interaction with the client analysis. If unsuccessful, it passes the taint information at the
gap’s call site to the client analysis to find additional implementations of the gap method in client code. This allows
the client analysis to focus on the client code alone when filling gaps. The fill-ins applied to gaps can in turn have
new gaps which must be filled using the same principle. The fixed-point iteration stops if there are no open (i.e.,
unfilled) gaps remaining.

6.5.2 Android Lifecycle Methods

Lifecycle methods allow the Android platform to control applications. In general, the Android OS is much more
tightly coupled with its applications than a normal Java VM with its programs. Android applications do not contain
a main method, but instead derive classes from certain pre-defined system classes and overwrite so-called lifecy-
cle methods which allow the the Android middleware to, for instance, start, pause, or resume applications when
necessary.
Currently Android comprises four different types of components: Activities, Services, Broadcast Receivers, and Con-
tent Providers. All of them have distinct lifecycles, defining ways for the operating system to influence the execution
of the respective component. Nevertheless, the semantics of all four lifecycles is rather self-contained and well do-
cumented. The framework essentially just calls the implemented fraction of the lifecycle methods in a predefined,
well-known order. The most complex lifecycle is the one of the activity component type, and even this one contains
fewer than a dozen methods. We therefore leave the simulation of lifecycle-induced call-backs to the summary
client. In our experiments, we use the concrete client FLOWDROID, which handles lifecycle methods by simulating
their effects through a generated dummy main method that simulates the lifecycle of the Android application as
explained in Section 5.1.
Notifications are special callbacks that allow the Android operating system to notify applications of system events
like a battery shortage or an incoming text message. Sensors like GPS are also modeled through callbacks in the
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1 void doLeak() {

2 Data data = new Data();

3 data.b.c.d = source();

4 Pair p = new Pair("foo", "bar");

5 p.setComplex(data);

6 sink(p.getO1().d);

7 }

Listing 49: Client Program for Pair Class

application: When the user moves around, a special interface in the application is called with the new coordinates of
devices. These callbacks can be invoked by the operating system at any time while the respective host component is
running, and they are provided through about 200 special-purpose interfaces. With our implementation we provide
a list of these callback interfaces. To obtain a complete and precise list of callback methods, it is therefore sufficient
to match all methods contained in interfaces in this list against the list of interface methods implemented in the
target program. Clients must then simulate a call to all such methods at a well-known point in the lifecycle, at
which the app is known to be in its running state. These callbacks only depend on external events like incoming
SMS messages, and not on the behavior of the application under analysis. Thus, they can occur at any time while
the app is running.
These observations conveniently reduce the problem of modeling the framework to analyzing the effects of frame-
work methods called by the application without impeding correctness or precision of the obtained analysis results.
Section 5.1 describes in detail how FLOWDROID generates sound dummy-main methods that respect callbacks in
Android. A similar methodology must be followed for other client analyses or platforms other than Android.

6.6 Applying Summaries

After the summaries have been computed once, they can be used in an arbitrary number of taint analyses on
client programs or Android apps. The library code is then no longer required. STUBDROID integrates into FLOWDROID

using the concept of Taint Wrappers (see Section 4.9). Recall that taint wrappers are handlers for shortcut rules.
They model external domain knowledge through an interface exposed by the taint-tracking engine. Whenever a
method call is processed, the registered wrapper is asked whether it contains an explicit taint-propagation rule for
the callee. STUBDROID provides FLOWDROID with a specialized taint wrapper implementation to inject the summary
data during analysis. While this concept is specific to FLOWDROID, other tools like CHEX [91] have similar extension
points for explicit (library) method models and could thus use STUBDROID’s summaries in a similar fashion.
Assume the pair class from the motivating example in Listing 44 to be used in the program in Listing 49. This user
code constructs an object of type Data and taints its field b.c.d. The data object is then passed to the setComplex()
library method. This method is not part of the user code, but requires one to apply a library summary. Conceptually,
the method copies the contents of the field b.c to this.o1. Therefore, the object containing the tainted data is
returned by getO1() and leaked in line 6. Note that in this example the actual tainted data is stored in a sub-field
d which is never touched by the library implementation.
Recall the summary for the setComplex() method computed in Sec. 6.4: this.o1.* is tainted if
Parameter 0.b.c.* is tainted. As explained in Section 6.2, the asterisk serves as a placeholder. When applying
the summary rule to the example client code, STUBDROID will therefore match the asterisk with the actual fields of
the longer incoming access path and derive the more precise rule this.o1.d.* is tainted if Parameter 0.b.c.d.*

is tainted.
This rule can then easily be matched against the incoming taint. FLOWDROID will query the taint wrapper for the
access path data.b.c.d.*. STUBDROID matches the argument variable data against Parameter 0 and then applies
the rule. It reports p.o1.d.* back to the taint analysis. Note that the rules directly create new taints on access
paths. If the client code direct read the field p.o1 instead of calling a getter method, this would be captured by the
taint on p.o1.d.*.

6.6.1 Aliasing

Library methods and user-code methods may both taint heap objects which may, in turn, have aliases both inside
and outside of the library. The example in Listing 50 uses a Pair object to store a Data object. The code then
retrieves this data object as d1, and taints one of its inner fields. Afterward, the same runtime object is retrieved
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1 public void leakWithAliasing() {

2 Pair p = new Pair(new Data(), null);
3 Data d1 = (Data) p.getO1();

4 d1.b.c = source();

5 Data d2 = (Data) p.getO1();

6 leak(d2.b.c);

7 }

Listing 50: Library Summary Client with Aliases

again as d2 before the data is read out and leaked. If the Pair class were not a library class but a part of the client
code, FLOWDROID could directly find the leak due to FLOWDROID’s built-in alias analysis (see Section 4.8). If we,
however, assume that the Pair.getO1() method is part of a library and its implementation is not available during
the analysis of the client code, the library summaries must provide enough implementation for the alias analysis to
work nevertheless.
At the moment, STUBDROID is only compatible with FLOWDROID’s default flow-sensitive alias algorithm explained
in Section 4.8.2. For the remainder of this section, we assume this algorithm to be used. Whenever a tainted
value is assigned to a heap object, the data-flow engine automatically starts a backward tracking to find aliases.
In the example, it would inter-procedurally propagate the access path d1.b.c.* backward to check whether this
access path or some prefix of it is referenced on the right side of an assignment. All discovered aliases are then
forward-propagated as first-class taints.
In Listing 50, however, the class Pair is abstracted away using a library summary. Therefore, FLOWDROID cannot
determine that d1.b.c.* aliases with p.o1.b.c.*. The relationship between p.o1 and d1 is encoded in getO1(),
but when the backward propagation reaches the call to getO1(), there is no callee to process. Therefore, such
aliasing relationships must also be encoded in the summaries. For this reason, taint wrappers in FLOWDROID provide
support for aliasing. Alias summaries in STUBDROID are just like flow summaries, only with an inverse propagation
rule. For Pair.getO1(), there is already a rule: return.* is tainted if this.o1.* is tainted. Since the rule deals
with heap objects, however, it can also be applied backward: If return.* is tainted afterward, this.o1.* may have
been tainted before. In this direction, it encodes a may-alias relationship.
The final taint propagation in the example hence works as follows: When p.getO1() is called first, nothing inside
the p object is tainted yet, so the rule does not yet apply. When FLOWDROID queries STUBDROID’s taint wrapper for
aliases of d1.b.c.*, STUBDROID can apply the inverse of the rule and return a taint on p.o1.b.c.* to FLOWDROID.
This taint is then propagated forward. In Line 5, the normal summary rule for getO1() then applies and d2.b.c.*

gets tainted. Therefore, FLOWDROID can now detect the leak in Line 6.
To allow for more flexibility and some corner-cases (such as strings which are immutable), STUBDROID stores a flag
alongside every summary rule that indicates whether the flow may be inverted in order to answer alias queries.

6.6.2 Handling Incomplete Summaries

Note that taint wrappers can also be used with incomplete summaries. This is useful if libraries cannot be fully
analyzed since, for instance, they depend on native code. In this case, analyzing the Java-based parts is still va-
luable, though it needs to be complemented with additional approximations. The FLOWDROID client, for instance,
supports two modes that determine how calls to methods are handled for which no summary is available. Refer to
Section 4.9 for further information.
In the so-called conservative mode, the return value of a method call is always considered as tainted if the base
object on which the method is invoked (or any field inside it) is tainted. In the example this would lead to a
sound analysis even if the summary for the getData() method was missing, but may come at the cost of reduced
precision. Similarly, the hashCode() and equals() methods can also be over-approximated with simple rules even
if there is no summary for them for a certain class.
FlowDroid also supports the exclusive flag which allows a taint-wrapper implementation to claim the taints
it generates for a specific call site and incoming taint as complete. If the wrapper declares itself as exclusive,
the analysis will not consider the callee’s implementation even if it is available. By default, the STUBDROID taint
wrapper is exclusive for all methods for which it has at least one summary fact in its input XML file, because this
indicates that the respective class has been fully analyzed by STUBDROID and thus all existing data flows have been
summarized.
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6.7 Evaluation

The summaries generated by STUBDROID are maximally useful if they substantially reduce the time required to run
the target analysis on a client program, if they do not reduce the precision of the analysis result (thus avoiding
false positives), and if they are sound, i.e., do not introduce any false negatives. Our setup for computing the per-
formance measures is explained in Section 6.7.1. The time required to compute a library summary is evaluated in
section 6.7.2. Section 6.7.3 addresses the performance gains of using summaries and shows that STUBDROID sub-
stantially reduces the time required for performing static analysis. In Section 6.7.4, we finally discuss the soundness
and precision of our approach.

6.7.1 Experimental Setup

All performance experiments were carried out on a computation server featuring 40 virtual Xen CPU cores backed
by Intel Xeon E5-4640 cores in physical hardware. The server was running Ubuntu 14.04 and Oracle’s JVM version
1.7 in its default settings. Only the maximum heap size was set to 15 GB for summary generation and to 150
GB for analyzing apps. The large heap size for the app analysis was chosen to allow for a fair comparison with
approaches that analyze the full Android library together with every app. Note that this may make some analyses
perform less aggressive garbage collection than usual and thus report higher memory values than they would in
more constrained scenarios.
To analyze the Android platform, we used an android.jar file manually built from a Galaxy Nexus device running
Android 4.3. This is because the android.jar files included in the Android SDK as distributed by Google contain
stub implementations only, which raise NotImplementedExceptions in every method. (They are only used to allow
Android apps to link against the library interfaces.) As STUBDROID is not only applicable to Android apps, but also
to normal Java programs, we also evaluated it on the Java 8 (version 1.8.0_05) runtime library.
To evaluate the performance of STUBDROID both in terms of summary application and summary generation, we
computed summaries for the Android and the JDK implementations of the Java collections API. These classes
are widely used in almost all applications, which is why modeling them is of high priority. Furthermore, these
classes are rather large, and are thus suitable for assessing the scalability of the approach. The same holds for the
string-processing classes, especially java.lang.StringBuilder which is used, e.g., to concatenate strings. With
summaries for these two types of libraries, FLOWDROID can successfully analyze most applications. All reported
timings were averaged over 10 runs. The raw data is available on our project web page.

6.7.2 Summary Generation Performance

Generating the library summaries is a one-time effort that only needs to be repeated when the library is updated,
which is rare in comparison to how often client applications using the library are analyzed. Nevertheless it is
important that the summary generation is practically feasible. In Table 2, we report performance numbers on both
the Android SDK and the Oracle JDK.
Our results show that STUBDROID usually finishes in under three minutes per class for common Java collection APIs.
For some of the concurrent collection implementations, the generation can take up to slightly over ten minutes. In
these cases, the summaries generated by STUBDROID are also considerably larger than those for their non-concurrent
counterparts. This happens because the concurrent implementations need to assign additional internal synchroni-
zation fields which also become part of the summary and increase the complexity of the data flows in the respective
methods.
Even though summaries could be centrally pre-computed on large servers, the memory requirements of STUBDROID

are modest. All summaries could be created within the 15 GB of heap space allotted, most of them using much less
memory than available. This even applies to the large concurrent-collection classes such as the skip-lists.
Note that the Android and Oracle implementations of a particular class only share the specification, but not any
source code. The versions shipped with the Android OS are especially optimized for resource-constrained de-
vices. The differences are especially apparent in the number of flows generated for each class in Table 2. For
java.util.Priority Queue, STUBDROID detects more than twice as many flows in the JDK implementation than
in the one from Android.

6.7.3 Analysis Performance

We next evaluate how STUBDROID can impact the performance of a client taint analysis. We therefore ran FLOWDROID

on a number of Android test apps in three different modes:
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Class Generation Time (s) Number of Flows Memory (MB)
Oracle JDK Android Oracle JDK Android Oracle JDK Android

java.util.ArrayDeque 45.82 52.76 82 88 1,086.52 2,203.27
java.util.ArrayList 37.95 42.52 72 72 1,086.52 2,323.40
java.util.HashMap 34.38 27.86 92 78 3,125.93 1,910.82
java.util.HashSet 51.46 45.04 140 81 3,125.93 1,910.82
java.util.LinkedHashMap 35.45 31.77 81 74 3,213.93 1,983.74
java.util.LinkedList 61.87 66.55 130 120 2,688.00 2,468.69
java.util.PriorityQueue 65.36 37.17 731 246 2,415.65 1,984.09
java.util.Stack 57.46 65.49 86 87 1,663.25 1,980.43
java.util.Vector 54.86 62.77 87 98 1,841.91 2,101.82
java.util.[...].ConcurrentHashMap 88.24 71.18 116 144 4,027.54 2,323.40
java.util.[...].ConcurrentLinkedQueue 64.23 35.58 36 40 1,509.77 1,761.86
java.util.[...].ConcurrentLinkedDeque 74.67 71.72 883 887 4,072.54 3,372.84
java.util.[...].ConcurrentSkipListMap 352.56 766.33 2206 2262 5,765.34 3,968.78
java.util.[...].ConcurrentSkipListSet 397.02 960.48 2234 3221 4,966.98 3,644.88
java.util.[...].DelayQueue 147.63 86.32 1745 807 4,864.34 3,106.15
java.lang.StringBuffer 92.06 81.73 397 309 1,212.16 2,621.19
java.lang.StringBuilder 86.35 81.72 443 305 1,617.32 2,425.11
Average 102.79 152.18 562 525 2,760.80 2,475.96

Table 2: Summary Generation Times for Android and JDK APIs

• Full analysis mode. In this mode, the full Android library was placed on the classpath and analyzed together
with the app. Library summaries were not used.

• Hand-written summaries. In this mode, FLOWDROID is run with its default hand-written summaries. This
mode acts as a base-line as it corresponds to running the original FLOWDROID implementation.

• STUBDROID mode. In this mode, only library stubs were placed on the classpath and STUBDROID’s summaries
were used to model the taint propagation over library call sites.

The hand-written summaries that FLOWDROID uses by default not only cover the collection APIs but also a few other
Android APIs such as cursors or intents. To allow for a fair comparison we generated STUBDROID summaries for those
APIs as well. The results in Table 3 show that STUBDROID offers a performance that is comparable to FLOWDROID’s
default hand-written summaries with a similarly high memory consumption; both analysis modes have comparable
cost. In comparison to analyzing the full library implemenation together with every app, summaries provide a
major decrease in runtime and memory consumption. In many cases, it even makes the analysis feasible; analyzing
the app together with the full library implementation times out after 30 minutes.
The first two apps in Table 3 were taken from the DroidBench micro-benchmark suite, see Section 7. We chose those
two apps of the suite that actually use library methods. These apps are rather small, so the discrepancy between
the size of the app and the size of the library is significant. If no summaries are used, the analysis spends most of
its time in the library. The other apps in the table are real-world applications taken from the Google Play Store.
Data-flow analysis is especially useful to find privacy violations in potentially malicious applications. Many malware
apps steal the user’s unique device identifier (IMEI), his phone number, or other personally-identifiable values. To
assess how STUBDROID can help with finding such data thefts, we assess how it impacts the performance of FLOW-
DROID on 258 apps from four different malware families inside the well-known Malware Genome Project [157].
Table 4 shows the average runtimes for each malware family. For keeping the presentation concise, we only report
values for the largest and most prevalent malware families. The column TO states the number of apps for which the
analysis timed out after five minutes. In cases where all runs timed out, measurements are naturally not available
(n/a). In cases where some runs timed out but not others, the numeric values indicate the average for the runs that
did not time out.
The data in Table 4 indicates that analyzing the complete library together with every single app is infeasible and
leads to timeouts in almost all cases. Using summaries, on the other hand, allows all but a handful of apps to
be analyzed in under one minute. These time and memory savings, however, also depend on the precision of the
summaries. For the DroidDream Light malware there are cases in which the hand-written summaries incur a higher
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Application Full Hand-Written STUBDROID

Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)
ArrayAccess1 21.13 458.19 5.75 128.10 5.63 132.66
HashMapAccess1 21.37 493.88 5.99 173.70 5.96 174.75
Alipay 45.10 6,271.49 5.57 1,727.78 5.51 1,640.99
Avira Antivirus Timeout Timeout 48.72 3,908.80 38.18 2,662.60
Broncos News Timeout Timeout 4.90 1,571.53 4.86 1,373.82
Hamburg Casino Timeout Timeout 57.73 3,352.54 48.17 3,856.88
OpenTable Timeout Timeout 81.51 7,596.06 78.01 5,669.13
Wikipedia 46.87 3,884.95 1.48 270.01 1.59 445.81

Table 3: Summary Application Performance (Benign Applications)

Full Hand-Written STUBDROID

Family Apps TO Time (s) Mem (MB) TO Time (s) Mem (MB) TO Time (s) Mem (MB)
ADRD 22 22 n/a n/a 0 6.70 3,669.00 0 1.84 1,004.86
BaseBridge 121 115 25.03 1,210.95 7 17.53 525.03 0 6.54 311.30
DroidDream Light 46 45 63.30 1,222.58 0 7.41 7,309.21 0 5.26 451.32
Geinimi 69 69 n/a n/a 0 29.79 849.36 1 6.91 281.52

Table 4: Summary Application Performance (Malware), TO = # of apps where analysis timed out

memory consumption than analyzing the full library. This is because the imprecise summaries lead to severe over-
tainting during the analysis. The precise summaries computed by STUBDROID do not show this memory explosion.
Thus, STUBDROID can considerably save time and memory in comparison to a full analysis as well as in comparision
to the hand-written rule sets currently used by most static data-flow analyses.
Note that FLOWDROID cannot complete the analysis of large applications when configured to analyze the full library
implementation together with the app. In the very same hardware configuration, computing the summaries and
then analyzing the app with these summaries does, however, complete in a reasonable amount of time. This is not a
contradiction, because STUBDROID analyzes every method inside the library in isolation and abstracts from its inner
workings. Thus, it can create more concise access paths than FlowDroid’s normal taint propagation and thereby
drastically reduce the peak memory consumption of the data flow analysis.
Comparing the performance of the taint analysis with library models to the performance of a full analysis is not
trivial since the summaries also cover methods that contain implicit flows (see Section 6.4.2). To allow the full
analysis to also track taints over these paths, one would have to enable implicit-flow tracking for the complete
target. This, however, is not the default in which apps are only scanned for explicit flows and only those few library
methods that require implicit handling have models containing implicit flows. To circumvent this problem, we used
the “full analysis” together with a simple hand-written taint wrapper for the data type conversion methods that
would not faithfully propagate taints having a model of implicit flows.

6.7.4 Relative Soundness and Precision

A summary approach such as STUBDROID can only be as precise and as sound as the analysis on which it is based.
We thus rather check that STUBDROID preserves analysis results, by comparing the data-flow results of two setups:
(1) FLOWDROID applied to apps including the complete library implementation and (2) FLOWDROID applied to apps
without the runtime library but with STUBDROID’s summaries instead. Ideally the same results should be achieved.
Recall that STUBDROID creates summaries that are applicable to arbitrary client programs. It therefore abstracts
from concrete call sequences and states. It is important to evaluate whether this generalization leads to a loss of
precision or soundness. We performed these comparisons on all apps from Tables 3 and 4 on which the full analysis
terminated. We confirmed that all flows detected by FLOWDROID that involved STUBDROID-summaries were equal
to a full analysis of the target app plus the library. This means that replacing the library implementation with
STUBDROID’s summaries does not incur any penalty in precision or soundness. Note that this is also because we had
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configured both STUBDROID and FlowDroid with the same maximum access-path length of five. Naturally, precision
might be reduced had we chosen less precise summaries.
In the Hamburg Casino app, FLOWDROID’s hand-written summary rules caused 15 false positives out of 36 flows in
total (41,7%) due to a single overly aggressive rule. Another rule caused 1 false positive out of 3 flows (33,3%) in
the Broncos News app. The STUBDROID summaries avoided all of these false positives.

6.8 Related Work

In this Section, we compare STUBDROID to existing approaches for summarizing library behavior (Section 6.8.1)
and show a variety of existing work that can directly benefit from the summaries computed by STUBDROID (Secti-
on 6.8.2).

6.8.1 Existing approaches for library summaries

The IFDS [117] framework, on which also FLOWDROID is based, already computes low-level method summaries to
improve efficiency if the same method is called multiple times in the same program. These summaries, however,
are linked to the concrete context of the client analysis. Therefore, there is no easy way to serialize and re-use
these summaries for multiple analysis runs, let alone different analyses. Naeem and Lhoták present a method for
summarizing alias-analysis information [99], but no further data-flow relationships. STUBDROID handles aliasing
along with data flows. Aliases of objects that get tainted inside a library are modeled as first-class taints which
avoids a separate summary concept. Aliasing relationships with objects in the client program must be computed
anew for every client when applying the library summary, so no further summarization is possible.
Zuhu et al. [158] analyze implementations of clients to automatically infer library specifications. As they state,
however, this requires an external oracle (e.g. a user consulting the documentation) to verify every generated
specification candidate since the library code is not regarded at all. STUBDROID on the other hand is fully automatic
and directly analyzes the library implementations.
Rountev et al. [119] construct library summaries for IDE [120] data-flow analyses by first conducting a data-
flow analysis on the library and then abstracting away redundant data-flow facts that are internal to the library.
Rountev’s approach, however, does not discuss how summaries can actually be abstracted in such a way that
they can be persisted and can become useful for different clients. In fact, it appears that in their experiments the
implementation stores and reuses summaries only within one and the same analysis process.
F4F [130] by Sridharan et al. is a system for performing taint analyses on framework-based web applications. It
provides a specification language for modelling both the framework behavior and information from configuration
files. Sample generators for such specifications are given for a number of web application frameworks. While F4F
focuses on dispatch logic between web pages and accesses to user controls on them, STUBDROID analyzes and
summarizes data flows in basic framework methods and is fully automated. No specialized specification generator
must be developed and maintained when the target framework changes.

6.8.2 Approaches benefiting from summaries

Library summaries are required for various analysis tools such as CHEX [91], which scans applications for potential
cases of data misuse, e.g., when security vulnerabilities allow unauthorized access to an application’s internal data.
Apposcopy [49] detects Android malware based on semantic signatures describing data flows and inter-component
communcations. This requires a precise flow detection which in turn needs precise library models. FLOWDROID [9]
is a data-flow tracker that can also analyze the library code together with the target application, but gains massive
performance benefits from using STUBDROID’s summaries. AppSealer [155] is a tool for automatically patching com-
ponent hijacking vulnerabilities in Android applications. It combines static and dynamic data-flow analyses to find
vulnerable components to be patched. Library methods are handled using a coarse-grained default rule (“return
value of method call is tainted if at least one parameter is tainted”) with a few hand-written exceptions. Scan-
dal [75] statically detects leaks of privacy-sensitive data in Android applications. The authors manually modeled
the behavior of 220 commonly used Android framework methods to maintain precision. STUBDROID automatically
computes the library summaries required by these tools without the need for manual inspection of the library code.
DroidSafe [60] requires the analyst to manually develop library stubs as Java code that are simplified versions of
the original implementations. The authors have created 550 stub classes by hand which is a considerable effort that
could be evaded by using STUBDROID’s data-flow summaries instead.
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7 Benchmarking Analysis Tools: DROIDBENCH

Assessing and comparing static (and also dynamic) data flow analysis tools is not trivial. Ideally, one wants to
compare the tools along three different dimensions: precision, recall, and performance. In practice, memory con-
sumption can also be a limiting factor when conducting a data flow analysis, but we will integrate this aspect
into the performance dimension for the sake of simplicity. Clearly, comparing the performance of two tools is only
meaningful if the precision and recall of the tool is compared as well. Otherwise, unfair tradeoffs can be made, i.e.,
missing many leaks for increased performance. For assessing precision and recall in data flow analysis, one needs
a ground truth, i.e., a set of benchmark programs with a specified set of flows to be found. Real-world programs
are not suitable as benchmarks, because reverse-engineering thousands of lines of code to obtain the expected set
of data flows often requires a prohibitive manual effort. Note that the complete flow specification is required. Only
checking the flows found by a specific tool can only indicate false positives. For finding missed leaks, the complete
program code must be inspected manually. Therefore, comparative studies and evaluations require benchmarks
that already come with a precise and complete data flow specification.
DROIDBENCH aims at providing such a benchmark suite. It contains small Android apps that focus on particular
challenges for data flow analysis tools such as storing sensitive data in a map and reading it back. DROIDBENCH

is not intended for performance testing, therefore the small app size is irrelevant for the purpose at hand. Most
categories contain positive and negative challenges, i.e., apps that test recall and apps that test precision. In the
current development version 3.0, DROIDBENCH consists of 190 test cases in 18 categories. Most of the samples
were created by us, but an increasing number of samples is also donated by other international research groups
(approximately 85 as of version 3.0).
To ensure that the data-flow specification documented for every app matches the app’s actual runtime behavior,
all apps have been tested on actual smartphones. Neither FLOWDROID nor any other tool we are aware of is able to
achieve perfect recall and precision on DROIDBENCH, nor would that be desirable. The goal of DROIDBENCH is rather
to offer challenges to the research community to further improve tools, approaches, and algorithms. We will first
give an overview over the categories in DROIDBENCH in Section 7.1 and then explain FLOWDROID’s performance on
the test cases in Section 7.2.

7.1 Benchmark Categories

In this section, we will describe the 15 categories in DROIDBENCH in more detail. For each category, we give examples
of the challenges contained in them.

Aliasing
This category contains samples that test whether the analysis can correctly and precisely handle aliasing relation-
ships. One test case, for instance, checks whether the alias analysis is flow-sensitive. Another test case contains a
non-distributive alias problem.

Android-Specific Challenges
The focus of this category is on how well an analysis handles the Android framework. Test cases address calls to
library methods inside the Android SDK and configuration options in the AndroidManifest.xml file. Other tests
check whether Android’s serialization mechanism for inter-component communication (parceling) is modeled cor-
rectly. Note that in this category, no actual inter-component communication is performed, though. In this category,
Android’s possibility of nesting user-defined libraries in apps is tested as well.

Arrays and Lists
The test apps in this category use arrays, lists, and maps to temporarily store data. The data is then read back and
passed to a sink method. The positive tests read back actual sensitive data, while the negative tests read constant
strings from the same arrays, lists, and maps that also hold sensitive data. An imprecise analysis would cause a
false positive here if it cannot distinguish the different elements inside the data structure.

Callbacks
These tests address callbacks in Android. Some callbacks are registered in code, others in the layout XML files. So-
me callbacks are kept perpetually, others are deregistered at some point in the app’s lifecycle to check whether an
analysis tool correctly handles the temporal properties of Android callbacks. The tests for callback chains (one call-
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back registers another one) are also part of this category, as well as tests on callback ordering and the relationship
between callbacks and the component lifecycle.

Dynamic Code Loading
The test cases in this category dynamically load additional code that is then called via reflection. A static analysis
tool must include this code as well as the “normal” app code, or else would miss the leaks. Depending on the test
case, the source, the sink, or intermediate parts of the data flow (or any combination thereof) are hidden inside
the dynamically-loaded code.

Emulator Detection
This category mainly addresses challenges for dynamic analysis tools. The tests try to detect whether they are run
inside an emulated environment. If so, no data leakage is performed. Dynamic analysis tools must make sure to
very precisely model an actual device to find these leaks. For static analysis tools, these tests are usually trivial as
the flow itself simply directly passes the sensitive data into a sink.

Field and Object Sensitivity
These tests can be used to check whether a data flow analysis tool can correctly distinguish different fields in the
same base object and different base objects for the same tainted field. Test for flow-sensitivity are also contained in
this category, i.e, passing field data to the sink method before actually tainting the field.

General Java
This category contains test cases for standard Java language constructs including exceptions, loops, static initializers
and fields, string manipulation, and virtual dispatch. None of these test cases are specific to Android or any other
framework. An imprecise analysis would cause false positives here by over-approximating potential callees for a
given call site, or would miss leaks by not propagating taint across exceptional control flow edges.

Implicit Flows
The implicit flow handling of the data flow analysis tool is tested in this category. Sensitive data is re-formatted
using conversion maps, or is checked and a single bit is leaked depending on whether the sensitive data is equal to
a given constant value.

Inter-App Communication
In this category, test cases do not consist of single apps, but of multiple apps that collude to conduct a data leakage.
Data is obtained in one app, and sent on to a different app that relays it to a third app where the data is finally
leaked. To correctly detect the leaks in this category, a data flow analysis must be able to map Android intents to
the correct receiver app and extend the data flow paths over the boundaries of multiple apps.

Inter-Component Communication
The test cases inside this category are similar to the inter-app test cases. The key difference is that they transfer
sensitive data between different components inside the same app instead of between components spread across
multiple apps. There are test cases for one activity starting another one while passing tainted data, for sending
intents between components, and for exchanging data between components through Android’s SharedPreference
mechanism. These test cases also use various techniques for identifying the receiver of an intent (explicit and
implicit intents, the latter through various matching mechanisms such as action strings).

Lifecycle
How data flow analysis tools handle the Android lifecycle is tested with the test cases in this category. These apps
obtain and leak data in various lifecycle stages. Only a tool that correctly models the complete lifecycle of all
the four different Android components plus fragments and Android application objects can achieve full precision
and recall in these tests. If the ordering of lifecycle events is over-approximated, false positives will occur. Missing
component types or lifecycle methods will result is missed leaks. Note that these test cases not only rely on the
well-documented lifecycle methods from the overview chart (see Figure 14 for the Activity component), but also
uses other less known methods provided by the Android SDK.
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Native Code
While the test cases in all other DROIDBENCH categories (except for the Self-Modification category) are purely im-
plemented in Java, the test cases in this category use the Java Native Interface (JNI) to call native methods written
in C/C++. The tests cover four scenarios: (1) Sensitive data is obtained in Java code, passed through native code,
and leaked back in the Java code, (2) the call to the source is already in native code, but the sink is still in Java
code, (3) the source is in Java code, but the sink is in native code, and (4) both source and sink are in native code.

Reflection
The test cases in this category use reflection to call methods and access fields rather than directly invoking or
accessing them. Some tests also further obfuscate the strings that identify the targets of the reflective method or
field accesses.

Reflection_ICC
These test cases combine reflective method calls with inter-component communication. They emulate obfuscation
techniques used in modern malware apps to prevent static analysis tools from identifying the contents and targets
of intents. The strings used in the reflective calls are also encoded or dynamically constructed in some of the tests
to make them unavailable to tools that only scan for constant strings.

Self-Modification
This category contains apps that modify their own code at runtime. The apps contain native code that is invoked
directly after the main activity’s class is loaded into the Dalvik runtime. This native code then locates the Dalvik code
in memory and modifies the targets of method calls so that previously innocent call sequences now leak sensitive
information. If the static analysis only considers the original app code without these runtime modifications, it
misses the leak.

Threading
Java offers various APIs for creating new threads. The Android operating system adds more techniques to execute
asynchronous tasks. The test cases in this category check whether an analysis tool correctly handles code that
executes outside of the main thread, but potentially exchanges data with the main thread or other threads in
general.

Unreachable Code
These test cases contain data flows that are not actually executed at runtime, because the data flow path (or at
least parts of it) are unreachable. The challenge for a static analysis tool is to identify this unreachable code. For
not generating false positives, the analysis must be able to construct constraints on the outcomes of arithmetic
operations and check the compatibility of conditionals against these constraints. If the test case, for instance,
creates a random value in the range from zero to 100 and then checks whether the value is larger than 110, the
analysis must be able to derive that this will never hold at runtime.

7.2 Evaluating FLOWDROID on DROIDBENCH

In this Section, we report on the precision and recall of FLOWDROID on the various benchmarks in DROIDBENCH. For
the test cases on which FLOWDROID fails, we give reasons. Table 6 shows all test cases in DROIDBENCH and compare’s
FLOWDROID’s output to the expected results as well as other commercial and academic, state-of-the-art static data
flow analysis tools. Since the tools differ in their scope, we first explain our setup and the configurations we use for
the tools.

7.2.1 FlowDroid Configuration

FLOWDROID does not provide support for inter-component and inter-app communication. To evaluate the tool in
a meaningful way, we configure all incoming intents as sources. This configuration over-approximates the actual
taint problem by considering all incoming intents as tainted, regardless of where they come from and what their
actual state is. The naturally leads to false positives in cases in which a component never receives an intent or
the incoming intent does not contain any tainted data. Such false positives are counted as false positives, because
they do not reflect any real leaks. On the other hand, if FLOWDROID detects a leak from an incoming taint to a
sink method and this is actually part of a real leaking path, we count it as a hit, even though FLOWDROID does not

117



Setting Value Explanation
Access Path Length 5 See Section 3.3
Symbolic Access Paths Enabled Section 3.3
Path Agnostic Results Enabled Section 4.13
Data Type Propagation Enabled Section 4.11
Implicit Flow Tracking Disabled Section 4.6
Track Static Fields Enabled Section 4.2
Track Exceptional Flows Enabled Section 4.5
Array Size Tainting Disabled Section 4.4
Alias Algorithm Flow-Sensitive Section 4.8
Flow Sensitive Aliasing Enabled Section 4.8.4
Callgraph Algorithm SPARK Section 4.2.6
Code Optimization Constant Prop. Section 4.14
Android Callbacks Enabled Section 5.3
Callback Sources Enabled Section 5.3.7
Callback Analyzer Iterative Section 5.3.4
Layout Matching Sensitive Only Section 5.2

Table 5: Configuration for FLOWDROID Evaluation on DROIDBENCH

detect the real source in the sender component. In that case, FLOWDROID technically discovered only a fraction of
the taint path and reported a “wrong” source, because the original source was not the incoming intent, but, e.g.,
the call to getDeviceId() in some other component. Still, we consider this as a true leak for the purpose of our
evaluation. Furthermore, if one component sends sensitive data to another component using an intent, this will
always be reported as a leak. FLOWDROID has no mechanism to check whether the data actually leaves the current
app and might be observed by a third party, or in which component the data flow continues. We count such reports
as correct hits according to our source/sink specification. These hits, though semantically incorrect, are enough for
tools such as ICCTA to build upon FLOWDROID and add more precise intent matching.
For library handling, we rely on FLOWDROID’s built-in Easy Taint Wrapper to allow for a more fair comparison to
other tools which do not provide sophisticated library handling. We find that this decision does not lead to any false
positives in the DROIDBENCH suite, but to a small number of false negatives. These false negatives are also shared
by other tools. In total, we used FLOWDROID with all default settings as shown in Table 5.

7.2.2 IBM AppScan Source Configuration

For our evaluation, we used IBM AppScan Source in version 9.0.3. We ran the analysis client on Windows 10 on
a physical machine. The server-side components (both the IBM AppScan Enterprise Server and the IBM AppScan
Source Server) were installed in a VM running CentOS 7 hosted on the same system. We chose CentOS, because
it is a free binary-compatible alternative to RedHat Enterprise Linux which is the only officially supported Linux
platform for AppScan Source. We ran the tool on the source code of the DROIDBENCH test cases, because it does
not support binary analysis. Unfortunately, the default source and sink list of AppScan Source is not available,
so we added missing sources and sinks to the custom rule list on demand (i.e., when we noticed missing flows
that were potentially due to unknown sources or sinks). Due to the low number of distinct sources and sinks
in the DROIDBENCH test cases, this approach was feasible. For taint propagators (a concept similar to FLOWDRO-
ID’s EasyTaintWrapper explained in Section 4.9.1), we used the approach of same on-demand extensions to the
database.
There are two different types of findings in AppScan Source: Security Findings, which are in turn classified as either
Definite or as Suspect, and Scan Coverage Findings. Only security findings are linked to data flows. Scan coverage
findings can be reported only because a specific API call is present in the code or a specific pattern matches.
Consequently, including these findings into the result set increases the risk of false positives. For a fair comparison,
we include both results (without and with scan coverage findings) in our result table. The combination of both
types of findings is shown in the second column AppScan Ext (for “extended”). Note that these findings are always
in addition to the trace-based findings, so they can reduce the number of false negatives, but cannot improve on
false positives. To allow for a fair comparison, we never counted security-related findings that were obviously for
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other reasons than the information flow to be found in the respective app, e.g., a stack trace from an exception
being potentially leaked to an attacker. Since AppScan is a generic security assessment tool and not only a pure
data flow tracker, it also reports various findings of that kind.

7.2.3 DroidSafe Configuration

We also tried to compare the precision and recall of FLOWDROID to DroidSafe [60]. However, we found that the
DroidSafe analysis times out for some of the DROIDBENCH test cases. We explicitly report such cases and only
compare the outputs of the tool for such cases in which the analysis finished within 10 minutes. Given that all
DROIDBENCH micro-benchmark apps are smaller than one megabyte and only contain a few lines of user code, we
can require a tool to finish the analysis within such a timeframe. FLOWDROID finishes on the DROIDBENCH examples
well in under one minute per app, requiring only a handful of seconds oftentimes. For DroidSafe, even when the
analysis terminates, it still requires multiple minutes of processing time, making the scalability of the tool to real-
world apps questionable. We used DroidSafe with the default configuration on APK files, not source code. For some
apps, DroidBench failed with an exception, which we also explicitly denoted.
DroidSafe supports inter-compoent data flow tracking. Therefore, for some of the apps from the inter-component
communication category inside DROIDBENCH, it not only finds the intra-component flows that end at methods such
as startActivity(), but correctly links the outgoing data to its use in the receiver component. Since the other tools
in the comparison (especially FLOWDROID and AppScan Source) do not support inter-component analysis, we count
the leak as found if DroidSafe either found the flow to the component boundary or to the use in the correct receiver
component. We only count a false negative if the expected flow was not found at all. If DroidSafe reports a flow to
a wrong receiver component (i.e., made a wrong intent mapping), we count this as a false positive. The results of
the other tools are a counted in the same way, i.e., FLOWDROID also receives false positives for reporting flows inside
components that are never triggered, though it was never designed to analyze inter-component communication.

7.2.4 JoDroid Configuration

We ran JoDroid on the DROIDBENCH test cases according to the description on their Github wiki page32. The process
consists of three steps. Firstly, the app’s manifest file and code is analyzed to find the entry points for the later
analysis steps. We used the normal scan mode which is also the default in the examples given in the documentation.
This step yields a .ntrP file. Afterwards, JoDroid constructs the system dependence graph (SDG) of the app and
saves it into the .pdg file. We used the option –analysis full to construct an object-sensitive SDG, and the option
�construct all to consider all components that can receive external intents as possible starting points for the
analysis, not only the activities that appear in the device’s app launcher33. Afterwards, we use the Joana GUI to
read in the constructed pdg file, configure the sources and sinks, and run the actual data flow analysis. In some
cases, the analysis timed out in one of the steps explained above, or the respective programs terminated with an
unhandled exception. We denote those cases explicitly in the result table.
One challenge we faced with JoDroid is that we could not globally configure the sources and sinks. Instead of
definiting a method such as getDeviceId() as a source and have the tool automatically match this definition to all
calls to this method, we had to manually find all calls to the methods we were interested in and manually define
each of these calls as sources or sinks, respectively. The reason for this required extra effort is that JoDroid analyzes
the app’s code for method invocations. The getDeviceId() method is called on a base object that is retrieved from
a factory method implemented in the Android framework. Since the Android SDK is shipped with stub versions
of the framework methods, no object is actually returned by these factory methods from the perspective of the
analyzer. Therefore, since the base object is not available, the analyzer does not consider the call to getDeviceId()

to have any outgoing call edges, and, consequently, the getDeviceId() method is never called. Source definitions
on that method are therefore never applied. Directly selecting the individual call sites removes the dependency on
this part of the callgraph and allows the analysis to be configured correctly nevertheless.

7.2.5 Results Table

The following table 6 shows an overview over the results of the various tools on the DROIDBENCH test cases. In the
cases in which a tool did not complete the analysis of an app due to an uncaught exception, we denote Exception

32 https://github.com/joana-team/joana/tree/master/wala/joana.wala.jodroid
33 Those activities that appear in the launcher are sometimes referred to as “main” activities in the literature.
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instead of the test results. If the analysis timed out, we denote Timeout. For calculating the metrics precision, recall,
and F-Measure, we treat such cases as if the tool had returned zero results. Note that this treatment has the implicit
consequence that the metrics lean towards high precision: A tool that fails contributes zero false positives to the
metric. If there were no leak to be found in the respective DROIDBENCH app, the crash is thus equal to a fully correct
result.
Each DROIDBENCH test case contains a structured definition of the test case and the leaks to be found. This informa-
tion is given as a comment in the header of the main Java source code file. In some cases, the number of expected
leaks defined in the source code of a test case differs from the expected findings in Table 6. We made these changes
to allow for a fair comparison between the different tools. The DROIDBENCH test cases that, for instance, leak the
user’s location, i.e., both the longitude and the latitude of the current GPS position, are defined with two expected
leaks in the respective source code files. Most tools, however, consider this to be only a single leak, because the
same complex object, i.e., the location, is affected, regardless of how many of its properties are leaked. We there-
fore counted these test cases to have only one leak in the table. If a tool detects either the location leak as a single
atomic leak, or the two individual properties as two separate leaks, it is assumed to be fully correct on the test case
and produce the one expected leak for the table.

? = correct warning, ?= false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan AppScan Ext DroidSafe JoDroid FlowDroid
Aliasing

FlowSensitivity1 ? ? Timeout ?

Merge1 ? Timeout ? ?

SimpleAliasing1 ? ? Timeout ? ?

StrongUpdate1 ? ? Timeout ?

Arrays and Lists
ArrayAccess1 ? ? ? ? ?

ArrayAccess2 ? ? ? ? ?

ArrayAccess3 ? ? ? ?

ArrayAccess4 ?

ArrayAccess5 ?

ArrayCopy1 ? ? ? ?

ArrayToString1 ? ? ? ?

HashMapAccess1 ? ? ? ? ?

ListAccess1 ? ? ? ? ?

MultidimensionalArray1 ? ? ? ? ?

Callbacks
AnonymousClass1 ? ? ? ?

Button1 ? ? ? ?

Button2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Button3 ? ? ? ? ? ? ?

Button4 ? ? ? ?

Button5 ? ? ?

LocationLeak1 ? ? ? ? ? ? ? ?

LocationLeak2 ? ? ? ? ? ? ? ?

LocationLeak3 ? ? ? ?

MethodOverride1 ? ? ? ? ?

MultiHandlers1 ? ?

Ordering1 ? ? ? ?

RegisterGlobal1 ? ? ?

RegisterGlobal2 ? ? ?

Unregister1 ? ? ? ?

Dynamic Code Loading
DynamicBoth1 ? ?

DynamicSink1 ? ?
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? = correct warning, ?= false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan AppScan Ext DroidSafe JoDroid FlowDroid
DynamicSource1 ? ? ?

Emulator Detection
Battery1 ? ? ? ? ?

Bluetooth1 ? ? ? ? ?

Build1 ? ? ? ? ?

Contacts1 ? ? ? ? ?

ContentProvider1 ? ? ? ? Timeout ? ? ? ?

DeviceId1 ? ? ? ? ?

File1 ? ? ? ? ?

IMEI1 ? ? ? ? ? ?

IP1 ? ? ? ? ?

PI1 ? ? ? ? ?

PlayStore1 ? ? ? ? Timeout ? ? ? ?

PlayStore2 ? ? Timeout Timeout ?

Sensors1 ? ? ? ? ?

SubscriberId1 ? ? ? ? ?

VoiceMail1 ? ? ? ? ?

Field and Object Sensitivity
FieldSensitivity1 ?

FieldSensitivity2 ?

FieldSensitivity3 ? ? ? ?

FieldSensitivity4 ? ?

InheritedObjects1 ? ? ? ?

ObjectSensitivity1 ? ?

ObjectSensitivity2 ? ? ?

Implicit Flows
ImplicitFlow1 ? ? ? ?

ImplicitFlow2 ? ? ? ?

ImplicitFlow3 ? ? ? ?

ImplicitFlow4 ? ? ? ?

ImplicitFlow5 ?

ImplicitFlow6
Inter-App Communication

Echoer ? ? ? ? ? ? ? ? ? ? ? ? ?

SendSMS ? ? ? ? ? ? ? ? ? Exception ? ? ?

StartActivityForResult1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Exception ? ? ? ? ? ?

Collector ? ? ? ? ?

DeviceId_Broadcast1 ? ? Exception ?

DeviceId_ContentProvider1 ? ? Exception Exception ? ?

DeviceId_OrderedIntent1 ? ? Exception ? ?

DeviceId_Service1 ? ? Exception ?

Location1 Exception Exception ? ?

Location_Broadcast1 Exception ? ?

Location_Service1 ? ? ? ?

Inter-Component Communication
ActivityCommunication1 ? ? ?

ActivityCommunication2 ? ? ? ? ? ? ? ?

ActivityCommunication3 ? ? ? ? ? ? ?

ActivityCommunication4 ? ? ? ? ? ? ?

ActivityCommunication5 ? ? ? ? ? ? ?
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? = correct warning, ?= false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan AppScan Ext DroidSafe JoDroid FlowDroid
ActivityCommunication6 ? ? ? ? ? ? ?

ActivityCommunication7 ? ? ? ? ? ? ?

ActivityCommunication8 ? ? ? ? ? ? ?

BroadcastTaintAndLeak1 ? ? ? ? ?

ComponentNotInManifest1 ? ? ? ?

EventOrdering1 ? ? ? ? ?

IntentSink1 ? ? ?

IntentSink2 ? ? ? Exception ?

IntentSource1 ? ? ? ? ? ? Exception ? ?

ServiceCommunication1 ? Exception
SharedPreferences1 ?

Singletons1 ? ?

UnresolvableIntent1 ? ? ? ? ? ? ? ?

Lifecycle
ActivityEventSequence1 ? ? ? ?

ActivityEventSequence2 (see notes)
ActivityEventSequence3 ? ? ? ?

ActivityLifecycle1 ? ? ?

ActivityLifecycle2 ? ? ? ?

ActivityLifecycle3 ? ? ?

ActivityLifecycle4 ? ? ? ?

ActivitySavedState1 ? ?

ApplicationLifecycle1 ? ? ? ?

ApplicationLifecycle2 ? ? ?

ApplicationLifecycle3 ? ? ? ?

AsynchronousEventOrdering1 ? ? ? ?

BroadcastReceiverLifecycle1 ? ? ? ?

BroadcastReceiverLifecycle2 ? ?

BroadcastReceiverLifecycle3 ? ? ? ? ?

EventOrdering1 ? ? ? ? ?

FragmentLifecycle1 ? Timeout ?

FragmentLifecycle2 ? Timeout
ServiceEventSequence1 ? ?

ServiceEventSequence2 ? ? Exception
ServiceEventSequence3 ? ? Exception ?

ServiceLifecycle1 ? ? ? ?

ServiceLifecycle2 ? ? ? ?

SharedPreferenceChanged1 ? ? ? ?

General Java
Clone1 ? ? ? ? ?

Exceptions1 ? ? ? ? ?

Exceptions2 ? ? ? ? ?

Exceptions3 ? ? ? ? ?

Exceptions4 ? ? ? ?

Exceptions5 ? ? ? ?

Exceptions6 ? ? ? ?

Exceptions7 ? ? ?

FactoryMethods1 ? ? ? ? ? ? ? ? ? ?

Loop1 ? ? ? ? ?

Loop2 ? ? ? ? ?

Serialization1 ?
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? = correct warning, ?= false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan AppScan Ext DroidSafe JoDroid FlowDroid
SourceCodeSpecific1 ? ? ? ? ?

StartProcessWithSecret1 ? ? ? ?

StaticInitialization1 ? ?

StaticInitialization2 ? ? ? ?

StaticInitialization3 ? ?

StringFormatter1 ? ? ?

StringPatternMatching1 ? ? ? ? ?

StringToCharArray1 ? ? ? ? ?

StringToOutputStream1 ? ? ? ? ?

UnreachableCode ? ? ?

VirtualDispatch1 ? ? ? ? ? ?

VirtualDispatch2 ? ? ? ? ? ?

VirtualDispatch3 ? Timeout ?

VirtualDispatch4 ? Timeout
Miscellaneous Android-Specific

ApplicationModeling1 ? ? ? 34

DirectLeak1 ? ? ? ? ?

InactiveActivity ? ? ?

Library2 ? ? ? ?

LogNoLeak ?

Obfuscation1 ? ? ? ?

Parcel1 ? ? ?

PrivateDataLeak1 ? ? ? ?

PrivateDataLeak2 ? ? ? ? ?

PrivateDataLeak3 ? ? ?

PublicAPIField1 ? ? ? ?

PublicAPIField2 ? ? ? ? ?

View1 ? ? ? ?

Native Code
JavaIDFunction
NativeIDFunction
SinkInNativeCode
SinkInNativeLibCode
SourceInNativeCode

Reflection
Reflection1 ? ? ? ? ?

Reflection2 ? ? ? ?

Reflection3 ? ? ?

Reflection4 ? ? ? ?

Reflection5 ?

Reflection6 ? ?

Reflection7
Reflection8 ?

Reflection9 ?

Reflection_ICC
ActivityCommunication2 ? ? ? ?

AllReflection
OnlyIntent ?

34 A model for the getApplication() method in android.app.Activity was contributed to the FLOWDROID open source project by Gal
Dudovitch and Daniela Rabkin from Tel-Aviv University.
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? = correct warning, ?= false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan AppScan Ext DroidSafe JoDroid FlowDroid
OnlyIntentReceive
OnlySMS ?

OnlyTelephony ? ?

OnlyTelephony_Dynamic ? ? ? ?

OnlyTelephony_Reverse ? ?

OnlyTelephony_Substring ? ?

SharedPreferences1
Self-Modification

BytecodeTamper1 ?

BytecodeTamper2
BytecodeTamper3 ?

BytecodeTamper4
Threading

AsyncTask1 ? ? ?

Executor1 ? ? ?

JavaThread1 ? ? ?

JavaThread2 ? ?

Looper1 Timeout ? 35

TimerTask1 ? Timeout ? ?

Unreachable Code
SimpleUnreachable1 Exception Timeout
UnreachableBoth1 ? ? ?

UnreachableSink1 ? ? ?

UnreachableSource1 ? ? ?

Sum, Precision and Recall
? , higher is better 70 131 136 97 158
? , lower is better 23 28 14 24 24

, lower is better 118 57 34 70 30
Additonal (Crashes / Timeouts) - - 18 21 -
Precision p = ?/( ? + ?) 75.27% 82.39% 90.67% 80.17% 86.81%
Recall r = ?/( ? + ) 37.23% 69.68% 72.34% 51.60% 84.04%
F-measure 2pr/(p+ r) 0.50 0.76 0.80 0.63 0.86

Stability
Apps with Crashes / Timeouts - - 19 12 -

Table 6: DROIDBENCH test results

7.3 FlowDroid Result Explanation

In this Section, we discuss in detail the DROIDBENCH test cases on which FLOWDROID fails, i.e., produces at least one
false positive or false negative.

35 A model for the android.os.Handler class was contributed to the FLOWDROID open source project by Gal Dudovitch and Daniela
Rabkin from Tel-Aviv University.
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7.3.1 Aliasing

Merge1
This test case contains a non-distributive aliasing problem. Since FLOWDROID over-approximates the set of possible
aliases for a given taint abstraction, a wrong alias is found, leading to a false positive. See Section 4.8.4 for further
details on this issue.

7.3.2 Arrays and Lists

ArrayAccess1 & 2
This test case writes data into an array, but then reads back non-sensitive from a different index in the same array.
Since FLOWDROID over-approximates the taint state of arrays, the whole array gets tainted and the false positive
occurs.

HashMapAccess1
In this test case, sensitive data is written into a hash map. The test case then reads back non-sensitive data for
a different key in the same hash map and leaks it. FLOWDROID over-approximates the taint state of the map and
assumes that all data read from the map is tainted if the map holds at least one tainted item.

ListAccess1
Similar to HashMapAccess1. FLOWDROID over-approximates the taint state of lists just like it does with maps. In this
test case, sensitive data is stored in a list, but the data that gets leaked is non-sensitive read from a different index
in the same list.

7.3.3 Callbacks

Button2
In this test case, a global field holding sensitive data is overwritten with an empty string before passing this value
to the sink method. Though FLOWDROID supports strong updates, it only does so intra-procedurally. In this case, it
cannot kill the taint as it does not know that both accesses to the same field must always alias, i.e., a real strong
update would be possible.

Unregister1
This test case registers a callback handler that leaks data, but unregisters it again before it can actually be triggered.
Unregistering callback handlers is not supported in FLOWDROID, we assume that all callbacks are active eternally
while their host component is running. See Section 5.3 for details.

7.3.4 Dynamic Code Loading

FLOWDROID only analyzes the code contained in the main classes.dex file of the APK. It does not consider ad-
ditional code loaded at runtime. Therefore, false negatives occur if the sources and/or sinks are contained in
dynamically-loaded code or if the data flow passs through such code unavailable to the analysis.

7.3.5 Inter-App Communication

FLOWDROID is a tool for tracking intra-component data flows. We therefore analyze each app from the inter-app
benchmark set individually. If the leaks from the app’s boundaries (e.g., incoming intents or data obtained from
the Android operating system) to the boundaries (e.g., outgoing intents or external resources such as files) are
found, the respective leaks are counted. We do not assess combinations of apps as FLOWDROID does not match
intent senders and receivers.

7.3.6 Inter-Component Communication

ActivityCommunication2-8
FLOWDROID over-approximates the inter-component data flows. Every incoming intent is treated as a source. There-
fore, when an activity sends an intent to another one and this second activity leaks the data, the leak will be found.
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These test cases, however, also include other, unrelated activities that never receive the intent. Since FLOWDROID

does not perform intent resolution, it does not connect the sender and receiver activities. Therefore, it finds a false
positive in the unrelated activity that has code to leak the incoming data, bus is never triggered at runtime.

ComponentNotInManifest1
The actual component to which the intent containing the sensitive data is sent is not declared in the manifest
file. FLOWDROID correct discovers this and does not find a false positive in that activity. However, there is another
unrelated activity which is declared in the manifest file, but which is not the receiver of the intent. As FLOWDROID

does not perform intent resolution, it reports the data flow inside this unrelated component from reading the
incoming intent to leaking it as a leak.

EventOrdering1
This test case suffers from the same issues as ActivityCommunication2-8 which explains the false positive. Ad-
ditionally, a false negative arises, because FLOWDROID does not handle taint across external resources. In the test
case, sensitive data is written to Android’s Shared Preferences infrastructure. When the app is restarted, the data is
read back and leaked. One could avoid this false negative by defining the shared preference reading methods as
sources which over-approximates the possible tainted data. Still, one would not be able to capture the precise flow
through this external resource.

ServiceCommunication1
This test case starts a new service and passes an implementation of Android’s ServiceConnection interface to it.
Through this interface, the starting activity and the service can communicate. More specifically, this interface is
used to exchange IBinder implementations for afterwards running transactions with the service. FLOWDROID does
not support such communication yet and cannot over-approximate it either.

SharedPreferences1
This test case writes sensitive data into the shared preferences in one activity and reads this data back in another
activity where it is leaked. As in the EventOrdering1 test case, FLOWDROID does not support taint propagation over
external resources.

Singletons1
This test case requires component interleaving. One activity clears a field in a singleton when started. When a
second activity starts, it fills the field with tainted data. The data is leaked when the first activity is stopped. Since
FLOWDROID simlautes the component lifecycles one after another, this interleaving is not supported and thus, no
leak is detected.

7.3.7 Lifecycle

ActivityEventSequence2
This test case was contributed by a different research group. We were unable to reproduce the data flow claimed in
the test case’s documentation during our tests with the app. We therefore do not count a false positive even though
FLOWDROID does not find the proclaimed leak.

BroadcastReceiverLifecycle2
In this test case, a false positive occurs, because FLOWDROID models components sequentially without any depen-
dencies in the dummy main method. For this test case to be analyzed correctly, the lifecycles of the main activity
and the dynamically-registered broadcast receiver would, however, need to be interleaved.

FragmentLifecycle1 & 2
FLOWDROID does not yet support Android’s fragments. Aside from the four component types (activity, service, con-
tent provider, and broadcast receiver) plus the application class, this would be another distinct lifecycle to be
implemented in the entry point creator. Fragments are complex since they are tightly integrated into the lifecycle
of their hosting activity.
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ServiceEventSequence1
The service component has two different lifecycles. Users can send commands to the service individually, or,
alternatively, bind to the service once and then use this open connection to exchange data with the service. This
test case combines both uses and mixes the two lifecycles which is not supported by FLOWDROID.

7.3.8 General Java

Exceptions3
In this test case, the leak only happens if an ArrayIndexOutOfBoundsException is thrown. The code can, however,
not throw an exception because the it only accesses an array at a constant index that is in the range of the array.
FLOWDROID over-approximates the set of exceptions that can be thrown at array accesses and thus assumes that the
index might be illegal though it is not.

Serialization1
This test case requires a more complex library handling than FLOWDROID’s easy taint wrapper can offer. The easy
taint wrapper can only taint the base object when a parameter of a method call is tainted. If the base object,
however, references another object to which it passes on the tainted data; this cannot be modeled. To support such
complex libraries, we propose STUBDROID, see Section 6.

StaticInitialization1 & 3
FLOWDROID depends on Soot to create the callgraph for the app based on the dummy main method that FLOWDROID’s
entry point creator generates. In Soot, static code blocks are, however, handled imprecisely. This can lead to the
static block being executed at the wrong time, hiding the leak in these two test cases.

StringFormatter1
Same reason as Serialization1, gets solved with STUBDROID.

VirtualDispatch3
In this test case, a variable that is declared with an interface type is initialized through a factory method. After-
wards, data is retrieved from the object using a getter method and this data is leaked. Depending on the concrete
implementation of the interface type chosen by the factory method, a leaks happens or not. Though the factory
method only instantiates the type that does not return any sensitive information, the SPARK callgraph algorithm
built into Soot delivers imprecise information on the possible types for the result of the factory method. Therefore,
it constructs outgoing call edges to all implementations of the interface, including those for which a leak occurs.

7.3.9 Miscellaneous Android-Specific

PrivateDataLeak3
The sensitive data is written into a file and read back. FLOWDROID does not support such taint paths across external
resources. One could declare file inputs as a source to over-approximate the file handling. In this case, the missed
leak would still occur in our configuration, though, because one would need complex library handling. The over-
approximation in combination with STUBDROID would work.

7.3.10 Native Code

FLOWDROID does not support tracking data flows through native code. Therefore, no leaks can be found for these
benchmarks as explained in Section 4.10.

JavaIDFunction, SinkInNativeCode
This test case leaks sensitive data using JNI. The data is passed into a native method which again uses JNI to pass
the data back to the sink in the (Dalvik-based) Android SDK. This sink call can thus not be detected by FLOWDROID

as the call site is not in the Dalvik part of the app.

NativeIDFunction
This test cases passes sensitive data through an identity function in native code which is not supported by FLOW-
DROID. The taint propagation ends once the data arrives at the native call and thus never reaches the sink.
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SinkInNativeLibCode
This test case is similar to SinkInNativeCode, but the call is not a method in the Dalvik-based part of Android SDK
and called through JNI from native to Dalvik. Instead, native API methods are used to directly leak the data. Such
native-level sinks cannot be detected by FLOWDROID.

SourceInNativeCode
In this test case, the source is called from native code. The native library uses JNI to invoke a method in the
Dalvik-based part of the Android SDK. The call site in the native code is not detectable by FLOWDROID.

7.3.11 Reflection

FLOWDROID inherits its support for reflective method calls from the underlying Soot framework. This support is
limited to cases in which the types and names of classes referenced through reflection are known. For methods, the
name and the parameter types must be available.

Reflection3
In this test case, the names of the class and method called through reflection are obtained from Android resource
files and are not directly available as string constants. Therefore, Soot’s built-in mechanism for resolving reflective
method calls fails. The problem can be circumvented by first running the app through the Harvester tool [112],
which resolves the reflective method calls and converts them into direct method invocations. The resulting app can
then be processed by FLOWDROID.

7.3.12 Reflection_ICC

ActivityCommunication2
This test case inherits the same issues as the original test case with the same name in the category for inter-
component communication.

AllReflection, OnlyIntentReceive
These test cases use factory methods to obtain the base objects on which methods are afterward invoked using
reflection. In that case, the SPARK callgraph algorithm cannot obtain the base type, and consequently, cannot find
suitable candidate methods for the reflective call. Since the callees are library methods, no actual implementation
is expected, but also for the taint wrappers to work, at least the correct signature of the receiver method must be
known.

SharedPreferences1
This test case fails for the same reason as its counterpart from the Inter-Component Connction category that does
not use reflection. FLOWDROID does not support tracking taints across files, including the shared preferences XML
file.

7.3.13 Self-Modification

FLOWDROID only analyzes the Dalvik code inside the APK file. It does not parse or analyze any native code and
thus cannot find out whether the native code changes the behavior of the Dalvik code inside the phone’s memory.
Therefore, FLOWDROID must assume that the Dalvik VM (or the ART runtime) always executes the original code
from the APK’s classes.dex file.

7.3.14 Unreachable Code

FLOWDROID performs an interprocedural constant propagation and folding as explained in Section 4.14. While this
technique is able to identify code that is unreachable due to conditionals, e.g., on the outcome of simple arithmetic
computations, it does contain a model of Java’s mathematical library functions. The test cases in this category
compute a random integer with a specific maximum value and then check whether the outcome is larger than
a value higher than this upper limit. While this condition can never become true, FLOWDROID lacks a model for
the relationship between the maximum value passed to the randomization function and the return value of that
function. Therefore, the analysis conservatively assumes both branches of the conditional to be feasible and a false
positive occurs.
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7.4 Discussion

In the original paper on FLOWDROID [9], we also compared the tool’s precision and recall to the results we achieved
with HP Fortify, another commercial static analysis tool. Unfortunately, Fortify was no longer available to us when
conducting the experiments for this thesis. On the original DROIDBENCH version 1.0 published together with the
FLOWDROID paper, Fortify achieved a precision of 81% and a recall of 61%. These results can only be assessed in
comparison with the old data for IBM AppScan Source and FLOWDROID, though. The structure of DROIDBENCH has
shifted by adding new test cases that make it significantly harder to achieve high precision and recall in version 3.0
of the micro-benchmark suite than in version 1.0. On DROIDBENCH 1.0, FLOWDROID achieved a precision of 86% and
a recall of 93%. In our old experiments, we used version 8.3 of IBM AppScan Source which achieved a precision of
74% and a recall of 50%.
In the current experiments, we can observe that FLOWDROID still outperforms IBM AppScan Source with regard
to both precision and recall, regardless of whether scan coverage findings are counted in or not. Interestingly,
including scan coverage findings into the AppScan Source results increases not only the recall of the tool, but also
the precision, because with the massively higher number of correct findings, the only slightly increased number of
false positives is no longer as significant.
We have found that DroidSafe was unable to complete the analysis for 19 of the 190 DROIDBENCH test cases, either
because of timeouts or because of uncaught exceptions. In our numbers for precision and recall, we exclude those
test cases. The precision of FLOWDROID (86.81%) is lower than the one of DroidSafe (90.67%), but FLOWDROID

has a higher recall (84.04%) than DroidSafe (72.43%), i.e., detects more leaks. In the F-measure that aggregates
precision and recall, FLOWDROID achieves a slightly higher result (0.86) than DroidSafe (0.80). The numbers are
based on the total number of leaks to be found. If a tool does not complete the analysis of a test case, it is counted
as if it had found nothing. This approach biases the metrics towards higher precision (because it assumes no false
positives in that case), but lower recall (because it assumes all true leaks to be missed). If we compute the metrics
only on those apps for which the respective tool completed the analysis and exclude the failing test cases from
the DROIDBENCH test suite when evaluating the corresponding tool, the recall of DroidSafe rises to 80% and the
F-measure to 0.85. Both values are closer to, but still lower than the results achieved by FLOWDROID. Furthermore,
we can draw the conclusion that FLOWDROID is the more stable and more mature analysis tool. We also point out
that DroidSafe was published in 2015, when FLOWDROID was already approximately available for one year, allwong
the DroidSafe project to build upon our work.
Concerning recall, we notice that DroidSafe provides a model for fragments, which accounts for four leaks FLOW-
DROID misses in the Lifecycle category of DROIDBENCH. Providing such a model for FLOWDROID is the subject of an
ongoing research project. On the other hand, DroidSafe does not seem to support implicit flows, which leads to
seven missed flows in the Implicit Flow category of DROIDBENCH. Concerning precision, we find that FLOWDRO-
ID yields nine false positives in the Inter-Component Communication category of DROIDBENCH, because it analyzes
components independently and thus cannot detect when a component inside the app never actually receives data.
We point out that two publications, namely ICCTA [86] and DidFail [77] address this issue by extending FLOW-
DROID with full support for inter-component and inter-app data flow tracking. We re-evaluated the apps in the
Inter-Component Communication category with ICCTA. Without it, the FLOWDROID analysis yields 15 true leaks ( ?
), 4 false negatives ( ), and 9 false positives ( ? ) in this category. With ICCTA, the results change to 14 true leaks
( ? ), 5 false negatives ( ), and 1 false positive ( ? ). The ICC models, which define the inter-component callgraph
edges, were created with IC3 [103]. On this test suite, ICCTA improves the precision (from 86.81% to 90.75% in
total), but decreases the recall (from 84.04% to 83.51% in total). The F-Measure, which is a combined measure for
precision and recall, remains almost unchanged; it only increases slightly from 0.86 to 0.87. With more precise and
complete ICC models, the accuracy of the analysis can likely be improved even further. The false negatives from
which FLOWDROID and ICCTA suffer for the ActivityCommunication2 test case, for example, stem from a missing ICC
edge in the model.
JoDroid, which is based on system dependence graphs instead of taint tracking, shows lower precision and recall
than FLOWDROID. This is surprising as Joana, the tool on which JoDroid is built, was constructed with soundness
in mind. Nevertheless, we find that even for such a tool, the use of reflection, native code, or API methods not
modeled in the tool can lead to cases of under-approximation. Out of 190 DROIDBENCH test cases in total, 12 apps
could not be analyzed, mostly due to unhandled exceptions in the tool. In two of these cases, we, however, also
found that the tool did not terminate in realistic time. We also had to increase the maximum heap space allotted to
the SDG generation from its 2 GB default, which proved to be insufficient for some of the DROIDBENCH test cases.
We used a new maximum heap space of 25 GB, but did not further investigate whether a lower amount would have
been sufficient as well. For the information flow analysis on the generated SDG, we found the Joana GUI to actually
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use around 9 GB of memory, with some .pdg files36 growing up to over 150 MB for micro-benchmarks apps of less
than 1 MB and with only a handful of lines of user code. We conclude that FLOWDROID not only appears to be more
precise and complete, but also more stable and scalable.

36 The tool seems to sometimes refer to PDGs (program dependence graphs) and sometimes to SDGs (system dependence graphs).
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Setting Value Default Explanation Notes
Access Path Length 1 No (Default: 5) See Section 3.3 Scalability on large apps
Symbolic Access Paths Enabled Yes Section 3.3
Path Agnostic Results Enabled Yes Section 4.13
Data Type Propagation Enabled Yes Section 4.11
Implicit Flow Tracking Disabled Yes Section 4.6
Track Static Fields Enabled Yes Section 4.2
Track Exceptional Flows Enabled Yes Section 4.5
Array Size Tainting Disabled Yes Section 4.4
Alias Algorithm Flow-Sensitive Yes Section 4.8
Flow Sensitive Aliasing Disabled38 No Section 4.8.4 Scalability on large apps
Callgraph Algorithm SPARK Yes Section 4.2.6
Code Optimization Constant Prop. Yes Section 4.14
Android Callbacks Enabled Yes Section 5.3
Callback Sources Enabled Yes Section 5.3.7
Callback Analyzer Iterative Yes Section 5.3.4
Layout Matching Sensitive Only Yes Section 5.2

Table 7: Default Configuration for FLOWDROID Performance Evaluation

8 FLOWDROID Performance Evaluation

In this section, we evaluate the performance of FLOWDROID on real-world Android apps. Note that we do not
evaluate the precision or recall of the analysis, because this is hard to accomplish on real-world apps for which
no ground truth exists and which are significantly too large for manual reverse-engineering. For measurements
on FLOWDROID’s precision and recall on the DROIDBENCH micro-benchmark suite, please refer to Section 7.2. For
the performance evaluation, we chose a set of popular apps from the Google Play Store that are installed on many
devices and for which a privacy analysis concerning data flows is thus of interest to many users. These popular apps
also have a rather large code size and use many different language constructs, which again makes them interesting
targets for assessing a static analysis tool. For sampling the apps, we used the list of most downloaded apps from
Wikipedia37 and sampled it for apps from different categories including games, social media, productivity, and
communication. Additionally, we added further popular apps from other sources.

8.1 Default Configuration

Recall that the performance of the data flow analysis depends various factors, both in the platform-agnostic part of
the tracker as well as in the Android-specific implementations. By default, the test program shipped with FLOWDROID

already configures the solver with an option set that makes a reasonable tradeoff between precision, recall, and
performance. Additionally, we specifiy some additional settings in order to be able to cope with even very large apps.
Our complete configuration is shown in Table 7. For evaluating the effect of specific features or design decisions
of the data flow tracker, we adapt individual settings in the following sections, but always start from the default
we present here. The evaluation of STUBDROID in Section 6.7 has already shown that the performance of the data
flow analysis is not significantly different when using the precise STUBDROID summaries as opposed to FLOWDROID’s
default Easy Taint Wrapper. We therefore chose to take this default library handling (i.e., the Easy Taint Wrapper)
for the performance tests for the sake of simplicity. This avoids the the requirement to create STUBDROID summaries
for each library used in any of the apps we take for the performance analysis for all the different Android versions
against which they were built. We would like to point out, though, that fulfilling these requirements would be a
one-time task that is computationally feasible in realistic time in a productive setting.

37 Source: https://en.wikipedia.org/wiki/List_of_most_downloaded_Android_applications
38 Note that we still use FLOWDROID’s flow-sensitive alias analysis, we only disable setting activation statements. The IFDS backwards

analysis is still in use, it only runs the risk of becoming flow-insensitive when handing over taints between forward and backward
solver.
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For sources and sinks, we used the default file shipped with FLOWDROID. This file only contains a subset of the
total sources and sinks detected by SuSi for practicability reasons. The more sources there are (which are also
used inside the app under analysis), the more data needs to be tracked. Specifying hundreds of sources can thus
make the analysis infeasible on such large apps. The default subset of sources and sinks includes the most common
ones that are commonly tracked by academic or industrial data flow analyzers. We refer the reader to Table 8
for the complete list of sources and to Table 9 for the complete list of sinks. For the sake of brevity, we only
give the names of the methods and not the complete parameter lists. If a method has multiple overloads, all of
them are considered to be sources or sinks, respectively. Further note that, since FLOWDROID does not support
inter-component communication by default, we over-approximate the respective sources and sinks. All data that
is received through an intent is considered as tainted and all data that leaves the current component through an
intent is considered as leaked.
We conducted all test runs on a server computed with 64 Intel Xeon E5-4650 CPUs running at 2.7 GHz base
frequency39. The machine is equipped with 1 TB of physical main memory, but we limit the maximum heap size
of the Java process running the data flow analysis to 25 GB by default. For some apps, this limit of 25 GB was
not sufficient, though. In those cases we used a larger maximum heap size which we denote when we report the
measurement data for the respective app. When an app analysis could not be completed, we first increased the
maximum heap size to 50 GB and then, if the analysis still did not complete, to 100 GB. Note that even in cases
in which the user doesn’t have enough memory to complete the full analysis, he can use the memory thresholding
approaches explained in Section 4.12.3 to obtain those results that are available before the analysis runs out of
memory. The same applies to long-running analyses. The user can specify a time budget and obtain those results
that have been computed before the time budget is used up. In many cases, even a subset of results already gives
the user certain hints as to whether the app is careful not to leak any privacy-sensitive information or whether
it synchronizes everything with the cloud. For our experiments, we relied on memory theresholding (without
restricting the time budget) when even the increased heap size of 100 GB was not sufficient. In those cases, we
allowed FLOWDROID to abort the analysis earily and report partial results. When presenting evaluation data, we
mark such cases in addition to the increased heap size. Note that we cannot give all analyses a maximum heap
size of 100 GB right away, because this would lead to increased memory usage even for apps which don’t require
so much memory. This effect happens, because the JVM rather uses the available memory, instead of triggering
garbage collection cycles. Therefore, only a suitable limit gives proper evidence on the real memory consumption.
Furthermore, the amount of available memory also influences the runtime, because frequent garbage collector
cycles require time in addition to the normal taint propagation. Therefore, applying a sufficient, but not oversized
maximum heap size, is a reasonable compromise for obtaining realistic time and memory measurements.
All tests were executed on the Oracle JDK version 1.8-05. To account for non-deterministic effects introduced
through thread scheduling or the JVM’s just-in-time compiler, we ran each test ten times and averaged over the
measurements. Since the computation server is a shared resource, external effects such as the workloads imposed
on the server by other users can negatively affect the FLOWDROID runtime. Since FLOWDROID uses all cores available
on the machine, even single-threaded external workloads can have extend the time FLOWDROID requires for the
analysis. To account for such effects, we removed obvious outliers (e.g., single runs that took ten times longer than
the other runs with the same configuration on the same app), from the averaged timings we report.

8.2 Basic Performance Evaluation

Table 10 shows the apps that we have used for assessing the performance and scalability of FLOWDROID. For each
app, we specify the common name as displayed by the app itself or the app store from which it was downloaded,
the package name that uniquely identifies the app, and the number of Jimple statements contained in the app as
an approximate measure of the size of the app. Note that the APK file size alone is not a good measure for the code
size, because the APK file can also contain, depending on the app, large images, audio files, especially for games
or virtual reality apps. For counting the number of Jimple statements, we summed up the number of units in all
methods contained directly in the app’s classes.dex file. This is an approximation, because it does not take into
account which methods are actually reachable. Especially in the case of libraries or SDKs compiled into the app, a
number of methods are expected to be unused, because the app is unlikely to use each and every method of the
library. Still, this counting is a good approximation for the app size. For ruling out unused methods, one would need
to create a dummy main method based on the app’s lifecycle model, create a callgraph from it, and then calculate

39 The CPU uses adaptive clock speeds depending on system load and CPU core temperature. We can therefore only specify its base
clocking.
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Category Class Methods
Location Data android.location.Location getLatitude(), getLongitude()

android.location.LocationManager getLastKnownLocation()
android.telephony.gsm.GsmCellLocation getCid(), getLac()
java.util.Locale getCountry()
java.util.Calendar getTimeZone()

Identification Data android.telephony.TelephonyManager getDeviceId(), getSubscriberId(),
getSimSerialNumber(),
getLine1Number()

android.bluetooth.BluetoothAdapter getAddress()
android.net.wifi.WifiInfo getMacAddress(), getSSID()

Browsing android.provider.Browser getAllBookmarks(),
getAllVisitedUrls()

Network Communication java.net.URLConnection getInputStream()
org.apache.http.HttpResponse getEntity()
java.net.URL openConnection()

Inter-Component Communication android.app.PendingIntent getActivity(), getBroadcast(),
getService()

android.os.Handler obtainMessage()
Phone Configuration android.content.pm.PackageManager getInstalledApplications(),

getInstalledPackages()
queryIntentActivities(),
queryIntentServices(),
queryBroadcastReceivers(),
queryContentProviders()

Shared Preferences android.content.SharedPreferences getDefaultSharedPreferences()
Databases android.database.sqlite.SQLiteDatabase query()

Table 8: Sources for FLOWDROID Performance Evaluation

Category Class Methods
Log Output android.util.Log d(), e(), i(), v(), w(), wtf()
Inter-Component Communication android.os.Bundle put*()

android.content.Intent setAction(), setClassName(),
setComponent()

android.content.Context sendBroadcast(),
sendOrderedBroadcast(),
startActivity(), startActivities(),
startService(), bindService()

android.os.Handler sendMessage()
IO Streams java.io.OutputStream write()

java.io.OutputStreamWriter append()
java.io.Writer write(), append()

Network Communication java.net.URL openConnection()
java.net.URLConnection setRequestProperty()
java.net.Socket connect()

SMS Communication android.telephony.SmsManager sendTextMessage(),
sendDataMessage(),
sendMultipartTextMessage()

Shared Preferences android.content.SharedPreferences$Editor put*()
Processes java.lang.ProcessBuilder start()

Table 9: Sinks for FLOWDROID Performance Evaluation
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App Package Name Code Size Sources Downloads
Adobe Reader com.adobe.reader 139,236 131 100M - 500M
Amazon Kindle com.amazon.kindle 606,941 224 100M - 500M
Angry Birds com.rovio.angrybirds 487,050 94 100M - 500M
AutoScout24 com.autoscout24 712,769 98 10M - 50M
BurgerKing de.burgerking.kingfinder 653,064 52 5M - 10M
CNN com.cnn.mobile.android.phone 299,743 330 10M - 50M
eBay com.ebay.mobile 712,068 689 100M - 500M
Facebook com.facebook.katana 442,066 578 1B - 5B
Facebook Messenger com.facebook.orca 120,594 55 1B - 5B
Google Plus com.google.android.apps.plus 807,668 1 1B - 5B
Instagram com.instagram.android 498,576 88 1B - 5B
LinkedIn com.linkedin.android 149,888 480 50M - 100M
Microsoft Outlook com.microsoft.office.outlook 630,038 208 50M - 100M
Microsoft Word com.microsoft.office.word 689,069 69 100M - 500M
Netflix com.netflix.mediaclient 405,474 159 100M - 500M
Offi Journey Planner de.schildbach.oeffi 103,265 93 5M - 10M
Opera com.opera.browser 332,884 123 100M - 500M
PayPal com.paypal.android.p2pmobile 674,168 188 10M - 50M
Pinterest com.pinterest 591,387 178 100M - 500M
Pokemon Go com.nianticlabs.pokemongo 424,550 72 100M - 500M
Skype com.skype.raider 196,123 193 500M - 1B
Telekom Mail de.telekom.mail 267,807 144 1M - 5M
Tinder com.tinder 509,192 173 50M - 100M
VLC for Android org.videolan.vlc 245,513 96 50M - 100M
Wetter.com com.wetter.androidclient 604,701 221 10M - 50M

Table 10: Real-Wold Apps for FLOWDROID Performance Evaluation
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App Heap Limit (GB) Runtime (s) Memory (MB) Completed Leaks
Min. Avg.

Adobe Reader 25 15.15 520.99 1,765.29 Yes 39
Amazon Kindle 25 281.15 7,906.42 12,994.42 Yes 99
Angry Birds 25 29.24 1,005.21 3,642.33 Yes 39
AutoScout24 25 79.66 1,067.22 4,839.29 Yes 43
BurgerKing 25 30.64 1,007.49 4,157.71 Yes 32
CCN 25 44.55 1,274.36 3,197.52 Yes 184
eBay 100 1,079.66 72,695.56 78,507.27 No (Memory) 269
Facebook 25 142.54 2,585.28 3,143.53 Yes 154
Facebook Messenger 25 24.08 522.36 1,997.73 Yes 14
Google Plus 25 40.99 1,182.53 5,033.85 Yes 1
Instagram 100 1,352.12 47,320.77 49,322.62 Yes 132
LinkedIn 100 383.38 66,957.34 74,199.98 No (Memory) 131
Microsoft Outlook 25 51.41 1,535.30 4,969.30 Yes 57
Microsoft Word 25 49.89 2,029.67 7,656.06 Yes 26
Netflix 25 90.71 2,034.74 7,536.65 Yes 74
Offi Journey Planner 25 19.39 637.28 2,044.04 Yes 13
Opera 25 32.83 1,116.89 2,935.80 Yes 57
PayPal 25 87.24 1,645.72 5,461.64 Yes 90
Pinterest 25 130.35 2,179.57 5,383.73 Yes 107
Pokemon GO 25 39.17 1,418.35 5422.42 Yes 20
Skype 25 27.67 552.71 808.71 Yes 21
Telekom Mail 25 25.51 734.18 2,742.11 Yes 66
Tinder 25 47.63 956.15 1,170.53 Yes 61
VLC 25 16.09 630.61 2142.38 Yes 15
Wetter.com 25 56.75 1,644.61 4,921.25 Yes 85

Table 11: FLOWDROID Performance With Default Configuration

reachability. This lifecycle model, however, already depends on the configuration of FLOWDROID and the resulting
unit count and is thus not a good baseline. Further, note that the unit count only takes the units directly inside
classes.dex into account, but no inside any additional dex files that might be contained in the app. This in in line
with FLOWDROID’s behavior (the data flow tracker cannot deal with additional dex files either), and thus does not
affect the precision of the app size approximation for the task at hand. For each app, we also list how many calls
to methods we consider as sources they contain. This is relevant when we discuss the performance and scalability
of the data flow analysis later in this section. To further motivate the relevance of the apps we have chosen, we
furthermore report the number of times the app was downloaded from the official Google Play Store. This is not an
exact number, but a range, because the Play Store only provides such ranges and not precise counts to the public.
In the basic performance evaluation conducted in this section, we use the default settings explained in Section 8.1
without any modifications. These numbers are later used as a baseline when assessing the impact of the various
features and configuration settings on the performance of the data flow analysis. Table 11 shows the average time
and memory consumption of the analysis. Times are given in seconds, memory sizes in megabytes except for the
maximum heap size which is given in gigabytes. Note that the average memory consumption is not necessarily the
amount of memory necessary to conduct the analysis. With tighter memory constraints, the JVM might perform
more aggressive garbage collection and decrease the its memory usage, potentially (but not necessarily) affecting
performance. In general, we find that the JVM rather uses more of the available heap size than conducting a
garbage collector cycle as long as space is available. We further noticed that the overall usage of the heap space
allotted to the JVM increased over the 10 measurements, even though we manually triggered a garbage collector
run through a call to System.gc() after each run. Therefore, we also report the minimum memory consumption of
the ten runs we conducted per app in Table 11.
From tables 10 and 11, it also becomes evident that the number of Jimple statement inside the app is not propor-
tional to the computation time or memory consumption of the analysis. While the Tinder app has more lines of
code than the Facebook app, it only takes about 33% of the computation time and requires only about 37% of the
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memory. Figure 20(a) shows a plot of the analysis time (y axis) over the app’s code size (x axis). The apps that
finished without a timeout or memory exhaustion are plotted with blue circles. The apps for which the analysis was
aborted before it was fully completed are shown with read triangles. From the plot, we can only conclude that long
computation times usually only arise above a certain code size. Even beyond this size, there are, however, still apps
for which the analysis terminates quickly. Another candidate for aproximating the analysis time before actually
conducting the analysis is the number of sources. As shown in Figure 20(b), the time required for the analysis, is,
however, not directly correlated with the number of sources either. For most apps, even a higher number of sources
does not significantly increase the computation time in practice. Some apps with a rather low number of sources,
however, require a very high computation time. In total, given an arbitrary app, there is no easy way for an analyst
to approximate how long the taint analysis will take.
In Figure 20(c), we plot the the analysis time against the number of leaks finally detected by the static data flow
analysis. Again, it becomes visible that there is no direct correlation.There are apps with a relatively small number
of leaks such as Youtube with only 23 leaks that nevertheless take a long time to analyze as shown by the upper left
blue dot in the figure. Other apps, with more than twice the number of leaks, on the other hand, can be analyzed
in a small fraction of the time.
Besides the time required to conduct the analysis, the memory consumption of the analysis is also important to
assess the feasibility of the FLOWDROID approach. Table 11 shows FLOWDROID ran out of memory for some of the
apps. As explained in Section 8.1, we increased the maximum heap size in two steps for such cases. During our
experiments, we observed that if the analysis ran out of memory for an app with a maximum heap size of 25 GB, it
usually also ran out of memory even with an increased maximum heap size of 100 GB. This effect is likely due to
over-tainting. If the analysis taints a significant portion of the app for some reason, this happens similarly at many
positions inside the app, leading to a large number of spurious taint abstractions. While theoretically bounded, this
over-tainting will in practice prevent the taint tracker from completing the analysis given any realistic amount of
memory and time. In such cases, we relied on FLOWDROID’s memory thresholding technique to still receive partial
results. As we explained in Section 4.12.3, these partial results are in many cases still sufficient to give the analyst
a hint concerning the general privacy-friendliness of the app.
For an analyst, it would be advantageous to know upfront whether an app can be analyzed in full or whether
such an over-tainting case will occur. Furthermore, for those apps on which the analysis can be completed fully, it
would be beneficial to have an a-priori approximation of the amount of memory that will be required. However,
similar to the time required for the analysis, there is no simple correlation that could be exploited. In the case of
the Instagram app, for instance, we had to increase the maximum heap size of the JVM (now using a limit of 100
GB) for the analysis to succeed. As shown in Table 11, the actual amount of memory used by the analysis is also
above the normally-allotted limit of 25 GB. Notably, the 100 GB heap size was sufficient for completing the analysis
in this case. This large amount of memory was required, although the code size is comparable to other apps such as
Facebook or Microsoft Outlook, for which the analysis terminated quickly within the original heap limit of 25 GB.
Figure 21(a) shows the memory consumption (y axis) over the number of Jimple statements in the respective app
(x axis). There is no clear correlation between the two factors. Some large apps can be analyzed with only little
memory, while some smaller ones even lead to memory exhaustion when increasing the memory limit to 100 GB.
Note that for those apps in Table 11 that were aborted because of memory exhaustion, the maximum amount of
memory consumed is still below the maximum heap size. This happens, because FLOWDROID’s memory thresholding
must abort the analysis early and retain some of the memory, such that it is still able to shutdown the IFDS solver
and process the results, before the JVM is terminated with an OutOfMemoryError as explained in Section 4.12.3.
Figure 21(b) shows the memory consumption (y axis) over the number of source call sites detected in the app (x
axis). From the results of our experiments, one can only conclude that increasing the number of sources beyond
a certain threshold increases the likelihood of memory exhaustion. Still, some apps with a relatively low number
of sources have a high memory consumption and some with a large number of apps require only little memory
for analysis. Similarly to the analysis time, there is no easy formula for, given an arbitrary app, approximating the
memory consumption of the analysis beforehand. When taking the result of the analysis into account and comparing
the number of leaks detected by the data flow tracker with the memory consumption as shown in Figure 21(c),
the result is similarly unconclusive. More leaks beyond a certain threshold increase the likelihood of the analysis
running out of memory, but there is no general correlation between the two values.
For both analysis time and memory consumption, we conclude that the structure of the app, i.e., the number of
statements over which tainted data needs to actually be propoagated (rather than statements present in the app
in general), has a much greater impact than code size, number of sources, and even number of leaks. Even if an
app is very large, as long as taints only need be propagated through comparingly small fractions of the code, the
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analysis can still be completed with low time and memory consumption. If the taints are propagated over large
code bases, this leads to scalability issues. In terms of the IFDS algorithm, we count the number of edges in the
exploded supergraph. Each edge corresponds to one evaluation of a flow function. Such an evaluation happens
whenever a new combination of context and statement appears in the solver’s worklist, i.e., tainted data arrives at
a statement that hasn’t previously been seen under the current context. Obviously, more flow function evaluations
increase the analysis runtime. Figure 20(d) shows a plot of analysis time (y axis) over the number of IFDS edges
(x axis) which very well visualizes this dependency. Furthermore, each generated triple of context, statement, and
result of the flow function must be stored to be able to detect when a fixed point has been reached. Each stored
triple increases the memory consumption as shown in Figure 21(d). The dependency between the number of edges
and the memory consumption follows a similar shape as the dependency between the number of edges and the
time required for the analysis. We furthermore observe that all apps for which the analysis was aborted early due
to memory exhaustion are on the upper right side of the plot, i.e., have the largest edge count. The plot suggests
an exponential grow in memory consumption over the number of propagated egdes. Beyond a certain threshold,
not enough memory is available anymore. In the plot, we can also see that FLOWDROID’s memory thresholding
technique stops the analysis once it reaches about 80% of the total available memory.
Also, the size and complexity of the Android lifecycle is an important factor, because it directly influences the
number of edges to be propagated. If the app’s code is distributed over more components or callbacks there are
more possible paths through the code, because of the possible interleavings of the respective callback methods. This
can lead to the same code being reachable through a larger number of distinct contexts. If the code on the other
hand, is straight-line code inside a single callback, there is only one possible execution sequence and context. From
a technical point of view, the connection between the number of edges on one hand and the time and memory
consumption on the other hand is understandable given how the IFDS solver works. On the downside, this makes
it hard for the analyst to have an a-priori approximation of the effort he needs to spend on a given app in terms of
time and memory. The number of edges over which taint abstractions are propagated is usually only available after
the analysis has already been conducted, rendering it useless for a-priori predictions.

8.3 Adapting The Access Path Length

In this section, we take the base configuration from Section 8.2 and measure the effect of gradually increasing the
access path length on performance and memory consumption. We re-use the same maximum heap size that was
sufficient for the base case reported in Table 11. We started our analyses with the maximum heap size with which
the base evaluation was successfully terminated. If, due to the increase in access path length, the analysis of an app
then failed due to memory exhaustion, we iteratively increased the maximum heap size in the say way as we did
for the base evaluation. If an app fails with 25 GB, it is re-tried with 50 GB, and if this still fails, with 100 GB. If
even a maximum heap size of 100 GB is not sufficient for completing the analysis, we report it as a case of memory
exhaustion and use the runtime and memory consumption actually consumed until the analysis was interrupted by
FLOWDROID’s memory thresholding technique. We also limit the analysis to 30 minutes for each of the 10 test runs.
We note that apps, for which the analysis does not complete within 30 minutes, usually cannot be analyzed even
when given several hours.
When increasing the access path length, we expect to see fewer reported leaks, because false positives that result
from over-tainting are less likely to occur. If the actual tainted access path would have been a.b.c, the analysis can
only precisely pinpoint the respective memory location if it runs with an access path length greater than or equal
to two. If access paths are instead truncated at length one, all memory locations reachable through a.b.* would
be tainted, including a potential false taint such as a.b.d. While this general rule of the number of leaks being
inversely correlated with the access path length holds true for most apps in our experimental app, we also noticed
cases in which longer access path lead to more results. In the Wetter.com app, FLOWDROID, for instance, discovered
85 leaks when run with an access path length of one. After increasing the length to two, it discovered 101 leaks.
Such effects are related to the over-taint filtering built into FLOWDROID (see Section 5.4.1). With this technique, the
memory manager detects if whole Android components are tainted, which is usually a sign of serious over-tainting
that has the chance to make the complete taint analysis infeasible in any realistic amount of time and memory.
Therefore, such taints are killed. In the example above, assume that a.b refers to an Android activity. If the field
a.b.c is meant to be tainted, but the access path is shortened to a.b.*, this will taint the whole activity and be
deleted by the overtaint filtering. On the downside, this also means that the originally-intended memory object
a.b.c is no longer tainted either. In such a case, increasing the maximum access path length decreases the chances
of taints being killed by the filter and can lead to more leaks being detected.
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From the theory, it is expected that the time and memory consumption grow together with the access path length.
On the other hand, the increased precision of longer access paths can also reduce over-tainting and thus the number
of taint abstractions that must be tracked. We find that, in total, the average increase in computation time is 32%
from access path length one to two, 40% from length two to three, and 56% from length three to four. Memory
increases by 69% from length one to two, by about 5% from length two to three, and by 75% from length three to
four. For the Instagram app, we can only report a data point for access path length one, because the analysis did
not finish in reasonable time for larger access paths. We aborted it after several hours. For some other apps, the
analysis did not terminate beyond a certain access path length either, most commonly due to memory exhaustion.
In such cases, the measured time and memory values do not represent the actual requirements of fully analyzing the
respective apps. We therefore compute new averages for which we remove apps from the sample set once a memory
exhaustion happens. With this reduced sample set, we arrive at an average increase in memory consumption by
about 72% from access path length one to two, an increase by around 1% from length two to three, and one by
about 40% from length three to four. With this adapted averaging metric, the time consumption increases by about
29% from access path length one to two, by about 23% from two to three, and by about 18% from three to four. This
shows that even for those apps for which no memory exhaustion occurs, an increased access path can significantly
increase the time and memory required for the analysis. From this observation, we can draw the conclusion that
for maximum scalability, lower access path lengths are, in the average case, the better choice.
However, the reader be reminded that the magnitude of the observed increase in analysis time for longer access
paths is mainly due to certain apps in which the issue of over-tainting on short access paths is not significant, but
for which many different tainted access paths exists when scaling the access path length. When scaling the access
path length from one to two, for example, only 14 out of 25 apps experience an increase in computation time,
while for 9 apps the time decreases. For only four apps out of the 14, the required analysis time increased by more
than 20% which is acceptable given the gain in precision. When looking at the memory consumption, it increases
for 18 apps out of 25 when moving from access path length one to two. For 6 apps, it decreases. Only 10 apps out
of the 18 experience a growth in memory consumption that exceeds 20%. Figure 22(a) shows the time required
for analyzing the apps from our experimental set (y axis) over the configured maximum access path length (x
axis). This chart compares the general time intervals in which the app analyses terminate over the various access
path lengths rather than the effect of increasing the access path length for a single app. Blue circles represent apps
for which the analysis terminates successfully. Red triangles represent analyses that were aborted early because of
memory exhaustion. We denote the average analysis times with black squares. Figure 22(b) shows a similar plot
for memory consumption (x axis) over access path length (y axis). From the figures, we can again conclude that
increasing the maximum access path length increases the risk of memory exhaustion. When moving from left to
right in the plots, the number of red triangles increases. Those apps that lead to the upper blue does for access
path length one produce red triangles for length four. This means that analyzing some apps, for which the analysis
could be completed with a short access path length, is infeasible for longer access paths.
When only considering the distribution of the blue dots, i.e., the values for those apps for which the analysis
terminates, we can conclude that the stack of dots becomes narrower. This mainly happens because the upper blue
does, i.e., those apps for which the analysis already took longer and/or required more memory with a small access
path length, are turned into red triangles, i.e., the analysis can no longer be completed, when further increasing
the access path length. For those apps for which the analysis completed quickly with a short access path length,
one would, on the other hand, expect the range of blue dots to move up, because the average time and memory
requirements increase with longer access paths as reported earlier. This effect is, however, not visible in the plots
due to the broad range the values already have depending on the particular app. Keep in mind that the scales
of the time plot are in thousands of seconds to capture the outliers. Most analyses, however, terminate in less
than 150 seconds for access path length one as we have shown in Table 11. A similar reasoning can be applied
to the memory plot. We also plot the same number using error bars in Figure 22(c) for time consumption and
Figure 22(d) for memory consumption. These two plots lead to similar insights. The blue dot on the bars shows the
average values for time and memory consumption. Note that the average also includes the outliers for which the
analysis has become infeasible. Given the scale the values already have depending on the app, the absolute increase
of the computation time and memory consumption in seconds and megabytes, respectively, is no longer significant
in comparison to the outliers. Even an average increase of 29% from length one to two is barely visible for an app
with a low baseline given that other apps take almost a hundred times as long even in the base case. Therefore, the
plot only shows only a slight trend upward. From access path length two onward, the memory exhaustion cases are
also mainly responsible for the height of the error bars, which becomes evident when comparing the error bars to
the respective scatter plots above. Since the average time and memory consumption is very close to the respective
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minimum values, we can conclude that analyzing most apps is feasible even with larger access path lengths in
FLOWDROID. This is no contradiction to the notable increase in the average numbers which is due to certain apps
that already start with a larger baseline for access path length one.
In more detail, we observe that the computation time does indeed increase sharply for some apps such as the
Facebook app. From access path length one to two, it rises by about 480%, and from length two to three again by
about 23%. The CNN app shows a similar picture with a rise by 118% from access path length one to length two, and
by 292% from length two to length three. On the other hand, many other apps experience a drop in computation
time such as the AutoScout24 app, whose analysis time decreases by about 47% when moving from access path
length one to two. For yet other apps, the analysis time stays approximately the same, even when increasing the
access path length to four or five. The observation that the increase in computation time is not evenly distributed
across the apps and some apps even show the inverse effect (i.e., a decrease in analysis time), explains why the
overall distribution of time and memory depicted in the scatter plots does not change significantly. Also recall that
the app that took the longest to analyze (Instagram) did not finish in reasonable time for access paths longer than
one and was thus excluded afterward. In Figure 22(a), this means that the upper left dot does not relocate, but
disappear. Further note that we had to set a maximum heap size, which was 100 GB in our experiments. We did
not further increase the maximum heap size if the analysis failed with 100 GB, but rather reported the actual time
and memory consumption till the analysis was interrupted. Consequently, the values for the red triangles, i.e., the
memory exhaustion cases, do not correctly reflect the time and memory that would be necessary to fully conduct
the analysis given that an unlimited maximum space (or simply a sufficiently large amount of heap space) were
available. Therefore, the precise data points of the red triangles might be misleading, though the fact that their
number increases, is a very clear sign that increasing the access path length has a negative impact on scalability,
and may lead to more aborts due to memory exhaustion.
Similar to our base measurements in Section 8.2, there is no simple a-priori estimate of how the analysis of a
particular app will behave when increasing the access path length. Code size or number of sources are, again,
not directly correlated to the increase in time and memory consumption. For an analyst, who needs maximum
precision, we therefore propose to run the analysis using a long maximum length and supply a timeout. If the
analysis does not complete within this time frame, he can restart it with a lower maximum length. Note again that
even when the analysis is aborted due to memory exhaustion or a timeout, the subset of results computed so far is
still reported.

8.4 One Component at a Time

As explained in Section 5.4.3, FLOWDROID normally builds one dummy main method for the entire app, which can
lead to a large callgraph and to memory exhaustion during taint propagation. To circumvent the problem, the app
can be segmented such that only one component is analyzed at a time. While this reduces overall memory pressure,
it also means that the general initialization overhead that is required before each taint analysis must be invested not
only once, but for each component, which can also increase the time required to analyze the app. In this section,
we measure the effect of analyzing one component at a time on both time and memory consumption on our set of
sample apps defined in Section 8.2. Table 12 shows the results of our measurements. We repeat the base case data,
i.e., the time and memory required for analyzing the apps in our test set with all components together. We contrast
these numbers with the measurements for running the analysis with one component at a time.
Only analyzing one component at a time can significantly reduce the memory consumption of the analysis. For the
Instagram app, the required amount of memory was reduced by more than 96%. At the same time, the analysis
took about 59% longer, though. If the originally required about 50 GB of memory are not availabe, this tradeoff
is helpful. One can, however, not conclude that with this mode, all apps can be analyzed. For some of the apps,
for which we experienced memory exhaustion during our base evaluation described in Section 8.2, the analysis
now no longer runs out of memory, but out of time instead. According to the table, this happened for the eBay and
LinkedIn apps. When analyzing those apps using the one-component-at-a-time mode, the analysis did not complete
within a reasonable time frame. After more than one hour, we stopped it. Therefore, we do not report any time or
memory values for these apps. It becomes apparent, that analyzing one component at a time is a tradeoff between
time and memory for such apps. The memory issue has now been shifted to a time issue. While it might not be
possible to supply more memory, the analyst can chose to supply significantly more time to complete the analysis
nevertheless, assuming that it does eventually terminate. For the Amazon Kindle app, for which the analysis did
complete when analyzing all components together, we stopped the analysis after more than one hour, when it had
only processed 61 of the 85 components inside the app. In this case, the tradeoff was negative, i.e., analyzing only
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App Normal / Base Case One Component At A Time
Runtime (s) Memory (MB) Completed Runtime (s) Memory (MB) Completed

Adobe Reader 15.15 1,765.29 Yes 45.62 2,342.94 Yes
Amazon Kindle 281.15 14,850.77 Yes - - No
Angry Birds 29.24 3,642.33 Yes 45.31 1,600.73 Yes
AutoScout24 79.66 4,839.29 Yes 94.01 1,685.42 Yes
BurgerKing 30.64 4,157.71 Yes 108.27 2,113.61 Yes
CCN 44.55 3,197.52 Yes 160.08 7,857.36 Yes
eBay 1,079.66 78,507.27 No - - No
Facebook 142.54 3,143.53 Yes 878.16 2,667.62 Yes
Facebook Messenger 24.08 1,997.73 Yes 926.96 3,061.05 Yes
Google Plus 40.99 5,033.85 Yes 87.09 2,644.85 Yes
Instagram 1,352.12 49,322.62 Yes 551.22 1,867.85 Yes
LinkedIn 561.72 74,199.98 No - - No
Microsoft Outlook 51.41 4,969.30 Yes 416.05 5,216.46 Yes
Microsoft Word 49.89 7,656.06 Yes 98.53 1,759.81 Yes
Netflix 90.71 7,536.65 Yes 174.81 1,344.93 Yes
Offi Journey Planner 19.39 2,044.04 Yes 52.27 702.88 Yes
Opera 32.83 2,935.80 Yes 154.09 2,371.07 Yes
PayPal 87.24 5,461.64 Yes 592.89 2,932.15 Yes
Pinterest 130.35 5,383.73 Yes 401.43 2,133.48 Yes
Pokemon GO 39.17 5,422.42 Yes 27.22 2,045.81 Yes
Skype 27.67 808.71 Yes 125.85 2,049.01 Yes
Telekom Mail 25.51 2,742.11 Yes 53.86 827.86 Yes
Tinder 47.63 1,170.53 Yes 123.11 4,193.73 Yes
VLC 16.09 2,142.38 Yes 29.86 1,376.05 Yes
Wetter.com 56.75 4,921.25 Yes 183.64 5,155.71 Yes

Table 12: FLOWDROID Performance in One Component At A Time Mode
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Figure 23: The Effect of the One-Component-At-A-Time Mode

one component at made a previously possible analysis infeasible. Therefore, this mode should only be used as a
second chance if the analysis is not possible in normal mode.
On average over all apps, the computation time increases by 374%, while memory consumption drops by 9%. On
average, the apps had 79 components. Out of the 25 apps, the time improved for two apps, and was increased for 20
apps. For three apps, we could not obtain time and memory values, because the analysis did not complete. Memory
consumption is more likely to decrease as this happens for 15 apps out of 25. Only for seven apps, the memory
consumption increases. If we only take those apps into account for which the memory consumption decreases, this
decrease is by about 57%. This result is coherent with our conclusion that for some apps, analyzing one component
at a time can significantly improve the scalability of FLOWDROID. Nevertheless, it is not generally recommended
and can have negative efforts for those apps for which it is not necessary, which is also why the average memory
savings are much lower when also incuding those apps for which the mode is not helpful.
In Figure 23, we correlate the time and memory required for the analysis with the number of components in the
app. Since one run is necessary per component, the time obvisouly increases with the number of components as
shown in Figure 23(a), although this is only a trend and accepts outliers. For the memory consumption, the number
of components is not relevant as shown in Figure 23(b) and as expected, because each component is analyzed in
isolation. For comparison, Figure 24 shows the correlation between component count and time/memory consump-
tion in the normal mode, i.e., when all components are analyzed together. We can see that normally, there is no
such evident correlation between component count and analysis time. However, one cannot find a strict correla-
tion between component count and memory consumption either, making an a-priori choice between normal and
one-component-at-a-time mode complicated.

8.5 Omitting Android Callbacks

In some cases, analysts need to run the data flow tracker in highly memory-constrained environments. In such cases,
it is acceptable to miss potential leaks in favor of performance and scalability. The results of such a quick analysis are
usually used to gain a first impression of how the app deals with privacy-sensitive information. FLOWDROID offers
an option to ignore the Android callbacks completely for such use cases. The analysis then runs on an incomplete
callgraph which misses all edges that would go into callback methods in the full analysis. On the other hand, this
saves the effort required to collect the callbacks from inside the app, and also greatly reduces the amount of code
that needs to be analyzed. While this tradeoff may seem arbitrary and crude from a scientific point of view, we
found that is used in practice when actual users configure the data flow solver and need to run it on machines with
as little as 2 GB of total main memory, in which not only FLOWDROID, but also the operating system must fit.
Table 13 compares the time and memory consumption of running the analysis with the Android callbacks included
to the respective values when running the analysis without callback support. We can observe that the time required
for the analysis decreases by 48% on average when disabling callbacks. At the same time, the number of found
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Figure 24: Original Performance vs. One-Component-At-A-Time Mode

App With Callbacks Without Callbacks
Runtime (s) Memory (MB) Leaks Runtime (s) Memory (MB) Leaks

Adobe Reader 15.15 1,765.29 39 8.02 1,458.79 31
Amazon Kindle 281.15 14,850.77 99 258.30 12,242.64 92
Angry Birds 29.24 3,642.33 39 20.97 3,636.69 29
AutoScout24 79.66 4,839.29 43 23.68 4,522.21 15
BurgerKing 30.64 4,157.71 32 20.80 4,090.44 19
CCN 44.55 3,197.52 184 20.21 3,078.26 86
eBay 1,079.66 78,507.27 269 836.54 76,424.57 105
Facebook 142.54 3,143.53 154 81.54 9,395.24 104
Facebook Messenger 24.08 1,997.73 14 8.89 1,412.12 1
Google Plus 40.99 5,033.85 1 28.19 4,968.59 1
Instagram 1,352.12 49,322.62 132 421.80 41,635.33 104
LinkedIn 561.72 74,199.98 131 357.90 74,991.60 63
Microsoft Outlook 51.41 4,969.30 57 23.67 4,404.54 37
Microsoft Word 49.89 7,656.06 26 21.21 4,406.22 14
Netflix 90.71 7,536.65 74 60.86 7,134.28 52
Offi Journey Planner 19.39 2,044.04 13 9.30 1,721.83 3
Opera 32.83 2,935.80 57 17.75 2,734.55 57
PayPal 87.24 5,461.64 90 33.34 4,928.26 56
Pinterest 130.35 5,383.73 107 36.73 4,801.78 83
Pokemon GO 39.17 5,422.42 20 12.14 2,847.63 8
Skype 27.67 808.71 21 13.82 2,635.96 13
Telekom Mail 25.51 2,742.11 66 13.36 2,648.76 59
Tinder 47.63 1,170.53 61 18.75 3,718.93 26
VLC 16.09 2,142.38 15 7.85 2,010.93 11
Wetter.com 56.75 4,921.25 85 31.68 4,497.04 73

Table 13: FLOWDROID Performance With and Without Callbacks
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leaks also decrases by 37%. This is expected, because analyzing less code takes less time, but can only discover
those leaks that are present in the subset of the code that is still being analyzed.
For the memory consumption, the same reduction effect we see for the analysis time cannot be observed. Contrary
to what one would expect from theory, the memory consumption increases by about 15% when disabling callbacks.
The most likely explanation is that this is an artifact of how we measure the memory consumption. After each of
the ten analysis runs has completed, and before resetting the references to the solver objects to null, we obtain the
amount of heap space used in the JVM. If the analysis only needs to work on a small target app, because all code
only reachable through callbacks is excluded, this puts less pressure on the garbage collector during the analysis.
Consequently, less frequent runs are performed to free up memory. In the end, more heap space is in use than
strictly necessary, simply because there is no need to free it up. Note that explicitly calling Runtime.gc() does not
necessarily lead to full gargabe collection either, as the times when garbage collection is actually triggered and the
settings with which it is run are defined by the JVM rather than the user code. Note that for the eBay app and the
LinkedIn app, the analysis was interrupted early due to memory exhaustion when including the callbacks. This still
happens even when disabling callbacks, which again shows that code size alone is not a good indicator of the time
and memory required for the analysis. The code size reduction was substantial for both the eBay and the LinkedIn
app when excluding the callbacks, but still did not allow the analysis to complete.
In summary, disabling callbacks is an efficient technique if one wants to get a quick first overview over the app and
does not necessarily need to find all the leaks in this first step. While we cannot conclude that excluding callbacks
from the analysis also helps reduce the memory consumption, it might as well be the case once the JVM gets under
memory pressure and needs to perform more aggressive garbage collection. In the case of the Instagram app, for
instance, the memory consumption dropped by about 8 GB, and by about 2 GB for the Amazon Kindle app. For the
smaller apps and those apps that experience complete memory exhaustion, we do not see those effects, though. In
the latter case, we might observe a reduced memory consumption when giving the analysis sufficient memory to
complete (i.e., more than 100 GB) in the first place.

8.6 Disabling Data Type Propagation

In Section 4.11, we presented propagating type information along with the taint abstractions to compensate impre-
cisions caused by the context-insensitive SPARK callgraph algorithm. In the IFDS call flow functions this propagated
type information can be used to prune invalid callees and kill the incoming taints so that only those callees are
actually processed with which the type information from the taint abstraction is compatible. In our base configura-
tion shown in Section 8.1, this extra propagation and checking is enabled which is also the FLOWDROID default. In
Table 14, we compare the time and memory requirements of this base case to the respective values when disabling
the type propagation feature. We also show the impact on the number of leaks detected by the analysis.
On average, disabling data type propagation decreases the runtime by about 17% and the memory consumption
by about 4%. This result happens because of the reduced re-usability of IFDS method summaries that we already
discussed in Section 4.11. On the other hand, disabling the type checking increases the number of detected leaks by
about 11%, which is also expected. While these numbers show a general trend that type propagation and checking
trades time and memory for precision, this trend does not apply to each single app. Analyzing the Facebook app,
for instance, takes almost 84% longer and requires more than 194% more memory without the type checking, in
addition to 16% more leaks being detected. In this case, the spurious taint propagations caused by the callgraph
imprecision greatly outweigh the reduced applicability of the IFDS summaries. The Pokemon GO app exhibits
the inverse behavior. In that case, propagating types requires more than 60% more time and almost 32% more
memory, while there the number of leaks does not change, i.e., the extra type information does not increase the
analysis precision at all. The eBay app is a special case. Without data type propagation, the number of detected
leaks increases by about 82% to 489. Additionally, the resulting taint propagation graph is so large that the path
reconstruction step times out. Therefore, we cannot report the full time and memory consumption for the overall
analysis. In other words, type propagation and checking is required to even make this analysis feasible. Additionally,
since the type checks help improve the precision in the average case, and the extra time and memory requirement
is sufficiently low, we chose to enable this feature by default.

8.7 Fast (But Imprecise) Callback Collection

FLOWDROID support two different algorithms for collecting the callbacks that an app registers with the Android
operating system. The first technique, described in Section 5.3.4, starts with a dummy main method containing only
the lifecycle methods of the components registered in the manifest file, and them iteratively extends this model.
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App With Type Propagation Without Type Propagation
Runtime (s) Memory (MB) Leaks Runtime (s) Memory (MB) Leaks

Adobe Reader 15.15 1,765.29 39 13.93 1,583.39 40
Amazon Kindle 281.15 14,850.77 99 243.54 10,214.25 106
Angry Birds 29.24 3,642.33 39 28.64 1,774.49 39
AutoScout24 79.66 4,839.29 43 36.11 2,214.73 44
BurgerKing 30.64 4,157.71 32 20.95 1,806.05 32
CCN 44.55 3,197.52 184 46.80 5,104.99 220
eBay 1,079.66 78,507.27 269 Timeout Timeout 489
Facebook 142.54 3,143.53 154 262.25 9,250.56 179
Facebook Messenger 24.08 1,997.73 14 20.18 1,932.82 14
Google Plus 40.99 5,033.85 1 41.86 1,838.67 1
Instagram 1,352.12 49,322.62 132 89.48 4,690.35 133
LinkedIn 561.72 74,199.98 131 Timeout Timeout Timeout
Microsoft Outlook 51.41 4,969.30 57 54.32 2,177.76 61
Microsoft Word 49.89 7,656.06 26 31.01 1,930.62 26
Netflix 90.71 7,536.65 74 52.80 3,696.38 81
Offi Journey Planner 19.39 2,044.04 13 20.86 2,601.43 16
Opera 32.83 2,935.80 57 33.09 2,818.93 58
PayPal 87.24 5,461.64 90 64.63 3,153.94 93
Pinterest 130.35 5,383.73 107 106.01 3,626.70 109
Pokemon GO 39.17 5,422.42 20 15.55 3,696.38 20
Skype 27.67 808.71 21 21.08 3,174.29 21
Telekom Mail 25.51 2,742.11 66 23.01 2,434.20 66
Tinder 47.63 1,170.53 61 38.89 1,928.18 105
VLC 16.09 2,142.38 15 10.77 1,832.30 17
Wetter.com 56.75 4,921.25 85 53.84 2,198.31 86

Table 14: FLOWDROID Performance With and Without Type Propagation
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App Precise Callbacks Approximate Callbacks
Runtime (s) Memory (MB) Leaks Runtime (s) Memory (MB) Leaks

Adobe Reader 15.15 1,765.29 39 28.67 3,009.56 32
Amazon Kindle 281.15 14,850.77 99 259.58 18,230.13 92
Angry Birds 29.24 3,642.33 39 40.04 7,395.32 32
AutoScout24 79.66 4,839.29 43 50.33 5,253.60 24
BurgerKing 30.64 4,157.71 32 36.46 4,387.80 19
CCN 44.55 3,197.52 184 92.54 7,602.92 101
eBay 1,079.66 78,507.27 269 3,911.44 62,621.80 191
Facebook 142.54 3,143.53 154 29,633.57 24,626.19 120
Facebook Messenger 24.08 1,997.73 14 17.37 2,477.77 10
Google Plus 40.99 5,033.85 1 63.83 5,227.04 1
Instagram 1,352.12 49,322.62 132 446.27 39,037.63 98
LinkedIn 561.72 74,199.98 131 788.12 77,033.43 73
Microsoft Outlook 51.41 4,969.30 57 44.53 3,896.04 39
Microsoft Word 49.89 7,656.06 26 79.68 7,366.44 15
Netflix 90.71 7,536.65 74 67.86 5,748.64 54
Offi Journey Planner 19.39 2,044.04 13 17.58 1,751.14 7
Opera 32.83 2,935.80 57 31.19 4,953.32 52
PayPal 87.24 5,461.64 90 56.71 5,722.23 56
Pinterest 130.35 5,383.73 107 60.57 4,125.49 92
Pokemon GO 39.17 5,422.42 20 25.00 6,469.41 8
Skype 27.67 808.71 21 17.37 2,477.77 10
Telekom Mail 25.51 2,742.11 66 19.77 3,006.23 61
Tinder 47.63 1,170.53 61 40.08 4,503.92 29
VLC 16.09 2,142.38 15 10.88 2,000.52 12
Wetter.com 56.75 4,921.25 85 43.66 4,260.36 75

Table 15: Performance of Precise vs. Approximate Callback Collection

When new callbacks have been found (i.e., call sites registering new callbacks are reachable from the current
version of the dummy main method), a new dummy main method is constructed, and the analysis is repeated until
a fixed point has been reached. This technique yields a precise mapping between components and their respective
callbacks, because FLOWDROID can capture from which component’s lifecycle the callback registration is transitively
reachable. On the downside, this process takes several iterations and callgraph re-computations for real-world apps.
As an alternative, FLOWDROID can over-approximate the callbacks by simply iterating over all call sites that register
callbacks in the whole app without computing any form of reachability analysis as explained in Section 5.3.5. In
this case, all callbacks are assumed to be valid for all components. This is less precise, but reduces the time required
for the callback analysis.
Table 15 shows our performance evaluation that compares the two modes on our set of real-world apps. We note
that, depending on the app, either mode can be more efficient than the other. For some apps, the time saved during
callback analysis when switching to the imprecise mode is much less than the extra time that needs to be spent
on spurious taint propagation later on as a result of the imprecise app model. For those apps, however, for which
the imprecise model has no significant impact on performance, the imprecise, but faster callback collection can be
beneficial. In the worst case of our test set, the Facebook app, the imprecise model lead to more than 200 times the
computation time that was required with the precise model. Memory consumption increased by 6 times due to the
imprecision. When removing this outlier, the time total analysis required with the imprecise model was about 9%
than with the precise one and required about 34% more memory. In the average case, chosing the precise model
is, therefore, considered to be the best choice. For 16 out of our 25 apps, however, the imprecise mode was faster,
and in 9 cases, it consumed less memory than the precise mode. In the cases in which the imprecise mode was
faster, it saved about 28% of the computation time on average. For the cases in which the memory consumption
was reduced, it saved about 16%. We note that there is no clear correlation between the number of components
inside an app and the impact of using one callgraph collection algorithm over the other, neither for performance,
nor for memory consumption.
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Another important consideration when chosing a callgraph collection algorithm is the precision and recall of the
overall analysis. One might assume that chosing a less precise association between callbacks and their hosting
components can only lead to more leaks, because every callback is associated with every component. Table 15, ho-
wever, shows that this is not the case. Instead, taints get overwritten or get placed into the wrong fields, effectively
preventing the true leaks from being detected. On average, FLOWDROID detects 29% less leaks with the imprecise
callback analysis. For the LinkedIn and eBay apps, the number of leaks is approximate, because for these apps, the
analysis runs out of memory with either callback analysis algorithm. More precisely: it is aborted by FLOWDROID’s
memory thresholding technique (see Section 4.12.3) before it can finish the analysis. Therefore, all values reported
for these two apps only reflect partial results.

8.8 Flow-Insensitive Data Flow Solver

The FLOWDROID data flow tracker is formulated as an IFDS problem such that the overall analysis is flow-, context-,
field-, and object-sensitive. As described in Section 4.12.4, there is, however, also a variant of the solver that
can process the same IFDS problem, but that is flow-insensitive. In this section, we evaluate the performance
and memory consumption of this solver variant. Without flow-sensitivity, we already assume that the precision
degrades and, consequently, more leaks are found. This assumption is backed by the experimental data in Table 16.
On average, the flow-insensitive solver finds about 134% more leaks than the flow-sensitive one. For some apps
such as the Telekom Mail app, the increase is by more than 340%, for the Facebook Messenger app even by more
than 690% (up to 111 leaks from 14 with the flow-sensitive solver). In no case, we saw a decrease in the number
of leaks found. Technically, a flow-insensitive analysis must propagate all taints that are created somewhere in a
method over all statements in that method, leading to more flow function evaluations. This not only increased
the risk of false positives, but also requires more time. On average, the flow-insensitive analysis takes about 180%
longer than the flow-sensitive one and consumes about 197% more memory. 6 out of 25 apps cannot even be
analyzed anymore due to timeouts. We find that in most of these cases (4 apps), the timeout happens during the
path reconstruction step and is caused by the large increase in the number of results that need to be processed. For
these cases, we can still report the number of discovered leaks in Table 16, though no performance and memory
data is available. For smaller and less complicated apps, this increase can still be handled, but for the large and
complex apps, there are too many possible paths through the the taint graph of the app from the sink back to
potential sources.
It is important to note that this large increase in time and memory consumption is mainly due to three outliers:
Telekom Mail, Oeffi Public Transport Planner, and Facebook Messenger. For these apps, the time increases by
more than 400%, and memory consumption by more than 600% for each app. If we remove these outliers, the
average increase in time consumption is by only 12.7% and the average increase in memory consumption drops to
72%. The increase in time and memory does not apply to every single app, either. In 6 cases, the flow-insensitive
analysis was faster than the flow-sensitive one. In this case, the time reduction was by 31% on average. The
memory consumption decrased for 9 apps, with an average decrease by 39% in those cases. In total, using the
flow-insensitive data flow solver should not be the default configuration. Unfortunately, we cannot confirm that
this configuration can help analyze apps for which the analysis is infeasible with the default configuration, either.

8.9 Comparing FastSolver And The Heros Data Flow Solver

As explained in Section 4.12, FLOWDROID uses a custom, highly optimized IFDS solver called the FastSolver by
default. To allow for a comparison between this solver and Heros [23], which his the default IDE and IFDS solver
commonly used with Soot, FLOWDROID abstracts away from the concrete solver using an interface and provides im-
plementations that integrate both Heros and FastSolver. In this section, we compare the performance and memory
consumption of the two solvers on our set of real-world test apps.
Aside from the differences in performance and memory consumption, we also notice that the analysis yields more
leaks (99.6% more on average) when when it is run with the Heros solver in comparison to FastSolver. For the
VLC media player, the number of leaks increases from 15 to 59, an increase by almost 300%. This is mainly
because Heros does not support any filtering techniques such as the overtaint filtering presented in Section 5.4.1.
In short, if a full Android component is tainted when running the analysis with the Heros solver, this leads to
a large number of spurious taints. Propagating more taints also consumes more time and memory. On average,
the analysis time increases by more than 360% and the required memory by more than 100%. There was only a
single app (out of 25) for which the analysis was faster with the Heros solver. For the AutoScout24 app, the Heros
solver required around 40% less time and around 48% less memory than FLOWDROID’s FastSolver. For all other
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App Flow-Sensitive Solver Flow-Insensitive Solver
Runtime (s) Memory (MB) Leaks Runtime (s) Memory (MB) Leaks

Adobe Reader 15.15 1,765.29 39 16.06 1,964.37 63
Amazon Kindle 281.15 14,850.77 99 Timeout Timeout 191
Angry Birds 29.24 3,642.33 39 34.89 2,992.23 56
AutoScout24 79.66 4,839.29 43 34.77 2,210.81 86
BurgerKing 30.64 4,157.71 32 24.08 2,081.57 59
CCN 44.55 3,197.52 184 73.27 7,112.03 475
eBay 1,079.66 78,507.27 269 Timeout Timeout -
Facebook 142.54 3,143.53 154 Timeout Timeout 283
Facebook Messenger 24.08 1,997.73 14 140.35 15,592.10 111
Google Plus 40.99 5,033.85 1 41.02 1,795.33 3
Instagram 1,352.12 49,322.62 132 Timeout Timeout 267
LinkedIn 561.72 74,199.98 131 Timeout Timeout -
Microsoft Outlook 51.41 4,969.30 57 59.96 4,311.79 139
Microsoft Word 49.89 7,656.06 26 35.22 2,567.32 52
Netflix 90.71 7,536.65 74 103.81 8,483.13 148
Offi Journey Planner 19.39 2,044.04 13 224.49 14,485.18 20
Opera 32.83 2,935.80 57 50.95 8,374.45 124
PayPal 87.24 5,461.64 90 Timeout Timeout 152
Pinterest 130.35 5,383.73 107 331.92 27,970.23 199
Pokemon GO 39.17 5,422.42 20 19.88 2,292.39 34
Skype 27.67 808.71 21 26.03 3,041.16 32
Telekom Mail 25.51 2,742.11 66 453.19 38,690.05 292
Tinder 47.63 1,170.53 61 70.68 6,776.71 155
VLC 16.09 2,142.38 15 12.38 1,934.47 32
Wetter.com 56.75 4,921.25 85 61.96 3,922.93 142

Table 16: Performance of The Flow-Insensitive Solver Variant
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App FLOWDROID’s FastSolver Heros
Runtime (s) Memory (MB) Leaks Runtime (s) Memory (MB) Leaks

Adobe Reader 15.15 1,765.29 39 46.34 3,361.11 87
Amazon Kindle 281.15 14,850.77 99 3,649.07 50,230.77 125
Angry Birds 29.24 3,642.33 39 52.26 3,279.24 48
AutoScout24 79.66 4,839.29 43 47.73 2,540.20 78
BurgerKing 30.64 4,157.71 32 31.23 2,245.03 41
CCN 44.55 3,197.52 184 410.03 9,851.06 390
eBay 1,079.66 78,507.27 269 Timeout Timeout -
Facebook 142.54 3,143.53 154 Timeout Timeout -
Facebook Messenger 24.08 1,997.73 14 260.65 4,127.31 38
Google Plus 40.99 5,033.85 1 41.04 1,737.18 1
Instagram 1,352.12 49,322.62 132 Timeout Timeout -
LinkedIn 561.72 74,199.98 131 Timeout Timeout -
Microsoft Outlook 51.41 4,969.30 57 180.67 6,622.72 128
Microsoft Word 49.89 7,656.06 26 56.41 3,668.68 55
Netflix 90.71 7,536.65 74 Timeout Timeout -
Offi Journey Planner 19.39 2,044.04 13 315.63 7,167.98 13
Opera 32.83 2,935.80 57 115.55 4,236.37 96
PayPal 87.24 5,461.64 90 331.68 9,206.89 180
Pinterest 130.35 5,383.73 107 395.71 9,906.30 216
Pokemon GO 39.17 5,422.42 20 50.71 3,886.44 21
Skype 27.67 808.71 21 218.55 6,549.40 69
Telekom Mail 25.51 2,742.11 66 43.20 3,048.28 197
Tinder 47.63 1,170.53 61 168.45 6,284.33 133
VLC 16.09 2,142.38 15 49.99 3,205.15 59
Wetter.com 56.75 4,921.25 85 166.21 5,133.05 150

Table 17: Performance Comparison Between FastSolver and Heros
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apps, the performance of the FastSolver was better. When considering only the memory consumption, the Heros
solver required less memory for 6 out of the 25 apps in our test set. The impact these apps have on the average
is, however, greatly outweighed by those apps for which Heros consumed several hundred percent more memory
than the FastSolver (up to around 710% more memory for the Facebook app). In summary, FLOWDROID’s FastSolver
substantially improves the performance of the data flow analysis in the average case in comparison to existing
off-the-shelf solvers such as Heros.
The decreased number of leaks detected by FastSolver in comparison to Heros is potentially caused by the higher
precision of FastSolver. To verify this assumption, we re-ran the test cases from the DROIDBENCH micro-benchmark
suite (see Section 7) with the Heros solver. For two of the cases (FlowSensitivity1 in the Aliasing category, and
Ordering1 in the Callbacks category), this lead to two additonal false positives (two for FlowSensitivity1 and one
for Ordering1). For all other test cases, the results were equivalent. On the overall benchmark suite of 190 apps,
this difference in precision is not significant. It is far from the 99.6 percent increase in the number of leaks that we
observed on the real-world apps. Therefore, we cannot finally verify our hypothesis that FastSolver is significantly
more precise than Heros. Since we do not have a ground truth on the real-world apps, a fair comparison is hard to
achieve on this test set.
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9 Multi-Platform Static Analysis41

The previous sections of this thesis have focused on Android apps. Similar privacy issues, however, also exist on
other mobile, embedded and desktop platforms. Generally, they can be solved using the same or at least very similar
techniques. Therefore, this section describes an outlook on broadening the scope of the techniques presented in this
paper beyond Java and Android. Many of the techniques presented in the academic literature have been designed
for particular target platforms and programming languages. Popular targets of research include Java programs and
Android apps. In reality, different programs are, however, often written in different programming languages. The
choice of the language depends on the requirements of the deployment target, the language skills of the developer,
the availability of powerful frameworks, and many other criteria. These criteria often differ significantly from the
reasons why platforms or programming languages are chosen for academic research. As a consequence, the focus
of research attention on individual platforms has lead to a large divergence in the availability of static-analysis
tools for different platforms. This hinders the practical applicability of static-analysis tools.
Some analyses [60, 75] are built directly on top of platfom-specific tools such as disassemblers like Dexdump42,
others [1, 46, 150, 156] use platform-specific frameworks such as AndroGuard [36]. Migrating these tools to other
platforms is a major undertaking. The FLOWDROID data flow tracker, on the other hand, is designed to be platform-
independent and thus to be applicable to all target platforms and programming languages to which Soot, as the
framework on which FLOWDROID is based, can be applied. As long as the target program can be converted to Jimple
code, the FLOWDROID engine can serve as a basis for building a static data flow tracker for the respective platform.
Building upon such an intermediate representation is a key advantage when applying a tool or a framework to
multiple platforms. The intermediate representation provides a significant abstraction of assembly-level opcodes.
In the case of Soot, this additional level of abstraction in comparison to, e.g., a disassembler, allows the framework
to convert into Jimple not only Java bytecode, but also Android’s Dalvik bytecode, through the Dexpler front-
end [18], which already allows FLOWDROID to work on two platforms instead of one. For the analysis tool, be
it FLOWDROID or another tool based on Soot, there is little difference as to whether the client code originated
from an Android or Java application. To be precise, while the tool needs to deal with the different peculiarities
of the Android or Java libraries and frameworks, the tool can be agnostic to the origin of the Jimple code as
such. Of course, similar to the work we conducted for Android, the analysis designer must still provide custom
implementations of the varios interfaces of FLOWDROID where necessary, i.e., where the default implementation
based on the Java semantics is insufficient. Also on the level of the Soot framework itself, Dalvik has different
exception semantics than Java, so a different throw analysis must be provided.
Though Java and Android use different bytecodes, their expressiveness is quite similar. The Android compiler (the
dx tool) generates a Dalvik classes.dex file from Java class files. When doing so, it converts Java’s stack-based
bytecode language into the register-based Dalvik language, but since it starts from Java bytecode, the expressiven-
ess of the Dalvik language is limited the one of Java. Dalvik does not support any language features that are not
already present in Java. Therefore, supporting both Java and Android through the same IR is conceptually simple.
Supporting other languages in a shared IR, however, is more challenging, because Jimple was originally designed
with the semantics of the Java VM in mind. WALA [141], a framework similar to Soot, on the other hand offers
WALA CAst (WALA Common Abstract Syntax Tree), a cross-language source front-end. This front-end currently sup-
ports Java and JavaScript as input. As the name implies, CAst, is, however, an AST-style data structure with support
for multiple specialized IRs, and not a single, uniform, strongly typed IR. Therefore, one cannot seamlessly switch
the framework to another input language and assume the same analyses to continue working as desired. Due to
the nature of the highly dynamic JavaScript language, it remains an open question whether a truly shared IR for
Java and JavaScript is actually possible or desirable.
In this section, we propose a first step towards turning Soot into a cross-language, cross-platform static analysis tool
that produces the same IR irrespective of the input language. This can then, as future work, serve as a foundation
for generalizing FLOWDROID beyond Java and Android as target platforms. As explained above, the foundation
inside the data flow tracker already exists, but requires support by the Soot framework. We therefore explain
how we extended the Soot framework to convert into Jimple also the bytecode language of the Microsoft .net
framework and the Mono open-source project. While this bytecode language CIL (Common Intermediate Language)
is a fully managed-code language just as Java, we show that CIL code nevertheless has significant differences to
Java bytecode. We explain how we model CIL’s distinct features in Jimple without extending the Jimple language

41 Large parts of this Section are taken (directly or with minor modifications) from our 2016 SOAP paper[6]
42 Dexdump is included with the official Android SDK published by Google.

153



itself. We chose to avoid extensions to Jimple in order to allow researchers to reuse existing analyses based on
Jimple such as FLOWDROID without requiring changes or extensions on the language level. We hope that these ideas
help further broadening the applicability of existing (also other) static-analysis frameworks to other languages and
platforms.

9.1 Code Organization in CIL

In Java, every class gets compiled into its own class file. Multiple class files can be packaged together into one JAR
archive. In the CLI (Common Language Infrastructure, the component that runs the CIL code), on the other hand,
a compiled class itself has no representation in the file system. Instead, the CLI runtime operates with a collection
of classes stored in an assembly file. While at a first glance assemblies seem conceptually similar to JAR files, they
are artifacts in their own right, resembling a logical package on the language level. For instance, visibility levels
include an option for assembly-wide visibility for classes, methods, and fields. Code can use reflection to access an
assembly and, e.g., list all classes inside it. Assemblies can be signed and used for code security, i.e., by defining
that certain code may only be called from code within assembly that was signed with a specific key.
As Java has no notion of assembly visibility, nor has Jimple, our generation of Jimple code from CIL widens
assembly-wide visibility (internal in C#) to public visibility. While this may impact some specific analyses, it
retains compatibility in general. CIL bytecode represents security restrictions such as signatures and permissions
as API calls or attributes in the original code. CLI attributes are similar to Java attributes and are translated into
Jimple as Tags attached to the appropriate Jimple artifacts. An analysis usually does not need to cover the seman-
tics of such attributes unless it directly targets security problems. In thus case, it would have to precisely model the
correct target platform in either case.
Inside an assembly, classes are structured in namespaces, similar to Java’s packages. In Jimple, we therefore repre-
sent namespaces as packages. C# also allows one to define aliases for namespaces, but these aliases are resolved
to their original names by the compiler and are thus not a challenge for the work presented here. Note that CIL
bytecode can reference the same class in the same namespace from two different assemblies. This is not possible in
Jimple, unless we treat assembly names as namespace prefixes.
Furthermore, .net languages such as C# support partial classes. In a partial class, methods and fields can be scatte-
red among multiple source files which get merged into one complete class at compile time. Conflicting definitions
lead to a compiler error. It is also possible to only write the signature of a method in one source file and the imple-
mentation in another one. Due to the compile-time merging, the front-end presented in this work can, however, be
oblivious to this language feature.

9.2 The CIL Type System

Java distinguishes between Objects and numeric/Boolean values, the former of which always use a pass-by-
reference semantics, while the latter use pass-by-value. CIL offers a richer model: on top of regular objects it
supports also value types called structs that are passed by value. All structs have an implicit empty constructor and
therefore do not need to be initialized explicitly. The primitive data types such as int and float are system-defined
structs which are declared in the system assembly mscorlib. Enums are structs as well, merely defining fixed values
that can be type-checked by the compiler.

1 void test() {

2 int a = 5;

3 calcRef(ref a);

4 Console.WriteLine(a);

5
6 int[] b;

7 calcOut(b);

8 Console.WriteLine(b[1]);

9 }

10 int calcRef(ref int a) {

11 a = a + 3;

12 }

13
14 int calcOut(out int[] a) {

15 a = new A[3] { 1, 2, 3 };

16 }

Listing 51: Calling Conventions in C#

Since Jimple is based on Java, it cannot directly represent this distinction. We represent CIL classes and structs
as normal classes in Jimple. Whenever such Jimple classes are used in the code, we, however, need to correctly
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emulate the semantics of the calling convention. We achieve this by cloning the objects that correspond to structs
before passing them as method parameters (or base objects for virtual calls). The clone is a member-wise deep-
clone on structs only. This means that if a struct contains another struct (recall that primitive types are structs as
well in CIL), its value is copied recursively. If a struct contains a reference to a class, this reference is kept as-is in
the clone, which is in line with the CIL language semantics.
Note that programmers can also overwrite the default calling convention as shown in Listing 51. In line 3 an int

value (which is a struct and thus normally passed by value) is explicitly passed by reference. In the test() method,
the new value will thus be available which is why line 4 will output 8. We model this behavior by not cloning structs
when they are explicitly passed by reference. System-defined primitive structs such as int are modeled through
classes just like any other struct.
CIL further supports the out keyword. This can be used in the same place as the ref keyword and makes a
parameter behave similar to a return value as shown in line 7 of the example. The output line 8 is 1 from the
array constructed in the callee calcOut. This is different to ref where a reference is passed in and the callee
can optionally overwrite the object which is then also passed back out to the caller again. In the case of out,
nothing goes in and the callee defines the value to be returned. It is important to correctly model this behavior. If
we assume a pure by-reference semantics as in Java, false positives can occur in analyses such as taint tracking.
Furthermore, not handling the out keyword can lead to uninitialized variables as shown in the example. However,
the out keyword cannot directly be represented in Jimple. Just like Java, Jimple only allows a single return type
for a method and assumes all parameters to be input data. We solve this challenge by automatically boxing the
respective parameters. For each type that is passed as an out parameter, we automatically generate a boxing class
that stores the actual data in a field. When the call returns, the data is read from the field.
Structs differ from objects also in the way they are allocated. Before calling a method on an object or accessing one
of its fields, the object’s constructor must be called. For a struct, this is not necessary. When a struct is declared, the
runtime automatically allocates the required memory and fills it with zeroes. Semantically, this initializes all fields
to the default values of their respective types, i.e., zero for numeric types, and null for references. In Jimple, just like
in Java, such implicit initialization does not exist. Therefore, we create explicit calls to the default constructor for
each declared struct before any other method code is created. This simulates the runtime’s initialization behavior.

9.3 Modeling the CIL Language Features

In this section, we describe some of the distinct language features of the CIL language and how we model them in
the Jimple IR. Due to space constraints, we limit ourselves to the most important features. Recall that the goal is
re-usability of existing analyses which requires us to avoid changes or extensions to the Jimple IR.

9.3.1 Generics

1 void test() {

2 List<A> lst = getList();

3 A a = lst.get(0);

4 bar(a.toString());

5 }

Listing 52: Generic Lists in C#

While Java and the .net languages such as C# all support generics, their handling at compile time is fundamentally
different. The example in Listing 52 works for both Java and C#. The Java compiler erases generics by reducing
them to the closest common supertype. Therefore, the return type List<Object> of method getList() will be
reduced to List. The types of local variables are erased, because they are not needed in the bytecode. A static ana-
lysis tool such as Soot must reconstruct these local types from the interface types (parameter types, method return
types) and the operations performed on the local variables. In the example, it can only infer java.lang.Object

as the type for variable a. Recall that no generic-type information is available for the list, and thus the return type
of the get() method is java.lang.Object as well. Therefore, the call to toString() in line 4 can lead to the
toString() implementation of java.lang.Object or any subtype, making the callgraph greatly imprecise.
In CIL, type information is preserved on local variables as well as on generics. From the CIL bytecode, it is im-
mediately apparent that variable a is of type A and not of type System.Object (which is CIL’s equivalent to
java.lang.Object). Therefore, the CIL frontend can simply inject a typecast. This has several advantages. Firstly,
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the time-consuming process of type inference is avoided. Secondly, the use of generic types, most commonly collec-
tions, does not reduce the callgraph precision in comparison to explicitly-typed specialized classes. In the example,
the set of possible callees for the call in line 4 is directly limited to A.toString() or overrides in subtypes.
Inside the generic class (the List class in the example), the generic types are reduced to base types, similar to the
type reduction performed in the Java compiler. If the generic type is a class type, it is reduced to System.Object,
unless it is explicitly declared to be the subclass of some other, more concrete type. In the latter case, the generic
type is reduced to that given supertype. Note that the frontend needs to apply name mangling for generic classes.
As generics are explicit in CIL, it is legal to have two different classes with the same name that only differ in the
number of type variables. It is, however, not legal to have the same class name and same number of variables
multiple times even if the generic types are limited to subclasses of distinct superclasses. This means that only the
number of generics is relevant, not any further information about them. The frontend uses this restriction to create
unique names for generic classes. In the example, the List class with one type variable becomes List__1.

1 interface IFace<out T> {

2 T get();

3 }

4
5 interface IFace2<in T> {

6 void add(T data);

7 }

8
9 void test() {

10 IFace<String> if_string = factory();

11 IFace<Object> if_object = if_string;

12 Object obj = if_object.get();

13
14 IFace<Object> if2_object = factory2();

15 IFace2<String> if2_string = if_object;

16 if2_string.add(new Object());

17 }

Listing 53: Co- and Contravariance in C#

CIL also allows covariance and contravariance on generic classes. In the example in Listing 53, the interface IFace

declares an out type variable. The out keyword indicates that this variable may only be used in place of return
types or as out-parameter types of methods. This restriction makes it safe to broaden the type through covariance
as shown in line 11. Attempting to use the generic parameter T as in in parameter in the interface leads to a
compiler-time error complaining about unsafe covariance. Our frontend assumes that all bytecode to be processed
passes type checking. Recall that we generate typecasts to map generic types to actual ones. The type of the generic
interface is, just as in Java, independent of the concrete instances of any type variables. Handling covariance is
therefore trivial. The frontend only needs to downcast the return type. Similarly to covariance, CIL also allows
contravariance on assigments as shown in line 15 in Listing 53. The interface IFace2 uses an in-type variable T,
which is restricted to incoming parameters of method calls. Trying to use it for out parameters or return values of
methods will cause type checking to fail. Under the assumption that all code processed by the frontend type checks,
this is also handled through an implicit downcast similar to the case of covariance.
Similar to generic classes, CIL also supports generic methods. As with classes, the generic-type information is
persisted in the bytecode. The frontend uses thr same name mangling technique as with classes to distinguish
overloads with the same name, but different number of generic type arguments. The original generic method is
reduced to concrete base types for which typecasts are inserted before and after calls to the method.

9.3.2 Operator Overloading

The .net languages such as C# support operator overloading. In the CIL code, custom operator implementations
are treated as normal function calls which makes them easy for Soot to handle. Neither the client analysis nor the
CIL front-end need to provide special treatment for this language construct.

9.3.3 Properties
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1 class TestClass() {

2 private int m_id;

3 public int id {

4 get { return m_id };

5 set { m_id = value; }

6 }

7 public String data { get; set; }

8 }

Listing 54: Properties in C#

The .net languages support properties as shown in Listing 54. Properties are used with the same syntax as fields
when storing or retrieving values, but are conceptually similar to getter and setter methods. In fact, the compiler
automatically converts the property code into methods. The property in line 3 in Listing 54 is an explicit property
definition, similar to writing getter and setter methods in Java. Due to this automatic conversion, the frontend
does not need any special handling for properties and can simply keep the method invocations generated by the
compiler.
C# also supports a simplified syntax for properties that do not need any additional code, and only store a value.
Line 7 declares such a property. The compiler automatically generates a private field for it, as well as getter and
setter methods that store and retrieve the value for this field. The implications for the frontend are the same as
for explicit properties. The handling of indexers is similar to properties. In C#, an indexer is a property that can be
accessed with an index, similar to an array. In the CIL bytecode, this is translated into getter and setter methods
that take the index as a parameter.

9.3.4 Delegates

1 class TestClass {

2 delegate void MyDelegate(String inStr);

3
4 void test() {

5 MyDelegate md = delegate (String inStr) {

6 Console.WriteLine(inStr);

7 };

8 md += delegate (String in) {

9 Console.WriteLine("Hello: " + inStr);

10 };

11 md("My String");

12 }

13 }

Listing 55: Delegates in C#

The .net framework provides a built-in concept called delegates for handling callbacks. The delegate definition in
line 2 is conceptually similar to a Java interface containing only a single method. Line 5 creates an instance of the
delegate through an anonymous method implementation. At compile time, the C# compiler creates a new class for
each delegate. This class is derived from System.Delegate. It declares a constructor and an Invoke() method that
matches the signature of the declared delegate (void Invoke(String inStr) in the example). The constructor
takes a reference to the enclosing class instance and the pointer to the method to be called when the delegate is
invoked (an int). Since there is one class per delegate and not per implementation, this indirection is required.
Note that CIL is able to deal with pointers which is used here for internally managing the delegates.
In the bytecode, invoking a delegate is then represented by simply creating an instance of the delegate class
and then calling the Invoke() method as shown in Listing 56. At compile time, the anonymous inner method
is converted into a normal private method with compiler-generated name. In the example, this is <test>b__0.
Therefore, no special support for anonymous inner methods is required in the frontend. The opcode ldftn is
responsible for loading the function pointer of this compiler-generated method onto the stack before invoking the
constructor of the delegate class. Note that that the actual bytecode is slightly more complex as the instance of the
delegate object is not created anew every time, but cached in a compiler-generated field of the TestClass class.

157



1 ldnull

2 ldftn void TestClass::’<test>b__0’(string)

3 newobj instance void TestClass/MyDelegate::.ctor(object, native int)
4 ldstr "My String"

5 callvirt instance void TestClass/MyDelegate::Invoke(string)

Listing 56: Simplified Bytecode for Listing 55

The generated delegate class is special, though. Delegates are a concept that is native to the CIL and the .net
framework. Therefore, the generated class does not contain any real implementation for the Invoke() method or
the constructor. Instead, the method is declared as runtime managed, a special flag in the method’s metadata. This
flag instructs the runtime environment to not actually call the empty method when it is invoked. Instead, it jumps
to the function pointer that was passed in via the constructor and that is now stored in a field of the delegate class.
The process of finding the correct method and invoking it is performed inside the CIL runtime, invisible from the
program’s code.
To allow existing callgraph algorithms to create sound (and ideally precise) callgraphs, our frontend must emulate
this behavior in Jimple code. As function pointers (ldftn opcode) do not exist in Jimple, it instead creates an
artificial dispatch class per function pointer. The ldftn opcode is then interpreted as creating an instance of the
respective dispatch class and pushing it onto the stack. If the target function is an instance function, the ldftn

opcode also contains a reference to a target object. This target object is stored in a field of the dispatch class. All
these artificial dispatch classes implement a common interface _cil_delegate that defines an Invoke() method.
Since the dispatch class is specific to one single function pointer, it can divert a call to its generic Invoke() method
to the original method that was referenced in the ldftn instruction. This allows the dispatch class to completely
cover the semantics of the original function pointer. The System.Delegate class must then (instead of the native

int function pointer) store a reference to a _cil_delegate object, i.e., the common interface of all dispatch classes.
When the Invoke() method of System.Delegate is called, it can just call Invoke on its artificial dispatch class
which in turn calls the target method. Note that the concept of dispatch classes allows the frontend to uniformly
handle function pointers in a similar fashion as other load instructions. This works even if the function pointer is
not directly used afterwards, but remains on the stack for a while.
Delegates can also be used in asynchronous callbacks. In this case, the caller wants to invoke a delegate and conti-
nue with its own execution before the delegate has finished its work. Therefore, generated delegate classes provide
two additional methods: BeginInvoke and EndInvoke. Instead of calling the synchronous Invoke() method, cli-
ent code can also call BeginInvoke(). This method takes as an optional parameter a second callback that gets
invoked upon completion. Afterwards, the client code can obtain the result of the computation through a call to
EndInvoke(). In the CIL bytecode, these two additional methods become part of the generated delegate class and
thus are easily modeled in Jimple.
A delegate can not only be used to provide a callback to a single method, but also provides multicast support. In the
example in Listing 55, a second implementation is added in line 8. When the delegate is invoked, both implemen-
tations are called. If a delegate returns a value, the default multicast operations return the value computed by the
last invoked implementation. Multicast is, just like unicast, handled by the runtime. The generated delegate class
is no different to unicast except for it being derived from System.MulticastDelegate instead. To model adding
another recipient to a delegate, the compiler first creates a second instance of the delegate class. It then issues a call
to the static Combine() method the System.Delegate API class. This method takes both instances of the delegate
class and returns a combined instance. Again, the exact function pointer handling happens inside the CIL runtime
and not in user code. In the frontend, we model multicast by chaining dispatch methods. We provide artificial
implementations of system methods such as Delegate.Combine(). The Combine() method, for instance, takes two
dispatch classes, and creates a new instance of the first one. This first dispatcher has a reference to the second one
which is called in Invoke() after the local target (i.e., the first dispatcher’s target method) has returned.
Furthermore, note that delegates are objects and can thus freely be passed around in the program. It is legal to
create a delegate instance of a private method and then pass this delegate to some other code location from which
the target method would not be accessible otherwise. The frontend solves this issue by making all methods public
that are referenced through function pointers.
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9.3.5 Exceptions

The CIL exception model is very similar to the one of Java. The set of exception that can be thrown by individual
statements or expressions, however, is different. In Soot, this was modeled by creating a new implementation
of the ThrowAnalysis interface to complement the existing implementations for Java and Android. In general,
in comparison to Java, CIL opcodes can throw a larger variety of semantically rich exceptions. If an arithmetic
operation leads to a numeric overflow, for instance, an OverflowException is thrown. A division by zero leads to
a DivideByZeroException instead of Java’s generic ArithmeticException. Conceptually, however, the exception
analysis is not more complicated.

9.3.6 Reflection

Similar to class constants in Java bytecode, CIL has data structures for reflectively accessing not only classes, but
also methods and fields. All of these handles can be loaded using the ldtoken opcode. Depending on the argument
of the ldtoken opcode, an instance of a particular handle class is created. For a class reference, an instance of
the System.Reflection.RuntimeTypeHandle class is created and put on the stack. Afterwards, one can use the
reflection methods in the system class library to perform operations on the handle such as calling a method or
accessing a field.
The CIL frontend detects the type of token being loaded. It constructs one data structure per target that is derived
from the respective system data structure. If the CIL code creates a reference to class A, the frontend generates an
artificial class _cil_typeref_A that is derived from System.Reflection.RuntimeTypeHandle. The class reference
is then modeled through an instance of this artificial reference class instead of an instance of the parent system class.
In other words, the ldtoken opcode is modeled as creating an instance of the artificial handle class. This technique
allows the frontend to keep the semantics of the original target without abstracting all references together in a
single class. A Jimple class constant would not correctly capture the semantics of class references being structs with
methods and fields in CIL. Furthermore, there are no field or method constants in Jimple which would lead to a
non-uniform handling of the three token types in CIL.

9.4 Implementation

An assembly containing CIL code is a Windows DLL or EXE file with a proper PE header. These files contain the CIL
code as additional resources. The EXE files compiled with Microsoft’s compilers also contain small bootstrappers
written in native code. This code is responsible for invoking the CIL runtime on the contained managed CIL code
without additional effort from the user. If no runtime is installed, it offers to download an install it. Consequently,
an assembly is a binary file with complex data structures. To avoid having to parse these binary data structures, our
front-end uses ildasm, the IL disassembler tool shipped with the Microsoft .net framework. The ildasm tool first
converts the binary assembly file into a textual disassembly which Soot’s front-end then parses and converts into
Jimple code.
We implemented our own parser for CIL disassembly files. Soot is implemented in Java and there is no parser for
CIL written in Java yet. Existing work on decompiling CIL assemblies has been performed in CIL by the use of the
platform’s reflection and code-model APIs. The commercial product .net Reflector by Redgate 43, for instance, is
implemented as a .net application for this reason.

9.5 Limitations

Some of the .net language features cannot easily be modeled in Jimple. The .net framework, for instance, allows for
mixed-mode DLLs. Such DLLs are .net assemblies containing CIL code as well as native, platform-specific Windows
DLL files. Both parts contain user code. Methods implemented in CIL code can call native methods and vice versa.
Native code can construct and use classes in CIL, and various techniques exist for marshaling data transferred
between native and CIL code. In contrast to Java’s JNI, a mixed-mode DLL in .net integrates native and managed
code more tightly. CIL, for instance, supports bytecode instructions that call native methods given their offset in
the file. Mixed-mode DLLs are usually written in an extended version of C++ that supports additional modifiers.
For the developer, the difference between managed and native code is a matter of adding or leaving away these
modifiers. As Jimple is based on Java, the frontend would need to model this tight coupling as explicit calls to
native methods which is non-trivial. Therefore, we leave modeling mixed-mode DLLs to future work.

43 http://www.red-gate.com/products/dotnet-development/reflector/
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9.6 Evaluation

In this section, we evaluate the performance of the CIL frontend presented in this paper. We furthermore use the
frontend to apply existing analyses to CIL bytecode. We also report on experiments on a recent malware sample for
Android that uses CIL code to hide its malicious behavior from state-of-the-art detection tools. It exploits that most
of these tools do not support CIL code, although CIL code can be run on Android using the Mono framework.

9.6.1 Performance

A new frontend to any static analysis framework should be able to efficiently handle even large input files. Note
that the implementation of the frontend is not yet fully stable and functional for every corner case, which is why
the performance data reported here is preliminary. As we have not yet spent any explicit effort on performance
optimization, it can be seen as an upper bound for the computation time.
When parsing a simple “Hello World” program written in Java using the ASM-based Java bytecode frontend, Soot
loads 216 system classes this program depends on. When loading the semantically equivalent program written in
C# using the CIL frontend, Soot needs to load only 114 classes, due to the different structure of the .net framework’s
runtime. These classes are contained in the mscorlib system assembly whose binary is about 5 megabytes and
whose disassembly is about 55 megabytes in size. In total, for Microsoft .net framework version 4.0.30319 x64
mscorlib comprises more than 3,200 types, 28,300 methods, and 14,200 fields.
In the case of Java, the Jimple conversion requires about one second. In the case of CIL, the current frontend
requires six seconds. This excludes the additional time required by Microsoft’s external ILDASM tool to disassemble
the bytecode. From our experience, however, this time is negligible. At the moment, the biggest bottleneck appears
to be the parsing of the huge input text file. We plan to improve the performance in future work.

9.6.2 Cross-Platform Cross-Language Malware for Android

Mobile devices are used to process a great amount of sensitive information such as banking or health data. Further-
more, these devices are equipped with a broad variety of sensors such as for location (GPS) or acceleration. They
can also impose charges at the cost of the user by sending SMS messages to costly premium-rate telephone num-
bers. Unsurprisingly, these features have attracted miscreants who develop and provide malicious apps. Due to the
great market share of Android (more than 80%), most mobile malware is developed for Android. Regardless of the
programming language used to develop an app, it must be compiled to Dalvik bytecode. Dalvik is a register-based
bytecode language that is specially optimized for resource-constrained mobile devices.
Since there is no compiler from .net languages such as C# to Dalvik, any Android application that wishes to use
.net must have its CIL code intepreted, through a special version of the Mono framework (an open-source imple-
mentation of a CIL runtime) compiled for ARM. The Mono execution environment runs side-by-side with Android’s
normal Dalvik runtime. A recent malware sample (identifiable through its package name com.tinker.gameone)
uses CIL to hide its malicious code from purely Dalvik-based analyses, as they are commonly used by mobile app
stores to block malware from the store. In the gameone malware, these analysis only see the Dalvik bytecode of the
benign Mono framework, which is why the app made it into several stores. According to virustotal.com, even at
the time of writing the paper, the malware was only detected by 29 out of 56 popular anti-virus tools. Those tools
use signature-based matching, i.e., can only re-identify the malware once its malicious behavior has been manually
identified.
The malware protects its assemblies from being disassembled by associating the SuppressIldasmAttribute with
its assembly. Recall that in CIL assemblies are proper entities and may thus have attributes associated. This
particular attribute is checked by ildasm. If present, ildasm refuses to disassemble the assembly. We coun-
tered this protection by removing the attribute before disassembling the file. In the Jimple code, the class
FBAccount.TinkerAccount contains a method AccountSend Data(). This method calls a number of methods
with obfuscated names, which are, however, only wrappers around API calls. In the end, the code calls the me-
thod PushToServer() in the class AppData.ClientDataManager. With our frontend, Soot was able to find call sites
for methods such as getResult in System.Net. Http.Http ResponseMessage as they appear in PushToServer().
In total, these methods send the user’s Facebook credentials over the internet. Although not yet tested, we are con-
fident that existing data-flow analyses or slicing techniques can be applied as well without modifications to the
analysis as the data flow is fairly trivial in this malware app. It furthermore allows the human analyst to read
convenient Jimple code instead of the stack-based CIL disassembly. Therefore, using our frontend it would have
been easy to detect this malware with existing analysis techniques.
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9.7 Related Work

The CIL bytecode language is defined as a part of the Common Language Infrastructure (CLI) which is defined in
standard ECMA-335 [32]. More precisely, the language parsed by our framework is the textual ILAsm language
defined in Part IV of the standard. Others have added documentation on how high-level languages such as C#
compile to CIL code [22].
Existing work such as the inline reference monitoring for .net programs proposed by Hamlen, Morrisett, and Schnei-
der [62] is based on Microsoft’s ILX SDK. The ILX SDK is capable of reading and writing .net assemblies with the
help of OCAML. This toolkit also extends the CIL language with constructs for closures, functions types, thunks, and
others [132]. Microsoft develops the Phoenix Compiler44 as a research platform for code generation, optimization,
and program analysis which can handle native PE binaries as well as CIL code. Phoenix uses a single, strongly-typed
intermediate representation. Conceptually, this approach is thus closest to the work presented in this paper. Other
purpose-built specialized analysis tools include FxCop (similar to FindBugs [15] in the Java world) and StyleCop
for detecting bad code style. Kieker.NET [92] is a framework for performing dynamic analysis on .net programs. It
re-uses the original Kieker implementation for Java [64] by the means of a custom interoperability layer.

9.8 Conclusions

We have presented a novel frontend for the Soot program analysis framework. The frontend is capable of converting
CIL bytecode into Soot’s Jimple intermediate representation. We have shown how CIL language constructs can be
expressed in Jimple, though Jimple was originally designed for the less expressive Java bytecode language. As
future work, we plan to remove the dependency on ildasm and implement a conversion directly from the binary
CIL datastructures instead of the disassembly text. We are currently working on integrating our frontend into the
Soot open-source framework. As the ultimate goal, we hope to apply a mainly unmodified version of the FLOWDROID

static data flow tracker to .net programs. The work presented in this section serves as a first step into the direction
of building a unified data flow solver for multiple platforms based on FLOWDROID.

44 http://research.microsoft.com/en-us/collaboration/focus/cs/phoenix.aspx
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10 Conclusion

In this thesis, we have investigated how static data flow analysis can be used to detect privacy leaks in Android apps.
Many apps have the necessary privileges to obtain highly-sensitive information from the Android operating system
such as the user’s unique identifiers (IMEI, IMSI, telephone number, network MAC address, etc.), his personal files,
and database entries (address book, calendar, etc.). Furthermore, many apps are granted access to sensor data such
as the user’s GPS location. Therefore, the user must have a means to ascertain that the app only uses this data in
the expected way, and does not leak it to unauthorized third parties. Our statement in this thesis was that static
data flow analysis is an adequate technique for checking how apps deal with sensitive information and can serve
as an additional input to the user’s informed decision of whether he wants to use the app in question (and thereby
entrust it with his personal data) or not.
We have presented the FLOWDROID static taint tracker as a highly precise and efficient approach for analyzing large
real-world Android apps taken from the official Google Play Store. With the DROIDBENCH micro-benchmark suite,
we provide testing examples with a known ground truth to assess the performance and precision of the tool. We
showed that FLOWDROID outperformed the existing tools in both categories. We then applied FLOWDROID to real-
world apps to assess its performance. We showed that conducting a data flow analysis with FLOWDROID is feasible
even for large and complex apps. Therefore, we can conclude that with FLOWDROID, a user can check real-world
apps for privacy leaks before he installs them on his phone. The FLOWDROID output helps him regain the sovereignty
on his data beyond merely trusting the claims made by the developer or vendor. At the moment, we are working
on further improving the performance and stability of FLOWDROID in a commercial project with an industry partner.
This work will ensure that FLOWDROID meets the requirements for large-scale productive use in an industrial setting
where the tool will be used for checking Android apps against privacy policies.
We acknowledge that a determined adversary will always find ways to make program behavior in general, or data
flows in particular, unavailable to any given static analysis tool. The only way to prevent such attacks is to report a
potential privacy violation whenever an app makes use of a language feature the analyzer can not precisely reason
about, and advise the user to refrain from installing the respective app. This approach is, however, infeasible in
practice, as it would reject many popular benign apps, which hinders user acceptance. If an analysis raises an alarm
for too many apps that do not actually infringe upon the user’s privacy, the user is likely to ignore the warnings
issued by the tool even for those apps for which they are relevant. Therefore, the FLOWDROID analysis does not
aim to be sound, but complete and precise enough for practical use. Consequently, the attacker can, for instance,
place all of the malicious behavior in native code or in dynamically-loaded code files that are only downloaded
from a malicious web server right before execution. Nevertheless, we still think FLOWDROID is a useful addition
to an app analyst’s toolbox. Most apps uploaded to stores such as Google Play are not outright malicious. Still,
their developers may have different privacy policies than the user or might simply not care as much about privacy
as the user does. In such a case, the data flows are not heavily obfuscated, and a tool such as FLOWDROID gives
useful insights. Additionally, complementary approaches for undoing certain obfuscation techniques such as using
reflection instead of normal method calls exist [85, 87, 112, 138]. Such approaches can be run as pre-analysis steps
that simply the app before FLOWDROID conducts its data flow analysis.
The general concepts we have presented in this thesis are not limited to the Android platform or to Java-based
programs in general. We have designed FLOWDROID to work for any analysis target whose code can be compiled to
the Jimple intermediate representation. Additional semantics that differ between the new platform and what we
provide for Android and Java can be modeled by implementing FLOWDROID’s open interfaces. As a first step into
this direction, we presented a front-end that converts code for the Microsoft.net framework to Jimple. In general,
we propose FLOWDROID as an open-source framework for further research and experimentation in the area of static
data flow analysis. We are happy to see that many research groups worldwide have already built their work on the
tool, have compared their own tools to FLOWDROID, or have used DROIDBENCH in their evaluations. It is our belief
that making tools and code available to the research community is essential for independent verification of claims,
for building upon existing tools, and for improving the state of the art.
We conclude this thesis in the hope that it provides useful insights on how the mobile users’ privacy can be protected
better while still being able to enjoy the comfort of large app stores that provide apps for almost any need. We
believe that it is important to analyze the existing apps available in the stores today as they are without forcing
the app developers to specifically cater for the requirements of the analysis tool. Certification approaches, while
they have the ability to provide much greater levels of security, have a much higher adoption barrier when they
require the app developers to change their code and fail on legacy code that cannot be adopted. An approach such
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as ours might miss a leak, but it has been proven to be useful to detect the important leaks in the important (i.e.,
widely-used and popular) apps that users download from the stores today.
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