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Abstract—While the Java runtime is installed on billions of
devices and servers worldwide, it remains a primary attack vector
for online criminals. As recent studies show, the majority of all
exploited Java vulnerabilities comprise incorrect or insufficient
implementations of access-control checks. This paper for the
first time studies the problem in depth. As we find, attacks are
enabled by shortcuts that short-circuit Java’s general principle of
stack-based access control. These shortcuts, originally introduced
for ease of use and to improve performance, cause Java to
elevate the privileges of code implicitly. As we show, this creates
many pitfalls for software maintenance, making it all too easy
for maintainers of the runtime to introduce blatant confused-
deputy vulnerabilities even by just applying normally semantics-
preserving refactorings.

How can this problem be solved? Can one implement Java’s
access control without shortcuts, and if so, does this implementa-
tion remain usable and efficient? To answer those questions, we
conducted a tool-assisted adaptation of the Java Class Library
(JCL), avoiding (most) shortcuts and therefore moving to a
fully explicit model of privilege elevation. As we show, the
proposed changes significantly harden the JCL against attacks:
they effectively hinder the introduction of new confused-deputy
vulnerabilities in future library versions, and successfully restrict
the capabilities of attackers when exploiting certain existing
vulnerabilities. We discuss usability considerations, and through
a set of large-scale experiments show that with current JVM
technology such a faithful implementation of stack-based access
control induces no observable performance loss.

I. INTRODUCTION

The Java platform is installed and running on literally
billions of devices and servers worldwide [1]. It is also one
of the first execution environments to feature an elaborate
security model [2]. The platform was designed with the
explicit requirement for the secure execution of code retrieved
from untrusted locations such as applets on a website that will
run in the client’s browser. Yet, according to Cisco’s Annual
Security Reports Java was the number one attack vector for
web exploits in 2013 with a share of 87% [3], and even 91%
in 2014, thus clearly outranking Flash and Adobe PDF [4].

A large variety of attacks was enabled due to incorrect
or insufficient implementations of access control checks. In
particular, Holzinger et al. recently showed in a large-scale
study on more than ten years of Java exploitation [5] that the
by far most prominent attack vectors exploit vulnerabilities
caused by an implicit assignment and elevation of privileges
within the Java Class Library (JCL). In this work, we inves-
tigate this prevalent problem in full depth and suggest and

evaluate a concrete mitigation strategy. The goal is not just
to significantly harden the Java platform but to also draw
important conclusions for the secure design of future runtimes.

At a first glance, the implicit assignment of privilige seems
to ease the life of JCL developers, as it allows them to
access security sensitive low-level operations without explicit
access-control checks. As our research shows, though, this
advantage is greatly outweighed by a severe drawback of
such an implicit privilege elevation: if developers do not—
at all times—properly protect the privileges they are assigned,
they might accidentally leak them to attackers, opening up the
runtime to so-called confused-deputy attacks [6]. But due to
the implicitness of the privilege elevation developers are most
often unaware of having obtained privileges in the first place,
and hence also unaware of their obligation to protect them.

On a lower level, the Java Security Model features isolated
zones where code can run with limited privileges such as
a restricted access to the file system. For any given Java
Virtual Machine (JVM), administrators can configure this
JVM’s security setting through a specialized policy language.
A set of standard policies, shipped with the Java runtime, pro-
vides default protection domains, for instance for applets and
applications using Java Web Start. During runtime, the JVM
uses stack-based access control [2] to check if a caller has the
permission to access any given security-sensitive functionality.
In theory, the JVM performs a stack walk, checking that each
and every frame on the current call stack is associated with
sufficient access permissions. In cases where one of those
frames belongs to an untrusted applet, for instance, this check
will fail, resulting in a SecurityException being thrown.

But as we find, this is only theory. In practice, it shows
that many security-sensitive methods in the Java Class Library
(JCL) implement what we call shortcuts: They execute stack
walks only under certain circumstances and use heuristics
(such as checking the immediate caller’s classloader) to vali-
date the secure execution in other cases. Methods with short-
cuts are generally caller-sensitive: Depending on the nature of
the shortcut, they grant privileges implicitly to certain groups
of callers, in many cases to all callers within the JCL.

As we find, shortcuts are highly problematic for two rea-
sons. First, they pose a significant risk to the security of
the overall Java Platform, due to the fragile nature of caller-
sensitive behavior. As demonstrated by previous exploits, at-
tackers can abuse insecure use of reflection to invoke shortcut-



containing methods, which help them break out of Java’s
sandbox. As Holzinger et al. showed, caller sensitivity in
combination with confused deputies alone is abused by 36%
of all exploits they found in the wild [5].

Second, shortcuts severely impede the maintainability of
the Java runtime’s implementation. During our investigation
we found several places inside the runtime library, at which
developers could inadvertently break the entire platform’s
security through simple code transformations that would oth-
erwise be considered semantics-preserving refactorings. In
particular this is true for the introduction of wrapper methods.
Wrappers modify the call stack, which can inadvertently cause
the shortcuts to check properties of the wrong stack frames.
Incidentally, some of those places were even commented with
warnings to “NOT REFACTOR THIS CODE”. In addition to
cases, where a shortcut poses an immediate threat, there are
often cases in which it can lead to an exploitable vulnerability
later, due to simple code maintenance/evolution.

We conducted an experiment, transforming a JCL release
such that explicit doPrivileged-calls become the only
way in which the JCL elevates privileges. This has several
advantages. First, as we elaborate later, it eliminates certain
attack vectors that abuse insecure use of reflection to profit
from shortcuts. Second, it makes privilege elevation explicit,
which eliminates the potential to elevate privileges accidentally
through code restructuring/evolution. Third, explicit privilege
elevation allows both security experts and code analysis
tools [7], [8] to focus on doPrivileged-calls to ensure the
security of the access-control implementation.

One prevalent reason for introducing shortcuts in the first
place is that stack-based access control is expensive (after all,
the JVM needs to reify the call stack); shortcuts lead to a
faster implementation of access control [9]. In this work we
show through a set of large-scale experiments that no such
penalty is measurable on the DaCapo benchmark suite [10],
despite the fact that it makes heavy use of security-sensitive
APIs, and also state reasons for why this is the case.

A second reason for the presence of shortcuts is that the
implicit assignment of privilege is convenient, as it reduces the
need to elevate priviliges explicitly, e.g. through an appropriate
access-control policy. Another contribution of this paper is
thus a detailed assessment on the usability implications that
a move from implicit to purely explicit privilege elevation
entails. This assessment allows us to provide specific guidance
for an actual implementation of our hardening in Java’s
codebase. Last but not least we discuss lessons learned that
ought to guide design decisions in the security architecture of
future language runtimes.
To summarize, this work makes the following contributions:

• the first detailed analysis of the effects of implicit privi-
lege elevation and shortcuts for access-control checks in
Java, along with the security and maintainability prob-
lems they induce (Section III),

• a tool-assisted analysis and adaptation technique to avoid
the risk of (introducing) confused deputies in the JCL due
to shortcuts (Section IV),

• an adapted version of the JCL that implements access
control without shortcuts, a detailed explanation of why
this adapted version enhances security and maintainabil-
ity (Section IV-D),

• a set of large-scale experiments showing that this added
security and maintainability comes at a negligible runtime
cost (Section V), and

• guidance on the productive use of our proposed solution,
and an outline of open research questions (Section VI),
as well as general lessons learned from our in-depth
analysis (Section VII).

All artifacts needed to reproduce our results are publicly
available.1

II. BACKGROUND

The JCL restricts access to security-sensitive resources
by means of security-policy enforcement. Only code with
appropriate permissions may use, e.g., filesystem or network
functionality. To this end, every security-sensitive operation
is guarded by a call to the security manager. The security
manager applies a stack-based access-control algorithm to
decide whether attempted access shall be granted or denied.
Permission checks are performed by inspecting the current
call stack and computing the intersection of the permissions
that the declaring class of each method on the stack has been
assigned by the running virtual machine’s security policy. If
the required permission is contained in the intersection, access
is granted by returning from the check method, otherwise an
exception is thrown that prevents the attempted action.

There are two deviations from this basic model: (a) privi-
leged actions [2] and (b) what we call shortcuts.

Privileged actions

Code with appropriate permissions can explicitly el-
evate privileges for specific operations by a call to
doPrivileged. This ensures that subsequent access-control
decisions ignore all callers on the call stack before the
doPrivileged-call. This concept enables trusted code to
act as a guarantor on whose behalf untrusted code may
perform a certain action. Trusted code on whose behalf the
action is performed has to ensure that all security-sensitive
actions performed in this context cannot cause harm even if
triggered by malicious code. Consider for illustration Listing 2,
where readProp uses doPrivileged to temporarily el-
evate the privileges of the executing thread such that the
call to checkPermission in openFile can succeed. In
the example, the “privileged” call to openFile is explicitly
entrusted not to misuse its privileges, in this case rightfully
so, as readProp uses the privilege carefully, reading only
the system-properties file it needs, exposing no file handle to
a potential attacker.

1https://github.com/stg-tud/jdeopt



1 class FileAccess {
2 File openFile(String path) {
3 //if no trusted library class
4 Class c = Reflection.getCallerClass();
5 if(c!=null && ClassLoader.getClassLoader(c)!=null) {
6 SecurityManager s = System.getSecurityManager();
7 s.checkPermission(new FilePermission(path));
8 }
9 return newFileHandle(path);

10 }
11 }
12 class SystemProperties {
13 public String readProp(String name) {
14 File f = FileAccess.
15 openFile(JDK_PATH+"/system.properties");
16 ... //read property
17 }
18 }
19
20 // code below this point is added in a later release
21 class Util {
22 public File openFileFromRoot(String name) {
23 return FileAccess.openFile("/"+name);
24 }
25 }

Listing 1. Example shortcut for permission check

Shortcut checks

We say that a method contains a shortcut if it contains
a permission check, i.e., a call to a method of the form
SecurityManager.check*, that is carried out only if
certain constraints on the current call stack are satisfied. These
constraints are expressed through conditionals and typically
take the immediate caller and/or its classloader into account.
Class.getDeclaredMethods is an example for such a
method. It skips a permission check in case the immediate
caller was defined by the same classloader as the class whose
members shall be accessed by the call. The Secure Coding
Guidelines for Java [11] (JSCG) list a number of such “caller-
sensitive” methods [9] in sections 9.8 through 9.11. They
should be used with special care to avoid the introduction
of vulnerabilities. Only a subset of those methods use their
knowledge about the call stack to implement shortcuts.

For illustration, consider the simplified example in
Listing 1. Assume that classes FileAccess and
SystemProperties exist in some release of the JCL and
class Util has been introduced in a later release to the
(trusted) library, as a convenience. Method openFile opens
arbitrary files on the caller’s behalf. Since this is a security-
sensitive operation, the method checks for the appropriate
FilePermission. However, in doing so, it takes a
shortcut: It performs the permission check actually only for
such callers that are not associated with a null classloader
(see line 5). All classes in the JCL, including FileAccess
and SystemProperties here, are associated with the
classloader null, i.e., by taking the shortcut, the method
openFile implicitly trusts all calls from the JCL.

This is no problem with callers that actually deserve this
trust. For instance, the method readProp uses the privilege
carefully, reading only the system-properties file it needs and
otherwise exposing no file handle. However, it is fairly easy to
accidentally expose the elevated privilege to untrusted users.

For instance, to the developer of the new class Util, it
is not at all obvious that the introduction of such a simple
wrapper could have severe security implications. In the ex-
ample, the new method openFileFromRoot is an example
of a confused deputy: it exposes the complete behavior of
openFile to its callers, without any filtering, checking,
or sanitization of the passed arguments. In this way, clients
outside the trusted base can misuse Util to bypass all
permission checks within openFile, as Util is trusted, i.e.,
associated with a null classloader. In the past, accidentally
introduced confused deputies like Util have actually led to
severe vulnerabilities in the JCL that allowed attackers to
completely break out of the JVM’s sandbox (e.g., CVE-2012-
5088).

In this work we propose a systematic tool-assisted hardening
of the JCL that virtually avoids this class of security-breaking
programming mistakes. On a high level of abstraction, the
hardening causes the JCL to make privilege elevation explicit
in (almost) all cases. Our approach works in two steps. An
initial, very lightweight static analysis step assists in locating
shortcuts in permission checks like the one illustrated in
Listing 1, line 5. A subsequent adaptation step then transforms
the JCL such as to avoid the possibility to accidentally
introduce confused deputies like Util, while retaining back-
ward compatibility. The adaptation eliminates the shortcuts
by introducing proper permission checks in every instance
(with two interesting exceptions described later) via Java’s
doPrivileged-wrappers. By calling a doPrivileged-
wrapper, a piece of code can elevate a caller’s privileges
temporarily and explicitly, vouching for the correctness and
security of the actions performed on the caller’s behalf. Our
adapted JCL uses doPrivileged-wrappers to elevate privi-
leges explicitly where they were previously elevated implicitly
by shortcuts. This retains backward compatibility, meaning
that all applications that were designed and compiled for the
original JCL also run on the modified JCL.

For illustration Listing 2 shows the result of applying our
adaptation to the code in Listing 1. The adapted version
of FileAccess.openFile does not take a shortcut any-
more, causing a stack walk in every instance initiated by the
call to checkPermission. An unprivileged attacker call-
ing Util.openFileFromRoot will cause the permission
check to fail, because the triggered stack walk recognizes the
unprivileged attacker and throws a SecurityException,
thus eliminating the previous vulnerability. To make adapta-
tion backward compatible, the adapted readProp explicitly
elevates its privileges through a doPrivileged call (lines
11–13).

After applying the proposed technique to a JCL release,
doPrivileged-wrappers become the only way in which the
JCL elevates privileges. As we show later, this greatly reduces
the runtime’s attack surface.

III. PROBLEM STATEMENT

This section elaborates on the problems with shortcuts in
Java’s permission checks. Shortcuts implicitly elevate privi-



1 class FileAccess {
2 File openFile(String path) {
3 SecurityManager s = System.getSecurityManager();
4 s.checkPermission(new FilePermission(path));
5 return newFileHandle(path);
6 }
7 }
8 class SystemProperties {
9 public String readProp(String name) {

10 // Java 8’s lambda syntax ...
11 File f = AccessController.doPrivileged(
12 (PrivilegedAction<File>) () -> FileAccess.
13 openFile(JDK_PATH+"/system.properties"));
14 ... //read property
15 }
16 }
17
18 // code below this point is added in a later release
19 class Util {
20 public File openFileFromRoot(String name) {
21 //will throw SecurityException
22 return FileAccess.openFile("/"+name);
23 }
24 }

Listing 2. Example of adapted code

leges to a certain subset of callers, with two severe effects.
On the one hand, shortcuts increase the number of po-

tential attack vectors. Attackers can abuse reflection to call
shortcut-containing methods on behalf of a trusted class.
Many of these methods will skip a permission check, be-
cause the immediate caller is trusted, and thus provide
functionality that was intended to be restricted. Two ex-
amples of such methods that are known to be of great
value to attackers are Class.getDeclaredFields and
Class.getDeclaredMethods, which skip permission
checks, if the immediate caller is defined by the same class-
loader as the class whose members shall be accessed by the
call. They can be used to access private members of a class
that were intended to be inaccessible by untrusted code. To
find examples of such kinds of attacks, we manually reviewed
a sample set of exploits that was provided by Security Ex-
plorations [12] consisting of 48 original exploits. We found
that at least four of those exploits depend on shortcuts.2 As a
recent study by Holzinger et al. shows, however, the problem
is even more prevalent: that caller sensitivity in combination
with confused deputies alone is abused by 36% of all exploits
they found in the wild [5].

On the other hand, the potential is high that developers, who
are either not aware of or unable to properly reason about the
implicitly elevated privileges, introduce security flaws when
extending the library by implementing new callers of methods
with shortcuts or evolve existing code. In the following, we
elaborate on the reasons.

First, information about shortcuts is rarely part of the
method’s documentation. Hence, developers of any caller
methods will not be aware that calling certain meth-
ods imposes requirements on their implementation to not
expose critical functionality to untrusted code. Consider
again Class.getDeclaredMethods and the scenario,

2Issues 32 (using CVE-2012-5088), 35, 36, 37

where a maintainer of the JCL introduces a wrapper,
MethodFilters whose privateMethodsOf(Class)
calls Class.getDeclaredMethods and filters out the
non-private methods from the set returned by it. This seem-
ingly harmless new functionality allows attackers to access
all private methods of all classes within the JCL. The short-
cut within Class.getDeclaredMethods only considers
MethodFilters’s classloader, which does coincide with
that of Class, but let go unchecked the potentially attacker-
controlled caller of MethodFilters.

In the best case, the developer of a caller method knows
about the shortcut in the callee, e.g., through the Java Secure
Coding Guidelines (JSCG), which provides explanations and a
list of methods that implement shortcuts. He may consciously
make the decision to take the risk and the responsibility
to prevent harm. When he does so, this decision is not
documented in the code. In future code revisions, maintainers
unaware of the special requirements imposed by the shortcut
may inadvertently invalidate the security precautions taken by
the original author.

Second, hardcoded shortcuts are hard to analyze. There is
no dedicated Java language construct or API support to express
and document assumptions about the call stack. As a result, the
effect and the scope of the implicit privilege elevation can only
be reasoned about by careful examination of the shortcut’s
implementation and in addition requires deep knowledge of
JCL classes and their properties. This reasoning is a very
tedious and error-prone task. Thus, even when the developers
know the list of methods that implement shortcuts by heart,
using them implies constant awareness and a lot of effort by
developers to prevent the introduction of new confused-deputy
vulnerabilities.

Third, it is hard to maintain the security of shortcut-
containing code in the face of code evolution. Security-
sensitive methods that implement shortcuts often assume a
specific order of callers on the call stack. Changes to the
code that affect the order of callers may cause the sensitive
method to misbehave, if assumptions are not properly adjusted.
It is hard to judge whether a local change in the code base
violates the assumptions of some hardcoded shortcut. Thus,
every change has to be properly analyzed to rule out potentially
negative side effects on policy enforcement. Since, as already
mentioned, such an analysis is manual and very involved, the
risk is high that code evolution will introduce vulnerabilities.

Fourth, hardcoded shortcuts are inflexible. Changes in the
deployment environment for Java applications may affect risk
considerations and security requirements. Adjusting policies
accordingly is a matter of configuration, whereas changing
hardcoded shortcuts is impractical.

Shortcuts violate several well-accepted secure design prin-
ciples. Yee proposed [13] a set of ten fundamental principles
that should be followed when designing a secure system.
While those principles were originally developed to reason
about the usability of entire software systems from an end-
user’s perspective (e.g., the user interface of a password
prompt), Türpe showed in [14] that the same principles can



void checkMemberAccess(Class clazz, int w) {
if (w != Member.PUBLIC) {
Class stack[] = getClassContext();
/* stack depth of 4 should be the caller

* of one of the methods in java.lang.Class

* that invoke checkMember access.

* The stack should look like:

* someCaller [3]

* java.lang.Class.someReflectionAPI [2]

* java.lang.Class.checkMemberAccess [1]

* SecurityManager.checkMemberAccess [0] */
if ((stack.length<4) ||

(stack[3].getClassLoader() !=
clazz.getClassLoader())) {

checkPermission(CHECK_MEMBER_ACCESS);
}

}
}

Listing 3. Shortcut permission check with inline comments document-
ing assumptions about callers in java.lang.SecurityManager (Java
1.7.0u25)

also be applied for purposes of API usability evaluation. The
deficiencies discussed above violate five of the ten principles:
(a) “Path of Least Resistance”, because developers need extra
effort to prevent the introduction of confused-deputies; (b)
“Explicit Authority”, due to the implicit nature of shortcuts;
(c) “Visibility”, since shortcut-containing methods appear as
“regular” methods; (d) “Revocability”, because developers
cannot refrain from privilege elevation through shortcuts; and
finally (e) “Clarity”, because the effects on policy enforcement
are unclear when using a method that contains a shortcut.

To illustrate an extraordinary case of shortcuts, Listing 3
shows actual code that was released as part of Java 1.7.0
update 25. The method in this example was used, for instance,
by java.lang.Class, to restrict reflective access from one
class to members of another class. A shortcut will bypass a call
to checkPermission, thus preventing stack inspection and
granting the privilege implicitly if certain constraints on the
call stack are unsatisfied. This is an interesting case because
checkMemberAccess makes extensive assumptions about
the call stack, involving the size of the stack and the order of
callers. It may easily happen that code will be introduced that
violates these assumptions, which is also why one finds the
following warning in java.lang.Class: “Don’t refactor;
otherwise break the stack depth [...] as specified.”. Already
in 2009, Li Gong underpinned that counting stack frames is
highly fragile and highlighted stack inspection as a key feature
of Java 1.2 that would finally allow for more reliable access-
control checks [15].

To recap the discussion, we conclude that shortcuts signif-
icantly complicate the task of writing secure code in the first
place and even more so the task of maintaining security in the
face of evolution. This claim is supported by various confused-
deputy vulnerabilities in past versions of Java, which demon-
strated how attackers can profit from inadvertently exposed
functionality. The most prominent of these vulnerabilities are
listed in the NVD [16] under CVE-2012-4681, CVE-2012-
5088, CVE-2013-0422, and CVE-2013-2460.

Privileged actions versus shortcuts

Since our approach to address the discussed problems with
shortcuts is to replace them by privileged actions, we conclude
this section by briefly considering privileged actions and
shortcuts side-by-side.

Privileged actions are in many ways similar to shortcuts.
They terminate stack walks early, thus potentially allowing
untrusted code to perform security-sensitive actions on behalf
of trusted code. In this sense, all callers of methods that
implement shortcuts are in the same intermediary role as
code executing within doPrivileged. In both situations,
developers have to ensure that security-sensitive functionality
is not exposed in a way that is profitable to attackers. However,
besides the above similarities, there are significant differences
between privileged actions and shortcuts. Using a privileged
action involves a developer who actively declares to make
the conscious decision to take and control a risk, and who
can therefore be assumed to know that security precautions
are required. Calling doPrivileged makes this decision
explicit. The fact that privileged actions are explicitly marked
as such and restricted by a lexical scope makes them easy to
reason about. Unlike implicit shortcuts, the use of privileged
actions is supported by a dedicated, well-specified API, and
well-defined algorithms, e.g., the access-control algorithm as
documented in [2]. Automatic program analysis, as well as
manual reviewers benefit from this dedicated support.

IV. PROPOSED SOLUTION

Our proposed solution comprises three steps. First, one
has to locate all shortcuts. Note that there is no complete
documentation on shortcuts available. The JSCG is helpful
because it provides a list of officially supported caller-sensitive
methods. However, it does not state which of these methods
implement an access-control shortcut, and the list is not
guaranteed to be complete today nor in the future. The second
step is to remove the shortcuts found. Finally, for backward
compatibility, one has to wrap the calls in the JCL to those
methods that formerly implemented shortcuts into privileged
actions.

We implemented our proposed solution on the basis of
OpenJDK 8 b132-03 mar 2014, such that we can evaluate
its feasibility and performance impact. We applied a semi-
automated approach to locate and remove shortcuts in the JCL.
The following three sections provide details on each step of
the transformation process. We expose all artifacts required to
reproduce our results with this paper.3

A. Locating shortcuts

The identification of JCL methods that contain shortcuts is
complicated by four related factors. First, there is no dedicated
language support to express constraints on the call stack, which
is why they cannot be trivially recognized. Second, security-
sensitive methods do not necessarily implement shortcuts and
calls to the security manager by themselves, but may use

3https://github.com/stg-tud/jdeopt



helper methods instead. Third, security-sensitive methods are
scattered all over the code base, so the identification process
has to take into account all parts of the JCL. Fourth, the JCL
comprises a rather large code base, which renders infeasible
all purely manual approaches.

There is, however, one common property shared by
all methods that implement shortcuts. They all make
use of functionality to retrieve information about the
current call stack, which is required to be able to
check constraints on specific callers on the stack. The
task of retrieving this information is typically not
delegated to helper methods. By manually reviewing
shortcuts we already knew, we found that they either use
sun.reflect.Reflection.getCallerClass or
java.lang.SecurityManager.getClassContext.
We thus implemented a simple static analysis using the Soot
framework [17] to find all methods that contain call sites
for these two methods. We only used the Soot framework
to locate the specific bytecode instructions conveniently. The
analysis does not need a call graph nor does it consider data
flows. One could as well have used a text-based matching
tool such as grep, but using Soot helps avoiding mistakes
in the process. Our analysis yielded 86 candidate methods
in total, which we reviewed manually to find the subset of
methods that actually implement a shortcut. These are the
results:

• Out of the 86 candidates, 35 methods do indeed im-
plement a shortcut. They check constraints on the call
stack and skip a permission check if these constraints are
satisfied.

• Further 6 methods do not implement shortcuts in the strict
sense, because they do not call a check* method on the
SecurityManager to trigger stack inspection under
any circumstances. Because of this, we consider them to
be out of scope. They are noteworthy, however, because
they deny access to functionality if the immediate caller’s
classloader is unable to load a specific class involved
in the desired action. Such code implements a kind of
undocumented poor man’s approach to access control.

• One method does also not implement a shortcut in
the strict sense, but it checks if the immediate caller’s
classloader is the bootstrap classloader, and throws a
SecurityException otherwise.

• The remaining 44 methods are caller-sensitive, but use
stack inspection for purposes other than shortcuts.

We matched our findings with the relevant sections in the
JSCG, 9.8, 9.9, 9.10, which provide a list of 75 caller-sensitive
methods that have to be used with special care. The methods
listed in JSCG constitute a subset of the 86 candidate methods
we found by static analysis. The additional 11 methods that
we found, which are not covered by the relevant sections in
the JSCG, include 9 methods that do not perform permission
checking, 1 deprecated method, and 1 method which is part
of sun.misc.Unsafe, and thus not officially supported.
From this, we conclude that the JSCG sufficiently covers the

current set of methods that implement shortcuts. For 41 out
of the total 75 methods included in the JSCG, we found
no indication for shortcuts. In most cases, these methods
implement dynamic access checks in the context of reflection,
or provide dynamic loading capabilities involving the imme-
diate caller’s classloader. Both is caller-sensitive behavior that
requires special attention from developers, and might even
bring along a potential for vulnerabilities, which is also the
reason why they are discussed in the JSCG. We leave these
methods out of the scope of this paper, since our focus is
on shortcuts, but may be worth investigating further in future
work.

B. Removing shortcuts

Out of the 35 methods that we identified to implement a
shortcut to bypass proper permission checking, we manually
modified 32 of these methods to remove any conditionals
that involved properties of the call stack, which may have
prevented a permission check from being performed. We found
that most shortcuts use getCallerClass to retrieve the
immediate caller, and check if its defining classloader matches
a specific instance, or is null, i.e., the bootstrap classloader.
By removing shortcuts, we transformed 28 out of these 32
methods from caller-sensitive to caller-insensitive methods,
guarding their functionality by a well-defined permission
check. We left the remaining 4 methods caller-sensitive after
modification because —apart from their original shortcuts—
they implement additional functionality, such as visibility
checks in the context of reflective access. It is important
to stress that caller-sensitivity and the notion of shortcuts,
as we defined it, are two separate concepts: Our notion of
shortcuts always implies caller-sensitivity but the inverse does
not always hold.

As stated above, we removed shortcuts from only 32 out of
35 methods that we found. One of the three remaining meth-
ods (SecurityManager.checkMemberAccess) we de-
cided to remove entirely from the code base, because it is
deprecated and not used by any other method in the JCL.

The other two remaining methods, Class.-
getDeclaredField and Class.newInstance,
could not be modified, due to circular dependencies. After an
initial attempt to modify them, we encountered errors during
VM initialization, because using either of the two methods
causes a permission check, within which the method itself is
called again, which in turn triggers another permission check,
and so on. In the original code, the shortcuts in the two
methods prevented this call sequence, because, eventually,
newInstance and getDeclaredField would simply
skip the permission check and succeed. We did not further
investigate whether the use of reflection in the call sequence
initiated by a permission check is inevitable. At the same
time, we could not come up with a clean solution that would
allow the shortcuts to be removed, without making substantial
changes to the JCL. We thus decided to keep these two
shortcuts and leave all calls to getDeclaredField and
newInstance unmodified.



C. Adapting all callers

The last step of our proposed solution is to adapt all
immediate calls to modified methods. In the original code,
many of the JCL’s callers are able to access functionality
guarded by a shortcut, even when there is untrusted code on the
call stack, because the shortcut bypasses the permission check.
After modification, however, the same call sequence would
fail because the permission check now executes, taking into
account the full call stack. To retain backward compatibility
whenever possible, all immediate calls to modified methods
have to be wrapped into a privileged action. As we will
explain, the calls to modified methods have to be adapted
differently, depending on whether the modified method is still
caller-sensitive after modification, or not.

Modifying calls to the 28 methods that lost their caller-
sensitivity through modification works as follows. First, we use
static analysis to find all immediate calls to any of the modified
methods. For this, we adapted and reapplied the approach used
to locate shortcuts as described above. As a result, we found
1,399 calls in the JCL that required a modification. For 1 out
of the 28 modified methods, we were not able to find even
a single caller within the JCL itself, which means that our
transformation regarding this method is already complete at
this point.

We then used Javassist [18] to implement a bytecode
modification tool that automatically adapts all calls. It adds
one or more private helper methods to each calling class, each
of which instantiates a privileged action that wraps the original
target method call and then calls doPrivileged. Next, the
modification redirects all calls targeting a modified method to
one of the newly added helper methods. Note that each helper
method wraps a call to one specific modified method only,
which is why multiple helper methods are added to calling
classes that target more than one modified method. Privileged
actions have to be implemented in separate classes (in source
code one would normally use an anonymous inner class),
but instead of adding one individual implementation for each
generated helper method, we added a small set of commonly
accessible privileged actions to java.lang.Class, shared
among all helper methods. By this, we avoid having to add
hundreds of additional classes, which would bloat the code
base.

We decided to use bytecode modification instead of source-
code modification, because at the time we did our experiments,
we were not aware of any publicly available source-code
modification libraries that would have allowed us to perform
the required modifications in an automated fashion.

The calls to one of the 4 methods that remained
caller-sensitive after the removal of shortcuts had to
be modified differently. This is because those methods
vary their behavior depending on the immediate caller,
which (as can be seen in ”case 2” in Listing 4) would
be the run method of a privileged action if apply-
ing the modification we applied before. In the JCL
only AtomicReferenceFieldUpdater.newUpdater

// case 1: without modification
CallerClass.method // immediate caller
AtomicReferenceFieldUpdater.newUpdater

// case 2: with "regular" bytecode modification
CallerClass.method
CallerClass.x_newUpdater
AccessController.doPrivileged
PrivilegedActionImpl.run // immediate caller
AtomicReferenceFieldUpdater.newUpdater

// case 3: alternative modification strategy
CallerClass.method
CallerClass.x_newUpdater
AccessController.doPrivileged
PrivilegedActionImpl.run
CallerClass.x_getUpdater // immediate caller

AtomicReferenceFieldUpdater.newUpdater

Listing 4. Illustrating the effects the different modification strategies have on
the call stack

out of the 4 methods is actually called and this single method
has only 3 callers, i.e., we only have to modify 3 callers. It
seemed reasonable to modify these 3 callers manually.

We applied a modification implementing a form
of double dispatch, see ”case 3” in Listing 4. First,
we manually added two private helper methods,
x_newUpdater and x_getUpdater, to each calling class
of AtomicReferenceFieldUpdater.newUpdater.
x_newUpdater instantiates a privileged action, whose run
method calls x_getUpdater. x_getUpdater, in turn,
calls AtomicReferenceFieldUpdater.newUpdater.
Finally, we replaced all original calls to newUpdater by
calls to x_newUpdater. The effects of this alternative
modification strategy on the call stack can be seen in
”case 3” in Listing 4. By routing the call sequence
through x_getUpdater, instead of immediately calling
newUpdater in the privileged action, we ensure that the
immediate caller of newUpdater is the original calling
class, not the privileged action. As newUpdater is caller-
sensitive to the calling class and not the specific calling
method it behaves appropriately, i.e., as before.

D. Effects on security and maintainability

The technique presented above removes shortcuts within
methods of the JCL. The benefits of these changes are twofold.
First, the resulting JCL code is easier to maintain, and in
consequence it will be harder to introduce new confused-
deputy vulnerabilities in future versions of Java. Second, some
of the existing attack vectors that depend on shortcuts will
become infeasible.

Enabling security-preserving code evolution

The benefit w.r.t. facilitating security-preserving evolution
of the JCL were already highlighted in the background section
by discussing the code in Listing 1 and the result of the
adaptation by our approach in Listing 2. The desired positive
effect of our conversion is that now, if an unprivileged attacker
calls openFileFromRoot, the permission check will fail,
because Util, having been added later, was not subject to
our modification. This prevents the previous vulnerability.



By trading implicit elevation of privileges with shortcuts for
explicit privilege elevation with doPrivileged as described
above, we retain backward compatibility to a large extent. This
has, however, a downside: It will retain confused-deputy vul-
nerabilities that already existed in the code base at the time of
its modification. Consider again the example code in Listing 1.
If the vulnerability caused by Util is already part of the code
base at the time we apply our program transformation, the
call to openFile in openFileFromRoot will be wrapped
in a privileged action, just like the call in readProp. As
a result, the openFileFromRoot method will continue to
expose critical functionality to attackers even after program
transformation.

It is not easy to decide which method calls under privileged
regime are legitimate, and which ones represent a vulnerability.

With the current proof-of-concept implementation of our
approach, we reduce the possibilities of potentially illegitimate
privilege elevation to explicit ones only, but still leave the
identification of insecure uses of critical functions out of the
scope. In the future, we plan to extend our proposal by a
security review of all callers and a decision on a case-by-case
basis whether the introduced explicit privilege elevation with
doPrivileged is appropriate or not. By mapping implicit
elevations to explicit ones, the transformation presented in
this paper does facilitate such an analysis - as we already
argued, the explicit privilege elevations are easier to identify
and reason about.

Rendering existing attack vectors infeasible

The good news is that even in its current state of the devel-
opment, our transformation effectively renders existing attack
vectors infeasible. This is, because a large number of attacks
that exploited previously shortcut-containing methods did not
call these methods directly (like Util), but rather by abusing
an insecure use of reflection or invokedynamic [19]. The
proposed transformation does not modify such kinds of calls,
as doPrivileged-wrappers are only placed around direct
method calls. After the shortcuts are removed, any such attack
will therefore be successfully thwarted: The permission check
in the reflectively called method, from which the shortcut was
removed, will now trigger a stack walk, preventing the action
if the call sequence was initiated by untrusted code.

As already mentioned, we found four examples of such
kinds of attacks in a sample set provided by Security Ex-
plorations [12]. They leverage vulnerabilities involving the
insecure use of reflection to call shortcut-containing methods
through a trusted system class. We verified through debugging
that performing permission checks instead of taking the short-
cuts will result in access-control exceptions, thus effectively
preventing these attacks. Interestingly, after Security Explo-
rations reported three of those vulnerabilities to the vendor,
a fix was released that did not reliably prevent the attacks.
In fact, it was flawed in many ways, but most importantly,
because it still allowed an attacker to make use of shortcuts
and other caller-sensitive methods [20]. Consequently, Security

Explorations was able to still run three of the four exploits
successfully by only changing them slightly.

In conclusion, these findings (a) demonstrate that our pro-
posed solution does increase the security of the Java platform,
and (b) also support our claim that shortcut-containing code
is very hard to maintain.

V. PERFORMANCE EVALUATION

While our proposed adaptations make the Java platform less
vulnerable, will make it easier to maintain and will reduce
the chance for security-relevant mistakes while maintaining
and extending the platform, the question raises, as what these
changes cost in terms of runtime overhead. After all, the
shortcuts we remove were originally introduced for the sake
of reducing the runtime cost of permission checks [9]. Our
evaluation thus addresses the following research question:
Which runtime overhead does the code adaptation introduce?

A. Evaluation setup
To answer the research question, we transformed Open-

JDK 8 b132-03 mar 2014 as described in Section IV and
performed several experiments. As baseline we used the same
version of the OpenJDK without modifications. To ensure
maximum comparability, we built both the modified and the
unmodified version ourselves based on the official source
release [21].

We compared both variants in two different settings. In the
first setting, we run the DaCapo benchmark suite [10] version
9.12-bach on both variants of the Java platform. The goal is
to measure the relative overhead that the transformations may
induce in the execution of real-world applications. We chose
DaCapo because it consists of complex, real-world applica-
tions from diverse application domains that cover a broad
range of possible program behaviors [10]. Using DaCapo’s
built-in functionality, we implemented a custom callback class
that performs 250 timed runs for each benchmark in each
setting, preceded by 750 warm-up runs. We chose such a high
number of iterations to minimize the effects of outliers that can
be caused by just-in-time compilation or other reasons. By
this, we maximize reproducibility of our results and ensure
that comparing runtime values is actually meaningful. The
following command was used to execute the tests:

java -Xcomp -XX:CompileThreshold=1
↪→ -server -Xmx2g -Xms2g -Xbatch
↪→ -cp ".;./mathlib.jar;./dacapo.jar"
↪→ Harness -t 1 -c callback benchmarkname

Due to a known bug in DaCapo [22], we had to mea-
sure jython runtimes without Xcomp-flag. We were fur-
ther required to entirely skip the two benchmarks batik
and eclipse because their execution resulted in errors on
both the original and modified OpenJDK. eclipse failed
during its checksum validation, indicating that the bench-
mark produced an unexpected output. We were able to re-
produce this problem with multiple original Java execution



environments on different machines. We have reported this
problem to the benchmark’s authors. batik fails with a
ClassNotFoundException, apparently because it ac-
cesses a class that is available in Oracle’s Java runtime but
not in the OpenJDK.

In addition to runtime measurements, we also counted the
number of method calls to any of the 32 modified methods
that are performed while executing the DaCapo benchmarks.
This allows us to reason about the coverage of the DaCapo
suite with respect to the proposed changes.

In the second setting, we ran both variants of the OpenJDK
on micro benchmarks. These micro benchmarks are artificial
test scenarios that we created for all transformed code loca-
tions. The goal is to assess the transformed code locations
without measuring influences by unaffected code. We do this
by calling the first publicly accessible method that transitively
calls a modified method. The micro-benchmarking scenario
gives an insight into how much the removal of shortcuts costs
in the worst case, by calling modified methods frequently.
To measure the runtime we used JUnitBenchmarks version
0.72 [23]. We created a dedicated JUnit test case for each
modified method, each of which contains minimal setup code,
code to prevent dead code elimination [24], and a loop that
performs 10,000,000 calls to the method whose runtime is
to be measured. This high number of iterations is required
because a single invocation is too fast to be measured accu-
rately. JUnitBenchmarks computes the average and standard
deviation of the runtime of 10 rounds, and the 10 rounds are
preceded by 5 warmup rounds not included in measurements.
(A total run for a single test case thus triggers 150,000,000
calls.) The standard deviation is used to gauge the accuracy
of the results.

Lastly, we perform both experiments using two different
setups. In the first setup we perform the experiments without
the presence of a security manager. This setup acts as our
baseline. In the second setup, we execute the experiments
with a security manager set programmatically, in case of micro
benchmarks, and by command line argument, in case of Da-
Capo (using VM arguments -Djava.security.manager
-Djava.security.policy). We use the security man-
ager with a policy file granting all permissions to all the
code. We manually verified that enabling the security manager
actually triggers permission checks performing stack walks at
runtime, despite the fact that the code has effectively the same
permissions as if no security manager were present.

All experiments were performed on a machine with an
Intel Core i5-2400, 3.1Ghz processor, with 4 GB of memory,
running a 64-bit Windows 7 Enterprise SP 1.

B. Results on DaCapo

Table I shows the results of the DaCapo benchmark suite.
Each benchmark is represented by one row in the table.
Column 1 shows the benchmark’s name. Columns 2 and 3
show the execution time in seconds without security manager
in place, along with the standard deviation for each value.
Column 4 shows the runtime difference as a factor to highlight

the cost of our proposed solution. Columns 5, 6, and 7 show
the same values measured with the security manager in place.

Comparing the runtimes of the original code and the mod-
ified code, in almost all cases the difference lies below 1%.
In three cases, measurement results indicate that the modified
code is faster by 2%. In one exceptional case, the modified
code appears to be 3% faster. Taking all results into account,
the modified code is at most 1% slower than the original
code. We attribute these small runtime differences mostly to
instabilities of the JVM [24] rather than to code changes, and
can confirm the observation of Gil et al. that even testing
identical code may lead to slightly different results in terms of
runtime. Furthermore, execution speed is influenced by sec-
ondary factors induced by the underlying software/hardware
stack, as previously studied by Gu et al. [25]

In addition to runtime measurements, we also collected call
statistics4 to ensure that the modified methods are actually
involved in benchmark execution. Our results clearly show that
this is the case. Table II shows a summary of the results we
measured for the original OpenJDK without a security man-
ager. Each of the twelve DaCapo benchmarks is represented
in one row. Column 1 shows the benchmark’s name, column 2
shows the total number of method calls to any of the modified
methods, column 3 shows the number of modified methods the
benchmark uses. Finally, column 4 shows the modified method
that was most frequently used by the respective benchmark.
As can be seen, the DaCapo benchmark suite extensively uses
most of the 32 methods under investigation. Running any of
the benchmarks requires at least 11 out of 32 methods, and 22
at most. Only eight out of 32 modified methods are not used
at all by DaCapo. Further, executing just a single run of one
of the benchmarks involves between 147 and 668,000 calls to
modified methods. A single run of the entire benchmark suite
requires more than 900,000 calls to the modified methods.

Summarizing the results, we conclude that the proposed
code changes have virtually no performance impact on the
tested real-world applications, even though the modified meth-
ods are heavily used. At a first glance, this result seemed
surprising even to us, which is why we sought to confirm
it through micro-benchmarks. . .

C. Results on micro benchmarks

We implemented 32 tests using JUnitBenchmarks, which
equals the total number of shortcut methods found
(35), excluding newInstance, getDeclaredField, and
checkMemberAccess. The former two methods we could
not modify, the latter we removed during program transfor-
mation (see Section IV). Each test performs 10,000,000 calls
to the method under investigation, in two exceptional cases,
due to long runtimes, we performed only 200,000 calls and
interpolated the results.

Table III shows a summary of the results of the micro
benchmarks. To avoid misunderstandings in the following
discussion, all results are shown in microseconds per single

4Complete call statistics are provided with the artifacts.



TABLE I
RUNTIMES OF DACAPO IN SECONDS

Without SecurityManager With SecurityManager
Project Original Modified Overhead Original Modified Overhead

abs. rel. abs. rel.

avrora 3.08 ±[0.15] 3.11 ±[0.10] 0.03 1% 3.02 ±[0.06] 3.06 ±[0.02] 0.04 1%
fop 0.31 ±[0.01] 0.31 ±[0.01] 0.00 1% 0.32 ±[0.01] 0.32 ±[0.01] 0.00 1%
h2 3.70 ±[0.01] 3.70 ±[0.01] 0.00 0% 3.67 ±[0.01] 3.70 ±[0.01] 0.00 1%
jython 1.48 ±[0.02] 1.47 ±[0.02] -0.01 -1% 1.50 ±[0.02] 1.47 ±[0.03] -0.03 -2%
luindex 1.02 ±[0.12] 0.99 ±[0.05] -0.03 -2% 1.20 ±[0.07] 1.21 ±[0.08] 0.01 1%
lusearch 4.95 ±[0.02] 4.95 ±[0.02] 0.00 0% 4.99 ±[0.01] 4.86 ±[0.02] -0.13 -3%
pmd 2.50 ±[0.02] 2.48 ±[0.02] -0.02 -1% 3.06 ±[0.03] 3.05 ±[0.04] -0.01 0%
sunflow 8.36 ±[0.03] 8.31 ±[0.02] -0.05 -1% 8.36 ±[0.04] 8.34 ±[0.03] -0.02 0%
tomcat 48.54 ±[0.28] 48.56 ±[0.31] 0.02 0% 52.54 ±[0.81] 52.35 ±[0.35] -0.19 0%
tradebeans 8.71 ±[0.02] 8.83 ±[0.03] 0.12 1% 10.01 ±[0.05] 10.02 ±[0.02] 0.01 0%
tradesoap 17.94 ±[1.27] 17.67 ±[0.89] -0.27 -2% 23.22 ±[1.44] 23.54 ±[2.02] 0.32 1%
xalan 6.54 ±[0.04] 6.60 ±[0.04] 0.06 1% 6.76 ±[0.03] 6.79 ±[0.02] 0.03 1%

∅ -0.25% ∅ 0.08%

TABLE II
CALL STATISTICS FOR DACAPO

Project Calls Methods Most freq. used

avrora 147 11 getClassLoader
fop 6,329 11 getContext-

ClassLoader
h2 210 11 getClassLoader
jython 1,483 19 getMethod
luindex 208 11 getClassLoader
lusearch 159 11 getClassLoader
pmd 1,885 12 getClassLoader
sunflow 249 12 getClassLoader
tomcat 32,069 17 getDeclared-

Methods
tradebeans 219,792 22 getContext-

ClassLoader
tradesoap 668,000 22 getFields
xalan 36,696 11 getParent

∅ 80,602 ∅ 14
Σ 967,227 ∪ 24

TABLE III
SUMMARY OF RUNTIMES OF MICRO BENCHMARKS IN MICROSECONDS

(µS) PER SINGLE INVOCATION

Without SM With SM
Orig. Mod. Ovh. Orig. Mod. Ovh.

Min. <0.01 <0.01 -0.27 0.03 0.58 0.22
Max. 31.70 49.25 17.55 79.15 99.65 20.50
Avrg. 1.94 2.94 1.00 3.80 6.18 2.38
Med. 0.29 0.16 0.00 0.45 2.05 1.17

invocation, instead of seconds per 10,000,000 calls. The first
column shows the minimum, maximum, average, and median
runtimes of the original OpenJDK without a security manager
in place. The second column shows the respective results for
the modified OpenJDK. Column 3 shows minimum, maxi-
mum, average, and median values of the absolute runtime
differences between the original and modified code. Columns
4, 5, and 6 show the respective results for the tests we
performed with a security manager in place.

Our first observation is that all methods under investigation

execute extremely fast, and that is before and after modifica-
tion. As can be seen in columns 1 and 2, without a security
manager in place, a single call to the fastest method completes
in <0.01 µs, both on the original and modified OpenJDK. The
slowest method requires 31.70 µs on the original code, and
49.25 µs on the modified code, which equals an overhead of
17.55 µs.

For the tests without the security manager, this is the highest
absolute impact that we encountered. The result set contains
one more outlier with an overhead of 12.7 µs, while the
remaining 30 methods show differences in runtime between
-0.27 µs and 1.82 µs. In fact, in this setting only 13 out of
32 methods show a performance penalty at all. Based on the
call statistics we collected for DaCapo, we can say that one
of the two outliers is not used at all, while the other one is
used more than 16,000 times in the entire suite.

On average, without the security manager, the original
OpenJDK executes the methods under investigation in 1.94 µs
per single call. The modified OpenJDK takes 2.94 µs, which
is an average overhead of 1 µs per method call induced by our
proposed transformations. It is important to note, however, that
the two outlier methods mentioned before influence average
values to a greater extent than all the other methods. The
median execution time for a single method call without secu-
rity manager on the original OpenJDK is 0.29 µs, compared
to 0.16 µs on the modified OpenJDK, demonstrating that
several methods even became faster. Overall, the runtimes we
measured without the security manager in place show that, if at
all, there are only insignificant performance penalties induced
by our proposed code changes.

The performance measurement results for tests performed
with the security manager in place are not much different
to the results without the security manager. As can be seen
in columns 4 and 5, the minimum execution time increased
from 0.03 µs per single method call to 0.58 µs. The method
that originally completed in 0.03 µs shows the largest relative
overhead induced by our code transformations. It needs 2 µs
after modification and is thus not the fastest method in the



modified OpenJDK anymore. It is one of four outliers with a
relative overhead of >1000%: getParent, getContext-
ClassLoader, getClassLoader, getSystemClass-
Loader. In all these cases, however, the original execution
time was significantly <0.1 µs per single method call, and
<2.1 µs after modification, which we still consider extremely
fast. As can be seen in Table II, three out of those four outliers
are the most frequently used modified method by at least one
of the benchmarks. We can thus say that DaCapo provides
good coverage in that respect.

In terms of absolute overhead, the result set includes two
outliers with an overhead >10 µs per single call, while the
remaining 30 methods show overheads between 0.2 µs and
4 µs. Those two outliers are the same methods that showed
the largest absolute overhead without the security manager.
One of those two outliers is the longest running method before
and after transformation. As can be seen in the second row in
columns 4 and 5, it has a runtime of 79.15 µs per single call in
the original OpenJDK, and 99.65 µs in the modified OpenJDK.
These two outliers, as discussed before, greatly influence the
average runtimes. With the security manager in place, the
average runtime increases from 3.80 µs per single method
call to 6.18 µs, which is an average overhead of 2.38 µs.
The median runtime increases from 0.45 µs to 2.05 µs per
single method call, and the median overhead is 1.17 µs. None
of the methods under investigation became faster through our
modifications, if the security manager is in place.

In summary, one can see that when measuring modi-
fied methods in isolation there is a measurable performance
penalty. However, these penalties are very small in absolute
terms, which is why they do not influence the runtimes of
real-world applications such as the DaCapo benchmarks.

D. Reason for lack of performance effects

The positive performance results might appear surprising at
first, however, there is a simple explanation for why a shortcut-
free implementation does not suffer from performance penal-
ties. The reason is that the calls to doPrivileged that the
proposed hardening introduces have, in terms of performance,
a similar effect to shortcuts: At runtime, they cause the stack
walk to terminate early. The JVM checks only the permissions
of code that executes within the doPrivileged-wrapper
but not the calling code’s permissions. This greatly reduces
the number of stack frames that permission checks must
traverse and avoids a performance penalty with current JVM
technology.

VI. PRODUCTIVE USE AND FURTHER RESEARCH

Our proposed solution is functional and comprehensive,
because it allows for the execution of legacy applications and
it avoids the dangers of implicit privilege elevation. Our proof
of concept code shows that such a change is possible without
significantly impacting the runtimes of a set of real-world
applications. However, implementing our proposed solution
for productive use requires reconsideration of two aspects: (a)
policies for legacy applications may have to be adjusted when

switching from a shortcut-containing platform to a shortcut-
free platform, and (b) standard permissions of the Java plat-
form cannot equivalently represent some of the privileges
originally gained through shortcuts in terms of their semantics.
In the following, we will elaborate on these issues and discuss
the solution space to spark further research and to aid an actual
application of the proposed hardening into Java’s code base.
We have reported our findings to the security team at Oracle
Inc. who is, based on our discussions here, considering an
application of this hardening for a future version of Java.

Adjusting security policies

An application’s privileges are usually defined by a set of
permissions granted explicitly in a security policy. This is
not the case for privileges gained through shortcuts, because
they are hard-wired into the JCL. Removing shortcuts will
cause permission checks to be executed that would have
been skipped otherwise, which will require permissions that
were not needed before the change. Some legacy applications
will thus require adjustments to their security policy when
upgrading to a runtime environment that is shortcut-free. This
task can either be done manually by determining the required
permissions through code reviews and dynamic testing, or
automatically by means of a static analysis that computes the
set of required permissions for any given application class.
Appropriate approaches have been proposed earlier [26].

Not all legacy applications are affected by this issue. No
changes of the security policy are required for applications
that do not immediately call shortcut-containing methods, call
them in a way that does not trigger a shortcut, have already
been granted all required permissions anyway, or run without
a security manager.

Reworking Java’s standard permissions

Java’s standard permissions cannot equivalently
express all privileges gained through shortcuts in
terms of their semantics. As an example, a shortcut in
Class.getDeclaredFields skips a permission check
if callers attempt to access fields of classes that were
loaded with the same classloader. After removing this
shortcut, the permission check will always be executed
and all callers will be required to have permission
RuntimePermission ’accessDeclaredMembers’. As explained
before, the security policies of legacy applications can
be updated to grant this permission when upgrading to a
shortcut-free runtime environment with little to no effort.
However, the problem is that granting this permission
provides applications more privileges than the original
shortcut implementation, as it will allow callers to access
fields of arbitrary classes, including private members
of system classes. Note that the security implications
of this are very limited because RuntimePermission
’accessDeclaredMembers’ only allows for member access,
i.e., retrieving instances of java.lang.reflect.Field
or java.lang.reflect.Method, and not for reading or
writing any private field values, or calling private methods.



This is nevertheless an issue, and it is caused by the fact that
some standard permissions are too coarse-grained to be used
in a meaningful manner. Permissions that are supposed to
restrict the use of reflection only allow for on/off decisions,
thus either alowing reflective access to all available classes,
or none at all.

The consequence of coarse-grained standard permissions
is that, when upgrading to a shortcut-free platform, applica-
tions may have to be granted permissions that provide more
privileges than originally granted through shortcuts. This is
inherently risky, as it violates the principle of least privilege.
Even when letting the consequences of our proposed changes
aside, we consider permissions like the reflection permissions
as too coarse to be really useful in a security-sensitive setting.

This circumstance is not caused by technical issues, but is
simply a design flaw. Consider Java’s standard file permission,
which, in contrast to the reflection permissions, provides
great flexibility for fine-grained access decisions. It allows
for specifying the file path to which the permission applies,
as well as the specific actions that shall be granted, such as
’read’ or ’write’. Similar expressiveness is desired for securely
restricting the use of reflection of untrusted applications, and
for adequately compensating for the removal of shortcuts.
We thus argue that a thorough redesign of Java’s standard
permissions is both possible and required. This is a complex
task in itself that needs to take into account technical aspects,
as well as various organizational and human factors. One
of the major challenges is to allow for fine-grained access-
control decisions that support the principle of least privilege,
without being hard to use or performance-wasting. Further,
the permission model should be designed to better support
automatic policy generation for existing applications. We hope
that future research will take on the challenge of developing a
permission model that is both flexible, and usable within the
settings that it is designed for.

VII. LESSONS LEARNED

The work presented here specifically focuses on access
control as it is implemented in Java. Due to the widespread
use of this platform, our results are of high relevance to
the security of a large number of servers and workstations.
Furthermore, the Java security model is an interesting research
subject, as it is one of the most sophisticated models of its kind
found in modern software. The rigorous analysis presented
here sheds light on how such a complex model is weakened
in practice. Besides the impact our results may have on further
developments of the Java platform, we can also view this work
as a case study and derive a set of general recommendations
for the development of secure software. In the following, we
will highlight general lessons learned, that hopefully serve as
guidance for the design and implementation of other complex
security models.

Explicit privilege elevation aids the protection of privileges.

Our research clearly shows that by elevating privileges ex-
plicitly through constructs such as doPrivileged, one can

avoid the accidental reexposure of those privileges to attackers.
One reason is that doPrivileged elevates privileges tem-
porarily and only within a given lexical scope. Any code refac-
torings performed will move the explicit doPrivileged-
call along with the other code, causing privileges to be raised
only where required. A second reason, though, is the pure
presence of the doPrivileged-call. To JCL maintainers it
not only serves as a security construct but can serve also as a
warning flag: privileges are elevated at this point and need to
be properly protected from being leaked to the outside.

Stick to the security model.

Security models of complex systems are planned and de-
signed prior to implementation. Inconsistencies between de-
sign and implementation can be risky as they hamper proper
evaluation and maintenance. In the concrete case we studied
here, shortcuts are used instead of proper stack-based access
control, which is a deviation from the Java security model that
increases the attack surface. A common practice in software
engineering is to readjust a project plan if it drifts apart from
reality. It should be just as normal to readjust and revaluate a
security model if strictly implementing it as prescribed is not
possible, e.g., due to performance constraints. In the specific
case of Java, had our evaluation been performed earlier, one
would probably have had the chance to design a more fine
grained policy system in the first place, which then in turn
would have allowed all current use cases without having to
opt for implicit privilege elevation.

Properly document tradeoffs between security and perfor-
mance.

Design and implementation of software is shaped by func-
tional and non-functional requirements. Tradeoffs are often
necessary due to conflicting requirements, and security-related
functionality not always has the highest priority. While in
many cases at least functional requirements are documented,
it seems less common to properly document how tradeoffs
shaped the design and implementation of a complex software.
In the specific case of shortcuts in Java’s access control
mechanisms, we were required to perform manual reviews,
functional tests, and also doublecheck with representatives
from Oracle to verify our assumption that one reason for
which shortcuts were introduced was for performance reasons.
In result, performance-related tradeoffs in long-living systems
should be thoroughly documented, as performance constraints
definitely change over time and many optimizations become
obsolete eventually.

Revaluate performance tradeoffs in regular intervals.

The very nature of a tradeoff is to balance out a negative
impact with a positive impact of similar or higher value. If
the hoped-for positive impact is improved performance and
ease of use, and the negative impacts are, e.g., an increased
attack surface and decreased maintainability, then this tradeoff
changes as performance gains decrease with optimizations of



the runtime. We thus argue that a revaluation of performance-
related tradeoffs in regular intervals should be part of the
maintenance process of any long-living system.

VIII. RELATED WORK

Aside from Li Gong’s extensive work [2], [15], [27] for the
Java security model, several researchers took up the challenge
to analyze, extend or break the model. We present work that is
concerned with optimizing the access-control process as well
as work that goes beyond this and seeks out for alternatives
to stack-based access control.

Fournet and Gordon [28] provide a complete theoretic
model for stack-based access control. Using this model they
are also able to point out the limitations of stack inspection.
Shortcuts, on the other hand, are not part of the model and
may invalidate the guarantees achieved with it.

Herzog et al. [29] analyzed the performance of the
SecurityManager in Java and provide guidance on how
to use it efficiently. However, they do not provide any details
on shortcuts.

Several approaches have been developed to optimize Java
stack inspection in order to reduce performance overheads.
Bartoletti et al. [7] present two control-flow analyses that
safely approximate the set of permissions granted or denied
to methods and therefore speed up runtime checks. Koved et
al. [26] extend the precision and applicability of the analysis.
Chang [30] built on their work to make the analyses more
precise using a backward static analysis to compute more
precise information on the performed checks. Likewise, Pistoia
et al. [8] analyze Java bytecode to find unnecessary (and
therefore excessive) and redundant (and therefore inefficient)
privileges while ensuring that there are no tainted variables in
the privileged code. This is not only interesting for optimiza-
tion but also helpful in the detection of vulnerabilities.

Other work is more concerned with the maintainance issue
of access control in Java. Cifuentes et al. [9] provide a
definition for caller sensitivity and describe means to detect
unguarded caller sensitive method calls. Toledo et al. [31]
observed that access-control checks are scattered throughout
the JCL making them non-modular and therefore hard to
maintain. They propose two solutions based on aspect-oriented
programming to fully modularize access control in Java. In
their work they not only cover permission checking, but also
privileged execution and permission contexts.

Moreover, there are alternatives to stack-based access con-
trol. Abadi et al. [32] suggest to base access control on
execution history rather than on the current call stack. This
will not only capture the nesting of methods, but also any
method that has completed prior to the method that is checked.
Methods that already completed are not on the call stack
anymore and would thus be ignored by regular stack-based
access control. Nevertheless, such methods may change the
global state of the application to a state in which subsequently
called sensitive methods should not be allowed to execute.
Martinelli et al. [33] integrated history-based access control

into Java using IBM’s Jikes VM. However, this approach
causes a significant slowdown as its checks are more costly.

Wallach et al. [34] discuss an alternative they call security-
passing style. They represent security contexts as pushdown
automata, where calling a method is represented by a push
operation and returning is represented by a pop operation.
To weave these automata with the program they rewrite a
program’s bytecode so that it no longer needs any security
functionality from the JVM.

Building on the work on stack-based and history-based
access control, Pistoia et al. [35] introduce information-based
access control. They argue that history-based access control
may prevent authorized code from executing because of less
authorized code executed previously, although it may not have
influenced the security of the operation that is about to be
executed. In information-based access control every access-
control policy implies an information-flow policy. It augments
stack inspections with the tracking of information flow to
sensitive operations. An extensive review on the relation
of access control and secure information flow is given by
Banerjee and Naumann [36].

IX. CONCLUSION

A key contribution of this paper is the thorough analysis
of the security threat imposed by current shortcuts in the Java
Class Library (JCL), which omit stack-based access-control
in certain situations and cause implicit privilege elevation.
The presence of shortcuts is responsible for the single largest
group of vulnerabilities known to have been exploited for the
Java runtime. We showed that shortcuts directly enable attack
vectors and complicate the security-preserving maintenance
and evolution of the code base; as they elevate privileges
to certain callers implicitly, their callers are in many cases
either unaware of the elevations or unable to reason about
their effects and scope.

Through a tool-assisted adaptation we have created a new
variant of the JCL that works almost without shortcuts,
allowing privileges to be elevated only explicitly through
the use of privileged wrappers. The adapted code allows
maintainers, security experts and tools to easily identify points
of privilege escalation. Moreover, some previous exploits that
abuse insecure use of reflection are effectively mitigated by
our approach.

One reason for which shortcuts were originally introduced
was to lower the execution overhead of access control. Surpris-
ingly at first, however, a set of large-scale experiments with
the DaCapo benchmark suite shows virtually no measurable
runtime overhead caused by our removal of shortcuts. Micro-
benchmarks explain this result by showing that, in the worst
case, the absolute overheads introduced are all in the order
of microseconds. As we discussed, the reason for this pos-
itive performance is due to early stack-walk terminations at
doPriviliged-calls.

A second reason for the presence of shortcuts is that the
implicit assignment of privilege is convenient, as it reduces



the need to elevate priviliges explicitly, e.g. through an appro-
priate access-control policy. We thus assessed in detail the
usability implications that a move from implicit to purely
explicit privilege elevation entails. The tradeoffs discussed
will ultimately determine whether the proposed hardening is
worthwhile adopting at this point in time.

Another major point of consideration for adopting the
proposed hardening is the large one-time cost involved in im-
plementing it: ideally, security-trained JCL developers should
review every single doPrivileged-call our adaptation in-
troduces, to see that it is not unduly leaking privilege. We
have reported our findings to the security team at Oracle Inc.
and are discussing those tradeoffs with them. In future work,
we plan to work towards tool support for proving privilege
containment at least for some recurring situations.
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