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ABSTRACT
Engineering cyber-physical systems secure by design requires engi-

neers to consider security from the ground up. However, current

systems engineering processes are not tailored to cyber-physical

systems, or lack an integration with security engineering. In this

paper, we integrate secure software engineering practices into an

engineering process for cyber-physical systems. Thereby, we enable

engineers to specify security requirements at the level of systems

engineering, and to take effective countermeasures during both

platform-independent and platform-specific software engineering.

Our key contribution is the integration of threat models for trac-

ing security requirements to countermeasures. We illustrate our

approach by an autonomous car with high security requirements.

CCS CONCEPTS
• Software and its engineering → Software development process
management; • Security and privacy → Software security engi-
neering; • Computer systems organization → Embedded and
cyber-physical systems;
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1 INTRODUCTION
Cyber-physical systems [6] are interconnected embedded devices

that exchange information to coordinate their physical interaction.

As such, systems are developed collaboratively by engineers from

multiple disciplines. This collaboration has coined the term systems
engineering and requires a discipline-spanning process.
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Furthermore, the interconnected nature of cyber-physical sys-

tems turns security into a core quality attribute [3, 8]. Due to their

interaction with environments and humans, the information pro-

cessed by a cyber-physical system is critical with respect to security

properties like confidentiality, integrity, or availability. Thus, devel-

opment processes need to address security requirements from the

ground up in order to prevent vulnerabilities by design, i.e., before
the systems are deployed to their dedicated computing platforms.

However, security by design of cyber-physical systems is a chal-

lenging problem [19]. In particular, the engineering process must

enable security requirements to be properly identified, specified,

and traced to effective countermeasures. To this end, security engi-

neering practices need to be integrated during process design and

consistently applied by the engineers involved in the process.

Current engineering processes are not fit for the purpose of

ensuring security by design of cyber-physical systems. Approaches

either lack an integration of security engineering practices [20, 29],

or they are not tailored to the characteristics of cyber-physical

systems such as the discipline-spanning development [5] and the

deployment to dedicated computing platforms [2, 13, 24].

In this paper, we present our research in progress on the inte-

gration of secure software engineering practices into a discipline-

spanning engineering process for cyber-physical systems [11, 12].

This integration enables engineers to specify security requirements

at the level of model-based systems engineering [21], and to take

countermeasures during both platform-independent and platform-

specific software engineering. Our key contribution is the integra-

tion of dedicated threat models [25] for refining security require-

ments along the process, and tracing them to both application-level

countermeasures (e.g., information flow control) and platform-level

countermeasures (e.g., cryptography). Thereby, we enable engineers

to ensure security by design of the systems under development.

We illustrate our approach by an autonomous car that must not

leak confidential data of passengers to a cloud storage provided by

the manufacturer. Furthermore, the car’s interface for remote diag-

nostics must not allow to compromise the integrity of information

displayed to passengers. Finally, passengers must never be able to

accidentally break the availability of the car’s engine control.

In summary, our paper contributes

• a secure-by-design process for cyber-physical systems, and

• an integrated threat modeling approach that provides trace-

ability between security requirements and countermeasures.

Paper Organization: We give background information on the

engineering of cyber-physical systems in Section 2, and propose

our secure-by-design process in Section 3. In Section 4, we discuss

related work, before concluding in Section 5.
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Figure 1: Cyber-Physical Systems Engineering Process.

2 CYBER-PHYSICAL SYSTEMS ENGINEERING
To account for the interdisciplinary nature, the engineering of cyber-

physical systems is guided by the VDI 2206 design methodology [7].

The engineering process consists of (1) an interdisciplinary system
design phase in which a high-level design is specified in a discipline-

spanning fashion, (2) a discipline-specific design and development
phase in which engineers implement individual parts of the system,

and (3) a system integration phase that combines the parts from

different disciplines into the overall system.

In this paper, we focus on model-based systems engineering [21],

using models to abstract from the complexity of real systems. In

particular, we build on the model-based specification technique

Consens [1]. Figure 1 sketches the integration of Consens into the

VDI 2206 process [11, 12]. Due to our focus on information security,

we restrict ourselves to the discipline of software engineering and

the deployment to computing platforms. Accordingly, the system

integration with other disciplines is beyond our scope.

In Consens, the interdisciplinary system design results in a system
model that provides a set of discipline-spanning views on the system

under development [1]. In the remainder of this paper, we restrict

ourselves to security-relevant views, one of which is an environment
model that describes interdependencies between the system and

its environment. Interdependencies are categorized as information

flow, material flow, or energy flow. For example, the environment

model in Figure 2a includes information flows between the car

and its passengers, the cloud, and remote diagnostics, whereas an

energy flow represents the driving force. Another relevant view

are use cases, describing desired application scenarios. Furthermore,

requirements that the system must meet to enable certain use cases

are specified as another view in tabular form.

The interdisciplinary system model serves as the starting point

for the design and development (cf. Figure 1). In the software re-
quirements engineering, requirements engineers refine use cases to

formal scenarios describing how the system communicates with

its environment [12]. This coordination behavior is driven by soft-

ware which is designed by software engineers during the platform-
independent software design. The result is a component-based soft-

ware model [11] that realizes the coordination behavior by passing

messages over ports. In Figure 2b, we depict a component model

for the autonomous car with ports to the cloud storage, the remote

diagnostics, and passengers. The component contains two subcom-

ponents for the user interface and the engine control. As suggested

by Figure 1, the component model is still independent of a comput-

ing platform, which is described by platform engineers during the

platform design. Finally, deployment engineers map the software to

the targeted platform during the platform-specific software design.

Remote 

Diagnostics
Autonomous 

Car

Passenger
Cloud

Storage

(a) Environment Model.

Autonomous Car

Engine

Control

User 

Interface

cloud

diagnosticspassenger

(b) Component Model.
Legend

System under 

Development
Environmental 

Element Component
Port

Information 

Flow

Energy 

Flow

Figure 2: Autonomous Car Models.

3 SECURE-BY-DESIGN PROCESS
In this section, we propose an integration of secure software en-

gineering practices into the process introduced in Section 2. We

describe our extensions to the interdisciplinary system design in

Section 3.1, to the platform-independent software engineering in

Section 3.2, and to the platform-specific software engineering in

Section 3.3.

3.1 Interdisciplinary System Design
In Figure 3, we give an overview on the interdisciplinary system

design phase [1]. Initially, during the Analyze Environment phase,
systems engineers specify the environment model introduced in

Section 2. We extend this phase with a step Analyze Threats to
support the identification of valuable assets and potential attack

vectors of the system under development. On the basis of this threat

analysis, we propose to derive an information flow policy [15] that

extends the environment model with illegitimate information flows

that the system must avoid. For example, the remote diagnostics

could potentially be exploited as an attack vector to compromise

the information that the car displays to its passengers. Thus, a flow

of information from the remote diagnostics to passengers is ille-

gitimate. In this paper, we leave open the concrete methodology

used for threat analysis, but refer to general approaches such as

STRIDE [25] which provide a practical mnemonic for the identifi-

cation of common threats.

In phase Define Use Cases (cf. Figure 3), systems engineers define

the desired use cases of the system.We extend this phase by a defini-

tion of misuse cases [26], describing insecure behavior that is either
maliciously exploited by attackers or accidentally triggered through

incorrect use. Here, previously identified threats are refined into

step-by-step scenarios. For example, a passenger could accidentally

disable the engine control by misusing the user interface.
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Figure 4: Exemplary Attack-Defense Graphs.

Next, we extend the phase Define Requirements (cf. Figure 3) with
a step Define Anti-Requirements [4], representing malicious require-

ments that the system must avoid to mitigate threats. Referring to

our example, personal data from passengers must not be stored in

the manufacturer’s cloud. Hence, systems engineers could specify

the anti-requirement “Unauthorized access to personal data”.
In summary, our process extends the interdisciplinary system

model with a security policy expressed at different abstraction lev-

els, including misuse cases, anti-requirements, and an information

flow policy. In the following, we represent these artifacts inside

a threat model (called application threat model) that allows engi-
neers to trace the security policy to countermeasures taken during

the design and development phase. To this end, we propose to use

attack-defense graphs [14] as threat model because they provide a

structured way for stepwise refinement of threats along with the

ongoing process. An attack-defense graph refers to an attack node
as its root, describing a possible attack by referring to an element

of the security policy. For example, the root nodes of the attack-

defense graphs in Figure 4 refer to the misuse case Disable Engine
Control (Figure 4a), the anti-requirement of unauthorized access

to personal data (Figure 4b), and an illegitimate information flow

from the remote diagnostics to passengers (Figure 4c).

3.2 Platform-Independent Software
Engineering

In our process, we propose to refine the attack-defense graphs

along with the platform-independent software engineering. To

keep track of the security policy, our graphs introduce dedicated

countermeasure nodes that are used as child nodes to represent coun-
termeasures against the attacks in their parent nodes (cf. Figure 4).

Each countermeasure has to be justified to ensure that it has really

been implemented. This justification could be the result of a formal

analysis, or created manually by an engineer (e.g., by signing that

a specific behavior is guaranteed). In Figure 4, we depict the inte-

gration of such justifications into the attack-defense graphs. In the

following, we describe the refinement of the attack-defense graphs

along with the software requirements engineering in Section 3.2.1,

and the platform-independent software design in Section 3.2.2.

3.2.1 Software Requirements Engineering. The formal scenarios

resulting from this phase enable requirements engineers to anal-

yse the consistency of the specified coordination behavior [9]. In

this paper, we propose to extend the same approach towards unde-

sired behavior by formalizing misuse cases as forbidden scenarios.

Thereby, requirements engineers can identify inconsistencies like

use cases which enable specific misuse cases. By identifying and

eliminating such flaws, engineers ensure the realizability [9] of

the specified coordination behavior. For example, in Figure 4a, we

illustrate the refinement of the misuse case Disable Engine Control.
A countermeasure node describes that the misuse case is never

enabled by the coordination behavior, which is justified by means

of an automatic realizability check.

3.2.2 Platform-Independent Software Design. As depicted in Fig-

ure 5, software engineers start this phase by deriving a software

component model from the system model [11]. During this Derive
Component Model phase, we propose to add a step Refine Security
Policy in which the attack-defense graphs are refined along with

the component model. For example, in Figure 4b, we refine our

anti-requirement by two attack nodes, describing that personal

data may be accessed either by eavesdropping the communication

between engine control and cloud, or by read access to the cloud. As

another example for the refinement of the security policy, the infor-

mation flow policy is decomposed into local flow policies restricting

individual components such that their message passing behavior

over certain ports must not depend on other ports. For example, in

Figure 4c, we decompose the illegitimate information flow into two

local flow policies for the user interface and the engine control.
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Next, in the Design Component Behavior phase, software engi-
neers create models for the coordination behavior of components.

We extend this phase with a step to Specify Assumptions about
countermeasures provided by the targeted computing platform. For

example, in Figure 4b, we show a countermeasure against Eaves-
dropping, assuming that the platform ensures confidential commu-

nication. Another countermeasure against Read Access assumes

that only user-encrypted data is sent to the cloud.

In the step Verify Local Flow Policies, we propose to use tech-

niques from the area of information flow control [10] to verify com-

ponents against their local flow policies. In case of a violation,

software engineers track back the error either by correcting the

message passing behavior, or by adjusting the flow policy. If a flow

policy is complied, the information flow control serves as justifica-

tion (cf. Figure 4c). A crucial condition for this verification approach

is compositionality [15], i.e., if all local flow policies are complied,

the global information flow policy must also be complied by def-

inition. Finally, the component model and the behavioral models

constitute integral parts of the platform-independent model.

3.3 Platform-Specific Software Engineering
Finally, we address the deployment of the application software to

the hardware/software computing platform. We describe our exten-

sions to the platform design in Section 3.3.1 and to the platform-

specific software design in Section 3.3.2.

3.3.1 PlatformDesign. The final result of this phase is a platform
model (cf. Figure 6) that describes hardware and platform software

such as the operating system. During the phase Derive Hardware
Model, platform engineers specify the available hardware, hardware

composition, and network topologies. We propose to extend this

phase with a step Specify Hardware Threat Model to represent phys-
ical threats like, e.g., influenced car sensors, access to the internal

bus system, or eavesdropping over-the-air communication [23].

Next, in the phase Specify Platform Artifacts, platform engineers

describe software artifacts that serve as a platform for the applica-

tion software. This might contain non-security artifacts like math

libraries but also security-related artifacts like encryption libraries

(e.g., to encrypt user data before sending them to the cloud) or se-

cure communication channels (e.g., between car and cloud storage).

Such platform artifacts serve as security solutions for assumptions

made in the platform-independent software design. In step Specify
Platform Threat Model, we propose to represent such security solu-

tions as another threat model in the form of defense-attack graphs.
Essentially, these graphs correspond to the attack-defense graphs

but use countermeasures like encryption as root nodes. Platform en-

gineers can refine these graphs with possible attacks to the security

solutions, e.g., breaking an encryption algorithm.
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3.3.2 Platform-Specific Software Design. Finally, the software
allocation and deployment takes place, bringing the platform-in-

dependent model together with the platform model (cf. Figure 7).

First, the application software is mapped to the execution nodes

of the platform. During this Allocate Software phase, deployment

engineers need to resolve allocation constraints, e.g., with respect

to performance or real-time scheduling but also security. For ex-

ample, confidential communication must be mapped to nodes that

communicate over secure channels. In parallel, during the step

Combine Threat Models, deployment engineers combine the appli-

cation threat model with the platform threat model by mapping

assumptions to security solutions which results in a secured system
architecture justifying all assumed countermeasures.

In the final Deploy Software phase, the actual deployment is

prepared by creating detailed deployment plans that describe all
necessary actions for a secure deployment. In addition, implemen-

tations of software artifacts can be generated, e.g., source code from

the behavioral models, or architectural code from the component

model. The attack-defense graph composed during the Allocate
Software phase describes threats and countermeasures of all layers.

Thus, in phase Generate Security Artifacts, this graph can be used

to generate additional security-related artifacts such as penetration

test cases, secure configurations (e.g., for security managers), or

policies for code analyses if binaries or handwritten code need to be

integrated. Such generated artifacts can be used to create justifica-

tions for the countermeasure nodes in the attack-defense graph. For

example, for the countermeasure node in Figure 4b justified by a

code analysis, specifications for this code analysis can be generated.

Finally, also non-software artifacts can be derived from the threat

model, e.g., installation plans or development guidelines. Such in-

formal artifacts can be used to guide deployment engineers when

justifying remaining countermeasures in the attack-defense graph.

After a successful execution of an appropriate analysis, deployment

engineers can mark this node as justified. Before the real system is

deployed, all leaf nodes of the attack-defense graph must be either

justified countermeasures, or attacks with acceptable risk.

4 RELATEDWORK
Current systems engineering approaches [20, 29] lack an integra-

tion of security engineering practices. In contrast, approaches inte-

grating security engineering into the software development lifecy-

cle are surveyed in [5, 17]. However, comparatively few approaches

consider security consistently across the entire lifecycle [17], as

we propose in this paper. Furthermore, the aforementioned works

focus on the secure development of information systems, and are

not tailored to the specific characteristics of cyber-physical sys-

tems. In particular, they do not take the discipline-spanning systems
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engineering into account, and therefore fail to integrate software

engineering with other engineering disciplines involved in the de-

velopment of cyber-physical systems.

In general, cyber-physical systems fall into the category of dis-

tributed systems. Approaches towards security for such systems

are surveyed by Uzunov et al. [27]. In this area, model-based ap-

proaches are particularly promising for provable and traceable secu-

rity due to their use of formal methods [18]. On the one hand, there

are model-based approaches aiming at security for information

systems in general, e.g., UMLsec [13], Model-driven Security [2],

and OpenPMF [24]. These approaches can be used to specify secu-

rity policies as well as corresponding analyses and enforcements.

However, in contrast to our work, they do not focus on the secure

deployment of cyber-physical systems to their computing platforms.

On the other hand, further model-based approaches aim at cyber-

physical systems in particular, e.g., SEED [28], SecureMDD [16], or

SysML-Sec [22], which consider the platform of the system explic-

itly, and use formal methods to enforce or analyse security policies.

However, in contrast to our work, both SEED and SecureMDD do

not enable a dedicated threat modeling. As the most closely related

work, SysML-Sec [22] provides a dedicated development process in-

tegrating techniques to enforce security. Among others, the authors

also use attack graphs to specify and analyse attacks at the begin-

ning of the development. In contrast to our approach, the attack

graphs are not integrated with the design models in the subsequent

steps, and therefore do not provide traceability to countermeasures.

5 CONCLUSIONS
The emergent need for security in cyber-physical systems requires

appropriate engineering techniques to make systems secure by de-

sign. In this paper, we illustrate how secure software engineering

practices can be integrated into an engineering process for cyber-

physical systems. We describe how security requirements can be

identified and specified at systems engineering level. In addition, we

describe how these security requirements can be addressed system-

atically by taking appropriate countermeasures during software en-

gineering. For this purpose, we use attack-defense graphs as threat

model for tracing security requirements to both application-level

countermeasures (e.g., information flow control) and platform-level

countermeasures (e.g., cryptographic libraries). Thereby, we seek

to increase the overall security of systems because requirements,

threats, and countermeasures are made explicit and are traceable

across the whole development lifecycle.

By extending a state-of-the-art development process, we seek to

help engineers apply our approach in systems engineering practice.

In future work, we plan to further strengthen the applicability of

our approach by providing tool support for specification, analysis,

and traceability. On this basis, we also plan to empirically validate

the security benefits of our work and to investigate the integration

of our approach with agile development methodologies.
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